

ON THE MINIMUM SIZE OF HAMILTONIAN SATURATED HYPERGRAPHS

ANDRZEJ ŻAK (JOINT WORK WITH A. RUCIŃSKI)

AGH University of Science and Technology, Cracow, Poland

For $1 \leq \ell < k$, an ℓ -overlapping k-cycle is a k-uniform hypergraph in which, for some cyclic vertex ordering, every edge consists of k consecutive vertices and every two consecutive edges share exactly ℓ vertices. A k-uniform hypergraph H is ℓ -hamiltonian saturated if H does not contain an ℓ -overlapping hamiltonian k-cycle but every hypergraph obtained from H by adding one edge does contain such a cycle. Let sat (n, k, ℓ) be the smallest number of edges in an ℓ -hamiltonian saturated k-uniform hypergraph on n vertices. In the case of graphs Clark and Entringer showed in 1983 that sat $(n, 2, 1) = \lceil \frac{3n}{2} \rceil$. The present authors proved that for $k \geq 3$ and $\ell = 1$, as well as for all $0.8k \leq \ell \leq k - 1$, sat $(n, k, \ell) = \Theta(n^{\ell})$. Thus the smallest open case is k = 4 and $\ell = 2$. In the talk I will show our recent result that states that sat $(n, 2\ell, \ell) = \Theta(n^{\ell})$.