

28TH WORKSHOP '3IN1' 2019 DOSŁOŃCE, POLAND NOVEMBER 21-23, 2019

STRONG CLIQUES IN GRAPHS

Małgorzata Śleszyńska-Nowak (joint work with Michał Dębski)

Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

For a graph G, $L(G)^t$ is the t-th power of the line graph of G – that is, vertices of $L(G)^t$ are edges of G and two edges $e, f \in E(G)$ are adjacent in $L(G)^t$ if and only if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The t-strong chromatic index of G is the chromatic number of $L(G)^t$ and a t-strong clique in G is a clique in $L(G)^t$.

Finding upper bounds for the *t*-strong chromatic index and *t*-strong clique are problems related to two famous problems. A well-known conjecture of Erdős and Nešetřil from 1985 states that *t*strong chromatic index is at most $1.25\Delta^2$ for every graph G with maximum degree Δ . In the degree/diameter problem we ask for the maximum possible number $n_{\Delta,D}$ of vertices in a graph of maximum degree Δ and diameter D.

We prove that the size of a *t*-strong clique in a graph with maximum degree Δ is at most $1.75\Delta^t + O(\Delta^{t-1})$, and for bipartite graphs the upper bound is at most $\Delta^t + O(\Delta^{t-1})$.