O mnie

Informacje zawodowe

Pracuję w Katedrze Energetyki Wodorowej na Wydziale Energetyki i Paliw Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie.

Moja kariera zawodowa jest ściśle związana z AGH, gdzie uzyskałem stopień doktora (praca doktorska „Struktura, właściwości transportowe i elektrochemiczne spineli Li-Mn-O oraz Li-Mn-Co-O. Zastosowanie w ogniwach litowych o napięciu 3 V i 4 V”, Wydział Inżynierii Materiałowej i Ceramiki), doktora habilitowanego (monografia „Projektowanie właściwości fizykochemicznych tlenkowych materiałów katodowych dla ogniw IT-SOFC oraz Li-ION”) oraz tytuł profesora. Obecnie pełnię na Wydziale Energetyki i Paliw funkcję prodziekana ds. współpracy i nauki.

Moje zainteresowania naukowe dotyczą badań nad korelacją pomiędzy strukturą krystaliczną a właściwościami transportowymi i elektrokatalitycznymi materiałów tlenkowych, obejmujące poza tematyką ogniw paliwowych SOFC oraz baterii Li-ion, także badania nad materiałami do magazynowania tlenu oraz na membrany ceramiczne o mieszanym przewodnictwie jonowo-elektronowym.

Badania te realizowane są w ramach międzynarodowych i krajowych projektów badawczych, w ramach ścisłej współpracy międzynarodowej i krajowej.

Zainteresowania

Podróże, kultura i sztuka Azji, numizmatyka (okres starożytny).

Nauka

Działalność naukowo-badawcza

Liczba publikacji z bazy Journal Citation Reports: 181
Sumaryczna wartość współczynnika oddziaływania IF: 871,744
Liczba cytowań bez autocytowań: 4673
Indeks Hirscha: 41

Prezentacja tematyki badawczej

Lista ważniejszych publikacji

1. J. Zhao, B. Wang, Z. Zhan, M. Hu, F. Cai, K. Świerczek, K. Yang, J. Ren, Z. Guo, Z. Wang
„Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes”
Journal of Colloid and Interface Science 664 (2024) 790-800
IF (2022) 9.9

2. B. Wang, F. Cai, C. Chu, B. Fu, K. Świerczek, L. Li, H. Zhao
„Modification of the Ni-rich layered cathode material by Hf addition: Synergistic microstructural engineering and surface stabilization”
ACS Applied Materials & Interfaces 16(10) (2024) 12599-12611
IF (2022) 9.5

3. J. Wang, S. Zhang, H. Zhao, J. Liu, M.-A. Yang, Z. Li, K. Świerczek
„Construction of an intimately riveted Li/garnet interface with ultra-low interfacial resistance for solid-state batteries”
Journal of Materials Chemistry A 12(8) (2024) 4903-4911
IF (2022) 11.9

4. H. Yang, A. Wu, Z. Liu, Y. Su, X. Hu, K. Świerczek, J. Luo, A. Meng, Y. Lu, Z. Lu, Y. Li, Y. Zhang, W. Guan
„A power-to-hydrogen nearby consumption system based on a flat-tube rSOC coupled with local photovoltaics and Yellow River water”
International Journal of Hydrogen Energy 57 (2024) 1111-1117
IF (2022) 7.2

5. Z. Du, L. Shen, Y. Gong, M. Zhang, J. Zhang, J. Feng, K. Li, K. Świerczek, H. Zhao
„Self-assembled perovskite nanocomposite with beneficial lattice tensile strain as high active and durable cathode for low temperature Solid Oxide Fuel Cell”
Advanced Functional Materials 34(4) (2024) 2310790
IF (2022) 19.0

1. J. Suchanicz, D. Sitko, K. Stanuch, K. Świerczek, G. Jagło, A. Kruk, K. Kluczewska-Chmielarz, K. Konieczny, P. Czaja, J. Aleksandrowicz, W. Wieczorek, J. Grygierek, M. Sokolowski, G. Stachowski, M. Antonova, A. Sternberg
„Temperature and E-poling evolution of structural, thermal, vibrational, dielectric and ferroelectric properties of Ba1-xSrxTiO3 ceramics (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.45)”
Materials 16(18) (2023) 6316
IF (2022) 3.4

2. M. Moździerz, Z. Feng, A. Brzoza-Kos, P. Czaja, B. Fu, K. Świerczek
„Understanding the electrochemical reaction mechanism to achieve excellent performance of the conversion-alloying Zn2SnO4 anode for Li-ion batteries”
Journal of Materials Chemistry A 11(38) (2023) 20686-20700
IF (2022) 11.9

3. K. Li, K. Świerczek, P. Winiarz, A. Brzoza-Kos, A. Stępień, Z. Du, Y. Zhang, K. Zheng, K. Cichy, A. Niemczyk, Y. Naumovich
„Unveiling the electrocatalytic activity of the GdBa0.5Sr0.5Co2-xCuxO5+δ (x ≥ 1) oxygen electrodes for Solid Oxide Cells”
ACS Applied Materials & Interfaces 15(33) (2023) 39578-39593
IF (2022) 9.5

4. W. Skubida, D. Jaworski, A. Mielewczyk-Gryń, S. Wachowski, T. Miruszewski, K. Cichy, K. Świerczek, M. Gazda
„Charge transport in high-entropy oxides”
The Journal of Physical Chemistry C 127(29) (2023) 14534-14544
IF (2022) 3.7

5. Z. Yang, Z. Li, Y. Yang, Q. Zhang, H. Xie, J. Wang, K. Świerczek, H. Zhao
„Well-dispersed Fe nanoclusters for effectively increasing the initial Coulombic efficiency of the SiO anode”
ACS Nano 17(8) (2023) 7806-7812
IF (2022) 17.1

6. A. Kusior, P. Jeleń, M. Sitarz, K. Świerczek, M. Radecka
„3D flower-like TiO2 nanostructures: Anatase-to-rutile phase transformation and photoelectrochemical application”
Catalysts 13(4) (2023) 671
IF (2022) 3.9

7. Y. Zhang, H. Zhao, M. Zhang, Z. Du, W. Guan, S.C. Singhal, K. Świerczek
„Boosting electrode reaction kinetics of SSOFCs by synergistic effect of nanoparticles co-decoration on both cathode and anode”
Chemistry of Materials 35(2) (2023) 499-510
IF (2022) 8.6

8. M. Lubszczyk, T. Brylewski, P. Rutkowski, K. Świerczek, A. Kruk
„Preparation and physicochemical properties of K0.5Na0.5NbO3 ceramics obtained using a modified wet chemistry method”
Materials Science & Engineering B 288 (2023) 116135
IF (2022) 3.6

9. J. Sułowska, M. Szumera, D. Madej, B. Handke, K. Świerczek
„Melting behavior of sulfur-bearing silicate-phosphate glass batches”
Journal of Thermal Analysis and Calorimetry 148(4) (2023) 1463-1480
IF (2022) 4.4

1. J. Dąbrowa, A. Stępień, M. Szymczak, M. Zajusz, P. Czaja, K. Świerczek
„High-entropy approach to double perovskite cathode materials for Solid Oxide Fuel Cells: is multicomponent occupancy in (La,Pr,Nd,Sm,Gd)BaCo2O5+δ affecting physicochemical and electrocatalytic properties?”
Frontiers in Energy Research 10 (2022) 899308
IF 3.4

2. J. Dąbrowa, J. Adamczyk, A. Stępień, M. Zajusz, K. Bar, K. Berent, K. Świerczek
„Synthesis and properties of the gallium-containing Ruddlesden-Popper oxides with high-entropy B-site arrangement”
Materials 15(18) (2022) 6500
IF 3.4

3. A. Szymaszek-Wawryca, U. Díaz, D. Duraczyńska, K. Świerczek, B. Samojeden, M. Motak
„Catalytic performance and sulfur dioxide resistance of one-pot synthesized Fe-MCM-22 in selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) – The effect of iron content”
International Journal of Molecular Sciences 23(18) (2022) 10754
IF 5.6

4. M. Moździerz, K. Świerczek, J. Dąbrowa, M. Gajewska, A. Hanc, Z. Feng, J. Cieślak, M. Kądziołka-Gaweł, J. Płotek, M. Marzec, A. Kulka
„High-entropy Sn0.8(Co0.2Mg0.2Mn0.2Ni0.2Zn0.2)2.2O4 conversion-alloying anode material for Li-ion cells: Altered lithium storage mechanism, activation of Mg, and origins of the improved cycling stability”
ACS Applied Materials & Interfaces 14(37) (2022) 42057-42070
IF 9.5

5. D. Cai, Z. Liu, J. Yang, Y. Zhang, M. Chai, J. Wang, W. Guan, K. Świerczek
„Enhanced performance and durability of lanthanum strontium cobalt ferrite by in-situ solvothermal modification”
Journal of the European Ceramic Society 42(12) (2022) 5008-5014
IF 5.7

6. K. Li, A. Niemczyk, K. Świerczek, A. Stępień, Y. Naumovich, J. Dąbrowa, M. Zajusz, K. Zheng, B. Dabrowski
„Co-free triple perovskite La1.5Ba1.5Cu3O7±δ as a promising air electrode material for Solid Oxide Fuel Cells”
Journal of Power Sources 532 (2022) 231371
IF 9.2

7. N. Yao, Y. Zhang, X. Rao, Z. Yang, K. Zheng, K. Świerczek, H. Zhao
„A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries”
International Journal of Minerals, Metallurgy and Materials 29(4) (2022) 876-895
IF 4.8

8. C. Sun, P. Summa, Y. Wang, K. Świrk, A. Miró i Rovira, S. Casale, K. Świerczek, C. Hu, M. Rønning, P. Da Costa
„Boosting CO2 reforming of methane via the metal-support interaction in mesostructured SBA-16-derived Ni nanoparticles”
Applied Materials Today 26 (2022) 101354
IF 8.3

9. B. Wang, H. Zhao, F. Cai, Z. Liu, G. Yang, X. Qin, K. Świerczek
„Surface engineering with ammonium niobium oxalate: A multifunctional strategy to enhance electrochemical performance and thermal stability of Ni-rich cathode materials at 4.5 V cutoff potential”
Electrochimica Acta 403 (2022) 139636
IF 6.6

10. A. Niemczyk, R. Merkle, J. Maier, K. Świerczek
„Defect chemistry and proton uptake of La2-xSrxNiO4±δ and La2-xBaxNiO4±δ Ruddlesden-Popper phases”
Journal of Solid State Chemistry 306 (2022) 122731
IF 3.3

11. K. Cichy, M. Zając, K. Świerczek
„Evaluation of applicability of Nd- and Sm-substituted Y1-xRxMnO3+δ in temperature swing absorption for energy-related technologies”
Energy 239(E) (2022) 122429
IF 9.0

12. P. Summa, B. Samojeden, M. Motak, D. Wierzbicki, I. Alxneit, K. Świerczek, P. Da Costa
„Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation”
Catalysis Today 384-386 (2022) 133-145
IF 5.3

1. J. Dąbrowa, K. Zielińska, A. Stępień, M. Zajusz, M. Nowakowska, M. Moździerz, K. Berent, M. Szymczak, K. Świerczek
„Formation of solid solutions and physicochemical properties of the high-entropy
Ln1-xSrx(Co,Cr,Fe,Mn,Ni)O3-δ (Ln = La, Pr, Nd, Sm or Gd) perovskites”
Materials 14(18) (2021) 5264
IF 3.748

2. K. Cichy, K. Świerczek
„Influence of doping on the transport properties of Y1-xLnxMnO3+δ (Ln: Pr, Nd)”
Crystals 11(5) (2021) 510
IF 2.670

3. M. Moździerz, J. Dąbrowa, A. Stępień, M. Zajusz, M. Stygar, W. Zając, M. Danielewski, K. Świerczek
„Mixed ionic-electronic transport in the high-entropy (Co,Cu,Ni,Mg,Zn)1-xLixO oxides”
Acta Materialia 208 (2021) 116735
IF 9.209

4. L. Zhao, H. Zhao, J. Wang, Y. Zhang, Z. Li, Z. Du, K. Świerczek, Y. Hou
„Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance”
ACS Applied Materials & Interfaces 13(7) (2021) 8445-8454
IF 10.383

5. A. Niemczyk, A. Stępień, K. Cichy, J. Dąbrowa, Z. Zhang, B. Gędziorowski, K. Zheng, H. Zhao, K. Świerczek
„Modification of Ruddlesden-Popper-type Nd2-xNi0.75Cu0.2M0.05O4±δ by the Nd-site cationic deficiency and doping with Sc, Ga or In: crystal structure, oxygen content, transport properties and oxygen permeability”
Journal of Solid State Chemistry 296 (2021) 121982
IF 3.656

6. J. Dąbrowa, J. Cieślak, M. Zajusz, M. Moździerz, K. Berent, A. Mikuła, A. Stępień, K. Świerczek
„Structure and transport properties of the novel (Dy,Er,Gd,Ho,Y)3Fe5O12 and (Dy,Gd,Ho,Sm,Y)3Fe5O12 high entropy garnets”
Journal of the European Ceramic Society 41(6) (2021) 3844-3849
IF 6.364

7. K. Cichy, K. Świerczek, K. Jarosz, A. Klimkowicz, M. Marzec, M. Gajewska, B. Dabrowski
„Towards efficient oxygen separation from air: Influence of the mean rare-earth radius on thermodynamics and kinetics of reactivity with oxygen in hexagonal Y1-xRxMnO3+δ”
Acta Materialia 205 (2021) 116544
IF 9.209

8. W. Skubida, K. Zheng, A. Stępień, K. Świerczek, A. Klimkowicz
„SrCe0.9In0.1O3-δ-based reversible symmetrical Protonic Ceramic Cell”
Materials Research Bulletin 135 (2021) 111154
IF 5.600

9. T. Polczyk, W. Zając, M. Ziąbka, K. Świerczek
„Mitigation of grain boundary resistance in La2/3-xLi3xTiO3 perovskite as an electrolyte for solid state Li-ion batteries”
Journal of Materials Science 56(3) (2021) 2435-2450
IF 4.682

10. Y. Zhang, B. Zhang, H. Zhao, K. Świerczek, Z. Du, Y. Li, L. Xu, H. Li
„Electrochemical performance and structural durability of Mg-doped SmBaMn2O5+δ layered perovskite electrode for symmetrical solid oxide fuel cell”
Catalysis Today 364 (2021) 80-88
IF 6.562

1. J. Dąbrowa, A. Olszewska, A. Falkenstein, C. Schwab, M. Szymczak, M. Zajusz, M. Moździerz, A. Mikuła, K. Zielińska, K. Berent, T. Czeppe, M. Martin, K. Świerczek
„Innovative approach to design SOFC air electrode materials: high entropy La1-xSrx(Co,Cr,Fe,Mn,Ni)O3-δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol-gel method”
Journal of Materials Chemistry A 8(46) (2020) 24455-24468
IF (2019) 11.301

2 A. Klimkowicz, T. Hashizume, K. Cichy, Y. Tamura, K. Świerczek, A. Takasaki, T. Motohashi, B. Dabrowski
„Oxygen separation from air by the combined temperature- and pressure-swing processes using oxygen storage materials Y1-x(Tb/Ce)xMnO3+δ”
Journal of Materials Science 55(33) (2020) 15653-15666
IF (2019) 3.553

3. A. Niemczyk, K. Zheng, K. Cichy, K. Berent, K. Küsterd, U. Starke, B. Poudel, B. Dabrowski, K. Świerczek
„High Cu content LaNi1-xCuxO3-δ perovskites as candidate air electrode materials for reversible Solid Oxide Cells”
International Journal of Hydrogen Energy 45(53) (2020) 29449-29464
IF (2019) 4.939

4. J. Dąbrowa, M. Szymczak, M. Zajusz, A. Mikuła, M. Moździerz, K. Berent, M. Wytrwal-Sarna, A. Bernasik, M. Stygar, K. Świerczek
„Stabilizing fluorite structure in ceria-based high-entropy oxides: Influence of Mo addition on crystal structure and transport properties”
Journal of the European Ceramic Society 40(15) (2020) 5870-5881
IF (2019) 4.495

5. Z. Du, K. Li, H. Zhao, X. Dong, Y. Zhang, K. Świerczek
„SmBaCo2O5+δ double perovskite with epitaxially grown Sm0.2Ce0.8O1.9 nanoparticles as the promising cathode for solid oxide fuel cells”
Journal of Materials Chemistry A 8(28) (2020) 14162-14170
IF (2019) 11.301

6. A. Mielewczyk-Gryń, S. Wachowski, A. Witkowska, K. Dzierzgowski, W. Skubida, K. Świerczek, A. Regoutz, D.J. Payne, S. Hull, H. Zhang, I. Abrahams, M. Gazda
„Antimony substituted lanthanum orthoniobate proton conductor – Structure and electronic properties”
Journal of the American Ceramic Society 103(11) (2020) 6575-6585
IF (2019) 3.502

7. K.A. Bogdanowicz, B. Jewłoszewicz, A. Iwan, K. Dysz, W. Przybył, A. Januszko, M. Marzec, K. Cichy, K. Świerczek, L. Kavan, M. Zukalová, V. Nadazdy, R. Subair, E. Majkova, M. Mičušík, M. Omastová, M.D. Özeren, K. Kamarás, D.Y. Heo, S.Y. Kim
„Selected electrochemical properties of 4,4′-((1E,1’E)-((1,2,4-thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency”
Materials 13(11) (2020) 2440
IF (2019) 3.057

8. B. Gędziorowski, A. Niemczyk, A. Olszewska, K. Cichy, K. Świerczek
„Insight into physicochemical properties of Nd2CuO4±δ and the A-site cation deficient Nd1.9CuO4±δ layered oxides”
Functional Materials Letters 13(6) (2020) 2051034
IF (2019) 2.000

9. B. Gędziorowski, K. Cichy, A. Niemczyk, A. Olszewska, Z. Zhang, S. Kopeć, K. Zheng, M. Marzec, M. Gajewska. Z. Du, H. Zhao, K. Świerczek
„Ruddlesden-Popper-type Nd2-xNi1-yCuyO4±δ layered oxides as candidate materials for MIEC-type ceramic membranes”
Journal of the European Ceramic Society 40(12) (2020) 4056-4066
IF (2019) 4.495

10. A. Olszewska, K. Świerczek, A. Niemczyk
„Peculiar properties of electrochemically oxidized SmBaCo2-xMnxO5+δ (x = 0; 0.5 and 1) A-site ordered perovskites”
Crystals 10(3) (2020) 205
IF (2019) 2.404

11. W. Skubida, K. Zheng, K. Świerczek, M. Michna, Ł. Kondracki
„Indium doping in SrCeO3 proton-conducting perovskites”
Journal of Solid State Chemistry 284 (2020) 121210
IF (2019) 2.726

12. G. Zhang, Q. Xu, Y. Liu, Q. Qin, J. Zhang, K. Qi, J. Chen, Z. Wang, K. Zheng, K. Świerczek, W. Zheng
„Red phosphorus as self-template to hierarchical nanoporous nickel phosphides toward enhanced electrocatalytic activity for oxygen evolution reaction”
Electrochimica Acta 332 (2020) 135500
IF (2019) 6.215

13. J. Cebulski, D. Pasek, M. Bik, K. Świerczek, P. Jeleń, K. Mroczka, J. Dąbrowa, M. Zajusz, J. Wyrwa, M. Sitarz
„In-situ XRD investigations of FeAl intermetallic phase-based alloy oxidation”
Corrosion Science 164 (2020) 108344
IF (2019) 6.479

14. M. Stygar, J. Dąbrowa, M. Moździerz, M. Zajusz, W. Skubida, K. Mroczka, K. Berent, K. Świerczek, M. Danielewski
„Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels”
Journal of the European Ceramic Society 40(4) (2020) 1644-1650
IF (2019) 4.495

15. Z. Grzesik, G. Smoła, M. Miszczak, M. Stygar, J. Dąbrowa, M. Zajusz, K. Świerczek, M. Danielewski
„Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide”
Journal of the European Ceramic Society 40(3) (2020) 835-839
IF (2019) 4.495

1. A. Niemczyk, Z. Du, A. Olszewska, M. Marzec, M. Gajewska, K. Świerczek, H. Zhao, B. Poudel, B. Dabrowski
„Effective oxygen reduction on A-site substituted LaCuO3-δ: Toward air electrodes for SOFCs based on perovskite-type copper oxides”
Journal of Materials Chemistry A 7(48) (2019) 27403-27416
IF 11.301

2. A. Olszewska, Y. Zhang, Z. Du, M. Marzec, K. Świerczek, H. Zhao, B. Dabrowski
„Mn-rich SmBaCo0.5Mn1.5O5+δ double perovskite cathode material for SOFCs”
International Journal of Hydrogen Energy 44(50) (2019) 27587-27599
IF 4.939

3. Y. Zhang, H. Zhao, Z. Du, K. Świerczek, Y. Li
„High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell”
Chemistry of Materials 31(10) (2019) 3784-3793
IF 9.567

4. Z. Liu, K. Li, H. Zhao, K. Świerczek
„High-performance oxygen permeation membranes: cobalt-free Ba0.975La0.025Fe1-xCuxO3-δ ceramics”
Journal of Materiomics 5(2) (2019) 264-272
IF 5.797

5. S. Zhang, H. Zhao, J. Guo, Z. Du, J. Wang, K. Świerczek
„Characterization of Sr-doped lithium lanthanum titanate with improved transport properties”
Solid State Ionics 336 (2019) 39-46
IF 3.107

6. L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long, Z. Li, K. Świerczek
„Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium”
Journal of Materials Chemistry A 7(16) (2019) 9807-9814
IF 11.301

7. K. Kornaus, R. Lach, M. Szumera, K. Świerczek, A. Gubernat
„Synthesis of aluminium titanate by means of isostructural heterogeneous nucleation”
Journal of the European Ceramic Society 39(7) (2019) 2535-2544
IF 4.495

8. A. Klimkowicz, K. Cichy, O. Chmaissem, B. Dabrowski, B. Poudel, K. Świerczek, K.M. Taddei, A. Takasaki
„Reversible oxygen intercalation in hexagonal Y0.7Tb0.3MnO3+δ: Toward the oxygen production by temperature-swing absorption in air”
Journal of Materials Chemistry A 7(6) (2019) 2608-2618
IF 11.301

9. A. Olszewska, K. Świerczek, W. Skubida, Z. Du, H. Zhao, B. Dabrowski
„Versatile application of redox processes for REBaCoMnO5+δ (RE: La, Pr, Nd, Sm, Gd and Y) oxides”
Journal of Physical Chemistry C 123(1) (2019) 48-61
IF 4.189

10. T. Yang, H. Zhao, M. Fang, K. Świerczek, J. Wang, Z. Du
„A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs: synthesis, structural and electrical properties”
Journal of the European Ceramic Society 39(2-3) (2019) 424-431
IF 4.495

11. M. Odziomek, F. Chaput, F. Lerouge, A. Rutkowska, K. Świerczek, D. Carlier, M. Sitarz, S. Parola
„Impact of the synthesis parameters on the microstructure of nano-structured LTO prepared by glycothermal routes and 7Li NMR structural investigations”
Journal of Sol-Gel Science and Technology 89(1) (2019) 225-233
IF 2.008

1. A. Milewska, K. Świerczek, W. Zając, J. Molenda
„Overcoming transport and electrochemical limitations in the high-voltage
Na0.67Ni0.33Mn0.67-yTiyO2 (0 ≤ y ≤ 0.33) cathode materials by Ti-doping”
Journal of Power Sources 404 (2018) 39-46
IF 7.467

2. Z. Du, Z. Zhang, A. Niemczyk, A. Olszewska, N. Chen, K. Świerczek, H. Zhao
„Unveiling the effects of A-site substitutions on the oxygen ions migration in A2-xA’xNiO4+δ by first principles calculations”
Physical Chemistry Chemical Physics 20(33) (2018) 21685-21692
IF 3.567

3. A. Niemczyk, A. Olszewska, Z. Du, Z. Zhang, K. Świerczek, H. Zhao
„Assessment of layered La2-x(Sr,Ba)xCuO4-δ oxides as potential cathode materials for SOFCs”
International Journal of Hydrogen Energy 43(32) (2018) 15492-15504
IF 4.084

4. L. Zhao, H. Zhao, Z. Du, N. Chen, X. Chang, Z. Zhang, F. Gao, A. Trenczek-Zając,
K. Świerczek
„Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties”
Electrochimica Acta 282 (2018) 510-519
IF 5.383

5. A. Olszewska, Z. Du, K. Świerczek, H. Zhao, B. Dabrowski
„Novel ReBaCo1.5Mn0.5O5+δ (Re = La, Pr, Nd, Sm, Gd and Y) perovskite oxide: influence of manganese doping on crystal structure, oxygen nonstoichiometry, thermal expansion, transport properties, and application as cathode materials in Solid Oxide Fuel Cells”
Journal of Materials Chemistry A 6(27) (2018) 13271-13285
IF 10.733

6. K. Zheng, K. Świerczek
„Possibility of determination of transport coefficients D and K from relaxation experiments for sphere-shaped powder samples”
Solid State Ionics 323 (2018) 157-165
IF 2.886

7. W. Skubida, A. Niemczyk, K. Zheng, X. Liu, K. Świerczek
„Crystal structure, hydration and two-fold/single-fold diffusion kinetics in proton-conducting Ba0.9La0.1Zr0.25Sn0.25In0.5O3-a oxide”
Crystals 8(3) (2018) 136
IF 2.061

8. K. Cichy, W. Skubida, K. Świerczek
„Structural transformations, water incorporation and transport properties of tin-substituted barium indate”
Journal of Solid State Chemistry 262 (2018) 58-67
IF 2.291

9. Z. Du, H. Zhao, S. Li, Y. Zhang, X. Chang, Q. Xia, N. Chen, L. Gu, K. Świerczek, Y. Li, T. Yang, K. An
„Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6-δ for Solid Oxide Fuel Cells”
Advanced Energy Materials 8(18) (2018) 1800062
IF 24.884

10. Z. Zhang, Z. Du, A. Niemczyk, K. Li, H. Zhao, K. Świerczek
„A-site nonstoichiometry and B-site doping with selected M3+ cations in
La2-xCu1-y-zNiyMzO4-δ layered oxides”
Solid State Ionics 317 (2018) 26-31
IF 2.886

11. A. Klimkowicz, K. Świerczek, S. Kobayashi, A. Takasaki, W. Allahyani, B. Dabrowski
„Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications”
Journal of Solid State Chemistry 258 (2018) 471-476
IF 2.291

12. Z. Zhang, H. Zhao, Y. Teng, X. Chang, Q. Xia, Z. Li, J. Fang, Z. Du, K. Świerczek
„Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: electrochemical application for highly-stable and ultrafast lithium storage”
Advanced Energy Materials 8(7) (2018) 1700174
IF 24.884

13. G. Grabowski, R. Lach, Z. Pędzich, K. Świerczek, A. Wojteczko
„Anisotropy of thermal expansion of 3Y-TZP, α-Al2O3 and composites from 3Y-TZP/α-Al2O3 system”
Archives of Civil and Mechanical Engineering 18(1) (2018) 188-197
IF 2.846

1. Z. Du, C. Yan, H. Zhao, Y. Zhang, C. Yang, S. Yi, Y. Lu, K. Świerczek
„Effective Ca-doping in Y1-xCaxBaCo2O5+δ cathode materials for Intermediate Temperature Solid Oxide Fuel Cells”
Journal of Materials Chemistry A 5(48) (2017) 25641-25651
IF 9.931

2. Z. Zhang, H. Zhao, Z. Du, X. Chang, L. Zhao, X. Du, Z. Li, Y. Teng, J. Fang,
K. Świerczek
„(101) plane-oriented SnS2 nanoplates with carbon coating: a high-rate and cycle-stable anode material for lithium ion batteries”
ACS Applied Materials & Interfaces 9(41) (2017) 35880-35887
IF 8.097

3. Ł. Kondracki, A. Kulka, K. Świerczek, M. Ziąbka, J. Molenda
„Operando X-ray diffraction studies as a tool for determination of transport parameters of mobile ions in electrode materials”
Journal of Power Sources 369 (2017) 1-5
IF 6.945

4. J. Suchanicz, K. Świerczek, D. Sitko, P. Czaja, P. Marchet, H. Czternastek, D. Majda
„The effects of PbZn1/3Nb2/3O3-doping on structural, thermal, optical, dielectric and ferroelectric properties of BaTiO3 ceramics”
Journal of Applied Physics 122(12) (2017) 124105-1-7
IF 2.176

5. K. Świerczek, A. Klimkowicz, K. Nishihara, S. Kobayashi, A. Takasaki, M. Alanizy,
S. Kolesnik, B. Dabrowski, S. Seong, J. Kang
„Oxygen storage properties of hexagonal HoMnO3+δ”
Physical Chemistry Chemical Physics 19(29) (2017) 19243-19251
IF 3.906

6. K. Świerczek, W. Skubida, A. Niemczyk, A. Olszewska, K. Zheng
„Structure and transport properties of proton-conducting BaSn0.5In0.5O2.75 and A-site substituted Ba0.9Ln0.1Sn0.5In0.5O2.8 (Ln = La, Gd) oxides”
Solid State Ionics 307 (2017) 44-50
IF 2.751

7. Y. Teng, H. Zhao, Z. Zhang, L. Zhao, Y. Zhang, Z. Li, Q. Xia, Z. Du, K. Świerczek
„MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes”
Carbon 119 (2017) 91-100
IF 7.082

8. J. Suchanicz, K. Konieczny, K. Świerczek, M. Lipiński, M. Karpierz, D. Sitko,
H. Czternastek, K. Kluczewska
„Electrical transport in low-lead (1-x)BaTiO3-xPbMg1/3Nb2/3O3 ceramics”
Journal of Advanced Ceramics 6(3) (2017) 207-219
IF 1.605

9. M. Odziomek, F. Chaput, A. Drobniak, K. Świerczek, D. Olszewska, M. Sitarz,
F. Lerouge, S. Parola
„Hierarchically-structured lithium titanate for ultrafast charging in long-life high capacity batteries”
Nature Communications 8 (2017) 15636
IF 12.353

10. Y. Lu, H. Zhao, K. Li, X. Du, Y. Ma, X. Chang, N. Chen, K. Zheng, K. Świerczek
„Effective calcium doping at the B-site of BaFeO3-δ perovskite: towards low-cost and high-performance oxygen permeation membranes”
Journal of Materials Chemistry A 5(17) (2017) 7999-8009
IF 9.931

11. J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus, T. Brylewski, M. Bućko,
J. Chmielowiec, K. Ćwieka, M. Gazda, A. Gil, P. Jasiński, Z. Jaworski, J. Karczewski,
M. Kawalec, R. Kluczowski, M. Krauz, F. Krok, B. Łukasik, M. Małys, A. Mazur,
A. Mielewczyk-Gryń, J. Milewski, S. Molin, G. Mordarski, M. Mosiałek, K. Motylinski, E.N. Naumovich, P. Nowak, G. Paściak, P. Pianko-Oprych, D. Pomykalska, M. Rękas,
A. Ściążko, K. Świerczek, J. Szmyd, S. Wachowski, T. Wejrzanowski, W. Wróbel,
K. Zagorski, W. Zając, A. Żurawska
„Status report on high temperature fuel cells in Poland – Recent advances and achievements”
International Journal of Hydrogen Energy 42(7) (2017) 4366-4403
IF 4.229

12. A. Klimkowicz, K. Świerczek, K. Zheng, D. Wallacher, A. Takasaki
„Oxygen release from BaLnMn2O6 (Ln: Pr, Nd, Y) under reducing conditions as studied by neutron diffraction”
Journal of Materials Science 52(11) (2017) 6476-6485
IF 2.993

13. X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulka, K. Świerczek
„Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries”
Electrochimica Acta 228 (2017) 100-106
IF 5.116

14. X. Du, H. Zhao, Z. Zhang, Y. Lu, C. Gao, Z. Li, Y. Teng, L. Zhao, K. Świerczek
„Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes”
Electrochimica Acta 225 (2017) 129-136
IF 5.116

15. A. Trenczek-Zając, J. Banaś, K. Świerczek, K. Zazakowny, M. Radecka
„Photosensitization of TiO2 P25 with CdS nanoparticles for photocatalytic applications”
Archives of Metallurgy and Materials 62(2) (2017) 841-849
IF 0.625

1. A. Klimkowicz, K. Świerczek, T. Yamazaki, A. Takasaki
„Enhancement of the oxygen storage properties of BaPrMn2O5+δ and BaSmMn2O5+δ oxides by a high-energy milling”
Solid State Ionics 298 (2016) 66-72
IF 2.354

2. Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv,
K. Świerczek
„MoS2 nanosheets vertically grown on graphene sheets for lithium ion battery anodes”
ACS Nano 10(9) (2016) 8526-8535
IF 13.942

3. Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, X. Cheng, Y. Li, L. Gu, K. Świerczek
„High performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst”
ACS Nano 10(9) (2016) 8660-8669
IF 13.942

4. K. Zheng, K. Świerczek
„Evaluation of La2Ni0.5Cu0.5O4+δ and Pr2Ni0.5Cu0.5O4+δ Ruddlesden-Popper-type layered oxides as cathode materials for Solid Oxide Fuel Cells”
Materials Research Bulletin 84 (2016) 259-266
IF 2.446

5. Z. Zhang, H. Zhao, Q. Xia, J. Allen, Z. Zeng, C. Gao, Z. Li, X. Du, K. Świerczek
„High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries”
Electrochimica Acta 211 (2016) 761-767
IF 4.798

6. Y. Lu, H. Zhao, X. Chang, X. Du, K. Li, Y. Ma, S. Yi, Z. Du, K. Zheng, K. Świerczek
„Novel cobalt-free BaFe1-xGdxO3-δ perovskite membranes for oxygen separation”
Journal of Materials Chemistry A 4(27) (2016) 10454-10466
IF 8.867

7. W. Skubida, K. Świerczek
„Structural properties and presence of protons in Ba0.9Gd0.1Zr1-x-ySnxInyO3-(y-0.1)/2 perovskites”
Functional Materials Letters 9(4) (2016) 1641005
IF 1.234

8. K. Zheng, K. Świerczek
„A- and B-site doping effect on physicochemical properties of Sr2-xBaxMMoO6
(M = Mg, Mn, Fe) double perovskites – candidate anode materials for SOFCs”
Functional Materials Letters 9(4) (2016) 1641002
IF 1.234

9. M.A. Macias, M.V. Sandoval, N.G. Martinez, S. Vázquez-Cuadriello, L. Suescun,
P. Roussel, K. Świerczek, G.H. Gauthier
„Synthesis and preliminary study of La4BaCu5O13+δ and La6.4Sr1.6Cu8O20±δ ordered perovskites as SOFC/PCFC electrode materials”
Solid State Ionics 288 (2016) 68-75
IF 2.354

10. A. Klimkowicz, K. Świerczek, T. Rząsa, A. Takasaki, B. Dabrowski
„Oxygen storage properties and catalytic activity of layer-ordered perovskites
BaY1-xGdxMn2O5+δ”
Solid State Ionics 288 (2016) 43-47
IF 2.354

11. A. Kulka, K. Świerczek, K. Walczak, A. Braun, J. Molenda
„Correlation between transport properties and lithium extraction/insertion mechanism
in Fe-site substituted phospholivine”
Solid State Ionics 288 (2016) 184-192
IF 2.354

12. O.L. Pineda, Z.L. Moreno, P. Roussel, K. Świerczek, G.H. Gauthier
„Synthesis and preliminary study of the double perovskite NdBaMn2O5+δ as symmetric SOFC electrode material”
Solid State Ionics 288 (2016) 61-67
IF 2.354

13. K. Zheng, K. Świerczek
„Evaluation of W-containing Sr1-xBaxFe0.75W0.25O3-δ (x = 0, 0.5, 1) anode materials for Solid Oxide Fuel Cells”
Solid State Ionics 288 (2016) 124-129
IF 2.354

14. Q. Xia, H. Zhao, Z. Du, Z. Zhang, S. Li, C. Gao, K. Świerczek
„Design and synthesis of 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries”
Journal of Materials Chemistry A 4(2) (2016) 605-611
IF 8.867

1. Q. Xia, H. Zhao, Z. Du, Z. Zeng, C. Gao, Z. Zhang, X. Du, A. Kulka, K. Świerczek
„Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries”
Electrochimica Acta 180 (2015) 947-956
IF 4.803

2. X. Liu, Y. Dai, J. Xie, H. Zhao, P. Lv, K. Wang, K. Świerczek
„Improvement of silicon-based electrode for Li-ion batteries by formation of Si-TiB2-C nanocomposites”
Solid State Ionics 281 (2015) 60-67
IF 2.380

3. D. Baster, W. Maziarz, K. Świerczek, A. Stokłosa, J. Molenda
„Structural and electrochemical properties of Na0.72CoO2 as cathode material for sodium-ion batteries”
Journal of Solid State Electrochemistry 19(12) (2015) 3605-3612
IF 2.327

4. K. Zheng, K. Świerczek, J.M. Polfus, M.F. Sunding, M. Pishahang, T. Norby
„Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ electrode materials for symmetrical SOFCs”
Journal of the Electrochemical Society 162(9) (2015) F1078-F1087
IF 3.014

5. K. Zheng, A. Klimkowicz, K. Świerczek, A. Malik, Y. Ariga, T. Tominaga, A. Takasaki
„Chemical diffusion and surface exchange in selected Ln-Ba-Sr-Co-Fe perovskite-type oxides”
Journal of Alloys and Compounds 645(S1) (2015) S357-S360
IF 3.014

6. T. Tominaga, A. Takasaki, T. Shibato, K. Świerczek
„HREM observation and high-pressure composition isotherm measurement of Ti45Zr38Ni17 quasicrystal powders synthesized by mechanical alloying”
Journal of Alloys and Compounds 645(S1) (2015) S292-S294
IF 3.014

7. Y. Ariga, A. Takasaki, T. Kimijima, K. Świerczek
„Electrochemical properties of Ti49Zr26Ni25-xPdx (x = 0-6) quasicrystal electrodes produced by mechanical alloying”
Journal of Alloys and Compounds 645(S1) (2015) S152-S154
IF 3.014

8. A. Klimkowicz, A. Takasaki, Ł. Gondek, H. Figiel, K. Świerczek
„Hydrogen desorption properties of magnesium hydride catalyzed multiply with carbon and silicon”
Journal of Alloys and Compounds 645(S1) (2015) S80-S83
IF 3.014

9. F. Yang, H. Zhao, J. Yang, M. Fang, Y. Lu, Z. Du, K. Świerczek, K. Zheng
„Structure and oxygen permeability of BaCo0.7Fe0.3-xInxO3-δ ceramic membranes”
Journal of Membrane Science 492 (2015) 559-567
IF 5.557

10. K. Świerczek, W. Zając, A. Klimkowicz, K. Zheng, N. Malikova, B. Dabrowski
„Crystal structure and proton conductivity in highly oxygen-deficient
Ba1-xLax(In,Zr,Sn)O3-δ perovskites”
Solid State Ionics 275 (2015) 58-61
IF 2.380

11. Y. Lu, H. Zhao, X. Cheng, Y. Jia, X. Du, M. Fang, Z. Du, K. Zheng, K. Świerczek
„Investigation of In-doped BaFeO3-δ perovskite-type oxygen permeable membranes”
Journal of Materials Chemistry A 3(11) (2015) 6202-6214
IF 8.262

12. A. Klimkowicz, K. Świerczek, A. Takasaki, J. Molenda, B. Dabrowski
„Crystal structure and oxygen storage properties of BaLnMn2O5+δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides”
Materials Research Bulletin 65 (2015) 116-122
IF 2.435

13. J. Suchanicz, K. Świerczek, E. Nogas-Ćwikiel, K. Konieczny, D. Sitko
„PbMg1/3Nb2/3O3 -doping effects on structural, thermal, Raman, dielectric and ferroelectric properties of BaTiO3 ceramics”
Journal of the European Ceramic Society 35(6) (2015) 1777-1783
IF 2.933

14. B. Łysoń-Sypień, M. Radecka, M. Rękas, K. Świerczek, K. Michalow-Mauke, T. Graule, K. Zakrzewska
„Grain-size-dependent gas-sensing properties of TiO2 nanomaterials”
Sensors and Actuators B-Chemical 211 (2015) 67-76
IF 4.758

15. J. Molenda, D. Baster, A. Milewska, K. Świerczek, D.K. Bora, A. Braun, J. Toboła
„Electronic origin of difference in discharge curve between LixCoO2 and NaxCoO2 cathodes”
Solid State Ionics 271 (2015) 15-27
IF 2.380

16. A. Kulka, A. Braun, T.-W. Huang, A. Wolska, M.T. Klepka, A. Szewczyk, D. Baster,
W. Zając, K. Świerczek, J. Molenda
„Evidence for Al doping in lithium sublattice of LiFePO4”
Solid State Ionics 270 (2015) 33-38
IF 2.380

17. X. Liu, J. Xie, H. Zhao, P. Lv, K. Wang, Z. Feng, K. Świerczek
„Electrochemical properties of mechanochemically synthesized CoSn2-C nanocomposite-type anode material for Li-ion batteries”
Solid State Ionics 269 (2015) 86-92
IF 2.380

18. X. Liu, H. Zhao, A. Kulka, A. Trenczek-Zając, J. Xie, N. Chen, K. Świerczek
„Characterization of physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice”
Acta Materialia 82 (2015) 212-223
IF 5.058

1. K. Świerczek, A. Klimkowicz, A. Niemczyk, A. Olszewska, T. Rząsa, J. Molenda,
A. Takasaki
„Oxygen storage-related properties of substituted BaLnMn2O5+δ A-site ordered manganites”
Functional Materials Letters 7(6) (2014) 1440004
IF 1.606

2. K. Zheng, K. Świerczek
„Physicochemical properties of rock salt-type ordered Sr2MMoO6 (M = Mg, Mn, Fe, Co, Ni) double perovskites”
Journal of the European Ceramic Society 34(16) (2014) 4273-4284
IF 2.947

3. J. Molenda, D. Baster, M. Molenda, K. Świerczek, J. Toboła
„Anomaly in electronic structure of NaxCoO2-y cathode as a source of its step-like discharge curve”
Physical Chemistry Chemical Physics 16(28) (2014) 14845-14857
IF 4.493

4. A. Milewska, K. Świerczek, J. Tobola, F. Boudoire, Y. Hu, D.K. Bora, B.S. Mun,
A. Braun, J. Molenda
„The nature of the nonmetal-metal transition in LixCoO2 oxide”
Solid State Ionics 263 (2014) 110-118
IF 2.561

5. B. Gędziorowski, Ł. Kondracki, K. Świerczek, J. Molenda
„Structural and transport properties of Li1+xV1-xO2 anode materials for Li-ion batteries”
Solid State Ionics 262 (2014) 124-127
IF 2.561

6. D. Baster, K. Dybko, M. Szot, K. Świerczek, J. Molenda
„Sodium intercalation in NaxCoO2-y – correlation between crystal structure, oxygen nonstoichiometry and electrochemical properties”
Solid State Ionics 262 (2014) 206-210
IF 2.561

7. K. Zheng, K. Świerczek, J. Bratek, A. Klimkowicz
„Cation-ordered perovskite-type anode and cathode materials for Solid Oxide Fuel Cells”
Solid State Ionics 262 (2014) 354-358
IF 2.561

8. A. Klimkowicz, K. Świerczek, K. Zheng, M. Baranowska, A. Takasaki, B. Dabrowski
„Evaluation of BaY1-xPrxMn2O5+δ oxides for oxygen storage technology”
Solid State Ionics 262 (2014) 659-663
IF 2.561

9. K. Świerczek, N. Yoshikura, K. Zheng, A. Klimkowicz
„Correlation between crystal and transport properties in LnBa0.5Sr0.5Co1.5Fe0.5O5+δ
(Ln – selected lanthanides, Y)”
Solid State Ionics 262 (2014) 645-649
IF 2.561

10. Z. Du, H. Zhao, Y. Shen, L. Wang, M. Fang, K. Świerczek, K. Zheng
„Evaluation of La0.3Sr0.7Ti1-xCoxO3 as potential cathode material for Solid Oxide Fuel Cells”
Journal of Materials Chemistry A 2(26) (2014) 10290-10299
IF 7.443

11. K. Zheng, K. Świerczek, W. Zając, A. Klimkowicz
„Rock salt ordered-type double perovskite anode materials for Solid Oxide Fuel Cells”
Solid State Ionics 257 (2014) 9-16
IF 2.561

12. A. Klimkowicz, K. Świerczek, A. Takasaki, B. Dabrowski
„Oxygen storage capability in Co- and Fe-containing perovskite-type oxides”
Solid State Ionics 257 (2014) 23-28
IF 2.561

13. Y. Shen, H. Zhao, J. Xu, X. Zhang, K. Zheng, K. Świerczek
„Effect of ionic size of dopants on the lattice structure, electrical and electrochemical
properties of La2-xMxNiO4+δ (M = Ba, Sr) cathode materials”
International Journal of Hydrogen Energy 39(2) (2014) 1023-1029
IF 3.313

1. H. Zhao, Y. Zheng, C. Yang, Y. Shen, Z. Du, K. Świerczek
„Electrochemical performance of Pr1-xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells”
International Journal of Hydrogen Energy 38(36) (2013) 16365-16372
IF 2.930

2. D. Baster, A. Takasaki, C. Kuroda, E. Hanc, S.-H. Lee, K. Świerczek, J.S. Szmyd,
J.-Y. Kim, J. Molenda
„Effect of mechanical milling on electrochemical properties of Ti45Zr38-xNi17+x (x = 0, 8) quasicrystals produced by rapid-quenching”
Journal of Alloys and Compounds 580(S1) (2013) S238-S242
IF 2.726

3. A. Kulka, D. Baster, M. Dudek, M. Kiełbasa, A. Milewska, W. Zając, K. Świerczek,
J. Molenda
„Electrochemical properties of chemically modified phosphoolivines as cathode materials
for Li-ion batteries”
Journal of Power Sources 244 (2013) 565-569
IF 5.211

4. Y. Shen, H. Zhao, K. Świerczek, Z. Du, Z. Xie
„Lattice structure, sintering behavior and electrochemical performance of
La1.7Ca0.3Ni1-xCuxO4+δ as cathode material for intermediate-temperature solid oxide fuel cell”
Journal of Power Sources 240 (2013) 759-765
IF 5.211

5. A. Kusior, J. Klich-Kafel, A. Trenczek-Zając, K. Świerczek, M. Radecka, K. Zakrzewska
„TiO2-SnO2 nanomaterials for gas sensing and photocatalysis”
Journal of the European Ceramic Society 33(12) (2013) 2285-2290
IF 2.307

6. K. Świerczek, A. Klimkowicz, K. Zheng, B. Dabrowski
„Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6”
Journal of Solid State Chemistry 203 (2013) 68-73
IF 2.200

7. J. Molenda, A. Kulka, A. Milewska, W. Zając, K. Świerczek
„Structural, transport and electrochemical properties of LiFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn, Co and Ni)”
Materials 6 (2013) 1656-1687
IF 1.879

8. D. Baster, K. Zheng, W. Zając, K. Świerczek, J. Molenda
„Toward elucidation of delithiation mechanism of zinc-substituted LiFePO4”
Electrochimica Acta 92 (2013) 79-86
IF 4.086

9. C. Kuroda, K. Zheng, K. Świerczek
„Characterization of novel GdBa0.5Sr0.5Co2-xFexO5+δ perovskites for application in
IT-SOFC cells”
International Journal of Hydrogen Energy 38(2) (2013) 1027-1038
IF 2.930

1. K. Zheng, A. Gorzkowska-Sobaś, K. Świerczek
„Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs”
Materials Research Bulletin 47(12) (2012) 4089-4095
IF 1.913

2. B. Gędziorowski, K. Świerczek, J. Molenda
„La1-xBaxCo0.2Fe0.8O3-δ perovskites for application in intermediate temperature SOFCs”
Solid State Ionics 225 (2012) 437-442
IF 2.046

3. W. Zając, E. Hanc, A. Gorzkowska-Sobaś, K. Świerczek, J. Molenda
„Nd-doped Ba(Ce,Zr)O3-δ proton-conductors for application in conversion of CO2 into liquid fuels”
Solid State Ionics 225 (2012) 297-303
IF 2.046

4. A. Kulka, A. Milewska, W. Zając, K. Świerczek, E. Hanc, J. Molenda
„Possibility of modification of phosphoolivine by substitution in Li sublattice”
Solid State Ionics 225 (2012) 575-579
IF 2.046

5. S. Kolesnik, B. Dabrowski, O. Chmaissem, S. Avci, J.P. Hodges, M. Avdeev,
K. Świerczek
„Enhancement of the Curie temperature in NdBaCo2O5.5 by A-site Ca substitution”
Physical Review B 86(6) (2012) 064434
IF 3.767

6. S. Kolesnik, B. Dabrowski, O. Chmaissem, K. Wojciechowski, K. Świerczek
„Comparison of magnetic and thermoelectric properties of (Nd,Ca)BaCo2O5.5 and (Nd,Ca)CoO3”
Journal of Applied Physics 111(7) (2012) 07D727-1-3
IF 2.210

1. K. Świerczek
„Physico-chemical properties of Ln0.5A0.5Co0.5Fe0.5O3-δ (Ln: La, Sm; A: Sr, Ba) cathode materials and their performance in electrolyte-supported intermediate temperature solid oxide fuel cell”
Journal of Power Sources 196(17) (2011) 7110-7116
IF 4.951

2. M. Kimura, K. Świerczek, J. Marzec, J. Molenda
„Influence of aluminum on physico-chemical properties of lithium iron phosphate”
Functional Materials Letters 4(2) (2011) 123-127
IF 0.724

3. J. Han, K. Zheng, K. Świerczek
„Nickel-based layered perovskite cathode materials for application in Intermediate-Temperature Solid Oxide Fuel Cells”
Functional Materials Letters 4(2) (2011) 151-155
IF 0.724

4. K. Świerczek
„Electrolyte-supported IT-SOFC with LSCF – SCFN composite cathode”
Solid State Ionics 192(1) (2011) 486-490
IF 2.646

1. W. Zając, L. Suescun, K. Świerczek, J. Molenda
„Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions”
Journal of Power Sources 194(1) (2009) 2-9
IF 3.792

2. M. Gozu, K. Świerczek, J. Molenda
„Structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1-xO2 oxides prepared by a soft chemistry method”
Journal of Power Sources 194(1) (2009) 38-44
IF 3.792

3. K. Świerczek
„Oxygen nonstoichiometry and transport properties of selected La1-xSrxCo1-y-zFeyNizO3-δ perovskites”
Polish Journal of Chemistry 83(8) (2009) 1437-1442
IF 0.523

4. K. Świerczek, J. Marzec
„Structural properties of SrCo0.2Fe0.8O3-δ oxide: oxygen nonstoichiometry, vacancy ordering and broken local symmetry”
Polish Journal of Chemistry 83(8) (2009) 1489-1496
IF 0.523

5. J. Molenda, J. Krupiński, W. Zając, K. Świerczek
„Evaluation of La0.5Sr0.5Co0.5Fe0.25Mn0.25O3-δ perovskite-type oxide as the cathode material for Solid Oxide Fuel Cells”
Polish Journal of Chemistry 83(8) (2009) 1497-1506
IF 0.523

6. J.-S. Kang, H.J. Lee, D.H. Kim, S. Kolesnik, B. Dabrowski, K. Świerczek, J. Lee, B. Kim, B.I. Min
„Valence and spin states, and the metal-insulator transition in ferromagnetic
La2-xSrxMnNiO6 (x = 0, 0.2)”
Physical Review B 80(4) (2009) 045115
IF 3.475

7. K. Świerczek, B. Dabrowski, L. Suescun, S. Kolesnik
„Crystal structure and magnetic properties of high oxygen pressure annealed
Sr1-xLaxCo0.5Fe0.5O3-δ (0 ≤ x ≤ 0.5)”
Journal of Solid State Chemistry 182(2) (2009) 280-288
IF 2.340

8. K. Świerczek
„Thermoanalysis, nonstoichiometry and thermal expansion of La0.4Sr0.6Co0.2Fe0.8O3-δ, La0.2Sr0.8Co0.2Fe0.8O3-δ, La0.9Sr0.1Co1/3Fe1/3Ni1/3O3-δ and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3-δ perovskites”
Solid State Ionics 179(1-6) (2008) 126-130
IF 2.425

9. M. Gateshki, L. Suescun, S. Kolesnik, J. Mais, K. Świerczek, S. Short, B. Dabrowski „Structural, magnetic and electronic properties of LaNi0.5Fe0.5O3 in the temperature range 5 – 1000 K”
Journal of Solid State Chemistry 181(8) (2008) 1833-1839
IF 1.910

10. J. Molenda, K. Świerczek, W. Zając
„Functional materials for the IT-SOFC”
Journal of Power Sources 173(2) (2007) 657-670
IF 2.809

11. K. Świerczek, M. Gozu
„Structural and electrical properties of selected La1−xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides”
Journal of Power Sources 173(2) (2007) 695-699
IF 2.809

12. W. Zając, K. Świerczek, J. Molenda
„Thermochemical compatibility between selected (La,Sr)(Co,Fe,Ni)O3 cathodes and rare earth doped ceria electrolytes”
Journal of Power Sources 173(2) (2007) 675-680
IF 2.809

13. W. Ojczyk, J. Marzec, K. Świerczek, W. Zając, M. Molenda, R. Dziembaj, J. Molenda, „Studies of selected synthesis procedures of the conducting LiFePO4 – based composite cathode materials for Li – ion batteries”
Journal of Power Sources 173(2) (2007) 700-706
IF 2.809

14. J. Molenda, W. Ojczyk, K. Świerczek, W. Zając, F. Krok, J. Dygas, R. S. Liu
„Diffusional mechanism of deintercalation in LiMnyFe1-yPO4 cathode material”
Solid State Ionics 177(26-32) (2006) 2617-2624
IF 2.190

15. K. Świerczek, J. Marzec, D. Pałubiak, W. Zając, J. Molenda
„LFN and LSCFN perovskites – structure and transport properties”
Solid State Ionics 177(19-25) (2006) 1811-1817
IF 2.190

16. K. Świerczek, J. Marzec, J. Molenda
„La1-xSrxCo1-y-zFeyNizO3 perovskites – possible new cathode materials for an intermediate temperature Solid Oxide Fuel Cells”
Materials Science – Poland 24(1) (2006) 115-122
IF 0.334

17. J. Molenda, K. Świerczek, W. Zając
„Wysokotemperaturowe tlenkowe ogniwa paliwowe – nowe kierunki badań”
Przemysł Chemiczny 84(11) (2005) 845-852
IF 0.104

18. J. Molenda, M. Ziemnicki, K. Świerczek, J. Marzec
„Transport and electrochemical properties of LiyNixMn2-xO4 (0.1 ≤ x ≤ 0.5) cathode materials”
Defects and Diffusion in Ceramics – An Annual Retrospective VII, Defect and Diffusion Forum 242-244 (2005) 65-76
IF 0.483

19. W. Ojczyk, J. Marzec, K. Świerczek, J. Molenda
„Lithium diffusion in LiMnyFe1-yPO4 cathode material”
Defect and Diffusion Forum 237-240 (2005) 1299-1305
IF 0.483

20. K. Świerczek, J. Marzec, W. Ojczyk, J. Molenda
„Structural and transport properties of La1-xSrxCo1-y-zFeyNizO3-δ perovskites”
Defect and Diffusion Forum 237-240 (2005) 1293-1298
IF 0.483

21. J. Molenda, J. Marzec, K. Świerczek, D. Pałubiak, W. Ojczyk, M. Ziemnicki
„The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel”
Solid State Ionics 175(1-4) (2004) 297-304
IF 1.862

22. J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda,
M. Drozdek, R. Dziembaj
„The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel”
Solid State Ionics 171(3-4) (2004) 215-227
IF 1.862

23. J. Molenda, K. Świerczek, J. Marzec, R.S. Liu
„Charge transport mechanism in LiCoyMn2-yO4 cathode material”
Solid State Ionics 157(1-4) (2003) 101-108
IF 1.599

24. K. Świerczek, J. Marzec, M. Marzec, J. Molenda
„Crystallographic and electronic properties of Li1+δMn2-δO4 spinels prepared by HT synthesis”
Solid State Ionics 157(1-4) (2003) 89-93
IF 1.599

25. J. Marzec, K. Świerczek, J. Przewoźnik, J. Molenda, D.R. Simon, E.M. Kelder,
J. Schoonman
„Conduction mechanism in operating a LiMn2O4 cathode”
Solid State Ionics 146(3-4) (2002) 225-237
IF 1.768

26. J. Molenda, K. Świerczek, M. Molenda, J. Marzec
„Electronic structure and reactivity of Li1-xMn2O4 cathode”
Solid State Ionics 135(1-4) (2000) 53-59
IF 1.529

27. J. Molenda, K. Świerczek, W. Kucza, J. Marzec, A. Stokłosa
„Electrical properties of LiMn2O4-δ at temperatures 220 – 1100K”
Solid State Ionics 123(1-4) (1999) 155-163
IF 1.439

Projekty badawcze

Obecnie realizowana tematyka badawcza

Projekt NCBiR (POIR.01.01.01-00-0022/21) „Opracowanie i wdrożenie systemu wysokosprawnego wytwarzania wodoru wysokiej czystości w elektrolizerze stałotlenkowym”

Projekt badawczy NCN (2020/37/B/ST8/02097) „Nowa generacja elektrod powietrznych opartych o związki miedzi dla stałotlenkowych ogniw paliwowych i elektrolizerów wysokotemperaturowych”

Projekt badawczy NCN (2019/35/O/ST5/01560) „Tlenki wysokoentropowe jako potencjalne materiały anodowe dla ogniw Li-ion”

Projektowanie i optymalizacja materiałów elektrodowych dla ogniw paliwowych typu SOFC ze szczególnym uwzględnieniem aspektu strukturalnego, optymalizacji mikrostruktury elektrod, badań w zakresie mechanizmu transferu ładunku, stabilności i właściwości termochemicznych, a także określenia zjawisk polaryzacyjnych na elektrodach oraz badań właściwości elektrochemicznych ogniw.

Opracowanie efektywnych materiałów tlenkowych do magazynowania tlenu, mogących znaleźć zastosowanie w nowoczesnych technologiach energetycznych. Prace obejmują aspekt strukturalny oraz przemiany fazowe, badania mechanizmu pobierania i oddawania tlenu oraz roli optymalizacji mikrostruktury celem poprawy odwracalnego magazynowania tlenu.

Projektowanie i optymalizacja materiałów elektrodowych i elektrolitów stałych dla ogniw paliwowych z elektrolitem tlenkowym przewodzącym protony (ogniw typu PCFC). Działalność badawcza w tym zakresie skupia się na aspekcie związanym z wpływem wbudowywującej się w strukturę krystaliczną tlenku wody, mechanizmie transferu protonów, stabilności i właściwościach termochemicznych, zjawisku polaryzacji elektrodowej oraz badaniach właściwości elektrochemicznych materiałów dla nowej koncepcji ogniw o konstrukcji symetrycznej.

Badania materiałów tlenkowych dla nowej generacji membran ceramicznych wykazujących mieszane przewodnictwie jonowo-elektronowe. Oprócz prac badawczych dotyczących właściwości strukturalnych i transportowych oraz przewodnictwa tlenowego, przedmiotem zainteresowania są właściwości termochemiczne oraz stabilność membran w atmosferach zawierających CO2.

Projektowanie i optymalizacja nowej generacji materiałów anodowych i katodowych dla ogniw litowych cechujących się wysoką gęstością mocy i zgromadzonej energii. Aktywność badawcza dotyczy pomiarów struktury krystalicznej i określeniu jej modyfikacji w procesach elektrodowych, badań mechanizmu transferu ładunku jonowego i elektronowego oraz określenia właściwości elektrochemicznych w zakresie pojemności elektrod oraz odwracalności cykli ładowania/rozładowania.

Wypromowani doktorzy

dr inż. Tomasz Polczyk
tytuł pracy: „Nowa generacja ogniw litowych – odwracalne ogniwa z ceramicznym elektrolitem stałym”

dr inż. Anna Niemczyk
tytuł pracy: „Opracowanie wysokoefektywnych materiałów elektrodowych bazujących na związkach miedzi dla stałotlenkowych ogniw paliwowych i wysokotemperaturowych elektrolizerów pary wodnej”
praca wykonana w ramach KIC InnoEnergy PhD School
praca doktorska z wyróżnieniem

dr inż. Anna Olszewska
tytuł pracy: „Korelacja pomiędzy strukturą a właściwościami transportowymi w warstwowych perowskitach LnBaCo2-xMnxO5+δ dla wysokotemperaturowych ogniw paliwowych”
Praca doktorska z wyróżnieniem

dr inż. Wojciech Skubida
tytuł pracy: „Correlation between structure and transport properties in proton-conducting oxides in the design of electrodes and electrolytes for Protonic Ceramic Fuel Cells”
tytuł pracy w języku polskim: „Korelacja pomiędzy strukturą a właściwościami transportowymi w protonowo przewodzących tlenkach w aspekcie projektowania elektrod i elektrolitów dla ogniw paliwowych typu PCFC”
praca doktorska z wyróżnieniem

dr inż. Alicja Klimkowicz
tytuł pracy: „Perovskite-based oxygen storage materials”
tytuł pracy w języku polskim: „Materiały o strukturze perowskitu do magazynowania tlenu”
praca wykonana w ramach umowy o podwójnym dyplomowaniu pomiędzy AGH a Shibaura Institute of Technology (SIT), Tokio, Japonia
praca doktorska z wyróżnieniem

dr inż. Kun Zheng
tytuł pracy: „Novel electrode materials for IT-SOFC fueled by syngas”
tytuł pracy w języku polskim: „Nowe materiały elektrodowe dla ogniw IT-SOFC zasilanych gazem syntezowym”
praca wykonana w ramach KIC InnoEnergy PhD School
praca doktorska z wyróżnieniem
praca wyróżniona w konkursie Polskiego Stowarzyszenia Wodoru i Ogniw Paliwowych

Tematyka obecnie realizowanych prac doktorskich

Materiały anodowe dla ogniw Li-ion bazujące na tlenkach wysokoentropowych

Materiały katodowe dla ogniw Li-ion o wysokiej gęstości energii bazujące na modyfikowanych tlenkach typu NCA

Elektrody powietrzne nowej generacji bazujące na związkach miedzi dla odwracalnych ogniw SOFC/SOEC

Technologia produkcji tlenu w oparciu o materiały typu OSM nowej generacji

Osoby zainteresowane podjęciem studiów doktoranckich w roku akademickim 2023/2024 proszone są o kontakt.

Oferty pracy w ramach projektów badawczych

Na chwilę obecną brak jest możliwości zatrudnienia w ramach realizowanych projektów badawczych.

Oferty staży naukowo-badawczych

Istnieje możliwość odbycia stażu naukowo-badawczego o czasie trwania 1-3 miesiące w Katedrze Energetyki Wodorowej na Wydziale Energetyki i Paliw AGH lub u zagranicznego partnera naukowego.

Istnieje również możliwość odbycia stażu przemysłowego we współpracującej firmie Johnson Matthey Battery Systems Sp. z o.o. Osoby zainteresowane proszone są o kontakt.

Dydaktyka

Materiały dydaktyczne dla doktorantów i studentów (rok akademicki 2022/2023) – dostępne indywidualnie po uprzednim skontaktowaniu się.

  • Prezentacje z modułu Metodologia i planowanie badań – wykład (Studia III stopnia)

  • Prezentacje z modułu Przygotowanie wniosków grantowych – wykład (Studia III stopnia)

  • Prezentacje z modułu obieralnego Chemia fizyczna – wykład (Studia I stopnia, Kierunek Energetyka, WEiP)

  • Prezentacje z modułu Elektrochemiczne podstawy magazynowania i konwersji energii – wykład (Studia II stopnia, Kierunek Energetyka, WEiP)

Prace dyplomowe

Tematy prac dyplomowych magisterskich (rok akademicki 2022/2023):

Optymalizacja wytwarzania katod dla ogniw Li-ion bazujących na wysoko niklowym tlenku warstwowym (temat otwarty – zapraszam)

W ramach pracy przebadane zostaną możliwości dotyczące doboru lepiszcza i dodatku węglowego celem optymalizacji wytwarzania katod dla ogniw Li-ion bazujących na wysoko niklowym tlenku warstwowym. Celem pracy jest optymalizacja właściwości elektrochemicznych katod o żądanej morfologii i grubości. Najlepsze katody zostaną użyte do konstrukcji pełnych ogniw Li-ion, które zostaną scharakteryzowane pod kątem właściwości elektrochemicznych.

Konstrukcja i testy odwracalnych wysokotemperaturowych ogniw ceramicznych z elektrodą tlenową wytworzoną techniką elektroprzędzenia (temat otwarty – zapraszam)

W ramach pracy zostaną wytworzone metodą elektroprzędzenia wybrane materiały tlenkowe o strukturze perowskitu. Posłużą one do konstrukcji elektrod tlenowych dla odwracalnych wysokotemperaturowych ogniw ceramicznych. Celem pracy jest wyselekcjonowanie materiałów o najlepszych właściwościach, na bazie których skonstruowane będą wysokotemperaturowe ogniwa ceramiczne, które następnie zostaną przetestowane w zakresie ich właściwości elektrochemicznych w trybie pracy ogniwa paliwowego oraz elektrolizera.

Zastosowanie techniki elektroprzędzenia w preparatyce elektrody powietrznej dla wysokotemperaturowych ogniw paliwowych

(temat otwarty – zapraszam)

W ramach pracy zostaną wytworzone techniką elektroprzędzenia wybrane materiały tlenkowe zawierające miedź i posiadające strukturę typu perowskitu. Materiały te (w formie włókien) posłużą do preparatyki elektrod powietrznych dla wysokotemperaturowych stałotlenkowych ogniw paliwowych. Celem pracy jest określenie optymalnych warunków preparatyki celem optymalizacji właściwości elektrokatalitycznych elektrody w skonstruowanych ogniwach laboratoryjnych.

Tematy prac dyplomowych inżynierskich (rok akademicki 2022/2023):

Zastosowanie tlenków perowskitowych na bazie miedzi do wytwarzania elektrody powietrznej ogniw ceramicznych

W ramach pracy zostaną wytworzone i przebadane pod kątem właściwości elektrochemicznych elektrody dla wysokotemperaturowych ogniw paliwowych typu SOFC, które zostaną wykonane w oparciu o bazujące na miedzi, wybrane tlenki o strukturze perowskitu. Celem pracy jest dorób optymalnego składu materiału elektrody powietrznej, który zostanie dodatkowo scharakteryzowany pod kątem podstawowych właściwości fizykochemicznych.

Wpływu nadmiaru litu w warstwowej katodzie typu NCA na właściwości elektrochemiczne ogniw litowych

W ramach pracy zostaną wytworzone i przebadane pod kątem właściwości elektrochemicznych katody dla ogniw Li-ion bazujące na materiale warstwowym typu NCA. Celem pracy jest dorób optymalnej zawartości litu w wysokoniklowym tlenku warstwowym, otrzymanym w oparciu o komercyjny prekursor. Otrzymane materiały zostaną dodatkowo scharakteryzowane pod kątem podstawowych właściwości fizykochemicznych.

Konstrukcja i testy ogniw litowych z anodą bazującą na spinelu wysokoentropowym

W ramach pracy zostaną wytworzone i przebadane pod kątem właściwości elektrochemicznych anody dla ogniw Li-ion bazujące na wybranych tlenkach wysokoentropowych o strukturze spinelu. Celem pracy jest określenie możliwości wykorzystania podejścia wysokoentropowego w projektowaniu materiałów anodowych o strukturze spinelu. Otrzymane materiały zostaną dodatkowo scharakteryzowane pod kątem podstawowych właściwości fizykochemicznych.

Prace dyplomowe realizowane w ramach współpracy z przemysłem

W ramach współpracy prowadzonej z firmą Johnson Matthey Battery Systems sp. z o.o. z Gliwic możliwa jest realizacja zleconych prac dyplomowych dotyczących badań naukowych i przemysłowych w zakresie ogniw litowych i pakietów bateryjnych.

Uzgodnienie tematyki i zakresu badań odbywać się będzie w oparciu o umowę trójstronną (firma-uczelnia-dyplomant). Osoby zainteresowane proszone są o wcześniejszy kontakt oraz przesłanie listu motywacyjnego.

Współpraca

Współpraca z ośrodkami zagranicznymi

• University of Science and Technology Beijing, Pekin, Chiny (Prof. Hailei Zhao, Dr Zhihong Du)

Ogniwa SOFC

Membrany ceramiczne

Ogniwa Li-ion

Obliczenia kwantowomechaniczne właściwości materiałów

• Nankai University (Prof. Wenjun Zheng)

Materiały dwuwymiarowe w zastosowaniu w ogniwach Li-ion

• Shandong Province Energy Research Institute

Materiały elektrodowe dla ogniw Li-ion

Współpraca z ośrodkami krajowymi

• Wydział Inżynierii Materiałowej i Ceramiki AGH

• Instytut Energetyki – Instytut Badawczy (grupa Prof. Jakuba Kupeckiego)

• Instytut Fizyki PAN (Prof. Bogdan Dabrowski)

• Politechnika Gdańska

 

Kontakt

Podstawowe informacje

Prof. dr hab. inż. Konrad Świerczek
Skład osobowy AGH
Email: xi[@]agh.edu.pl
Telefon służbowy: +48 785 507 516
Telefon stacjonarny: +48 12 617 49 26

Funkcja

Prodziekan ds. Współpracy i Nauki
Dyżur: pon. 11.00-12.30, H-B3B4, pok. 240 (II p.) 

Godziny konsultacji dla studentów

wtorek 11.00-12.30, H-B3B4, pok. 240 (II p.)

Adres do korespondencji pocztowej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Wydział Energetyki i Paliw
al. A. Mickiewicza 30, 30-059 Kraków