Proper time measurement in charmless charged two-body *B* meson decays

Dawid Gerstel & Paweł Kopciewicz

LHCb Krakow AGH-UST, Krakow PL

Krakow, 17-12-2015

Intro

Proper time measurement

What's the aim?

- The family of B hadrons decaying into pairs of charmless charged mesons or baryons comprises a rich set of channels.
- Each one is characterized by charge or time dependent *CP* asymmetries, precise measurements of which play an important role in the quest for New Physics.
- LHCb has a great potential for triggering, reconstructing and selecting an unprecedented number of such decays.
- Today we want to describe some results regarding measurements and theoretical expectations of proper time of those particles, which is essential for *CP* violating observables

Charmless two-body B decays

The family of charmless two-body B decays can be described by $H_b \rightarrow h^+ h^-$: • $B^0 \rightarrow p^+ p^-$ • $B^0_{(s)} \rightarrow \pi^+ \pi^-$ • $B^0 \rightarrow K^+ \pi^$ d.s d. 8 d.s • $B_s^0 \rightarrow \pi^+ K^-$ PA • $B^0_{(s)} \rightarrow K^+ K^-$ • $\Lambda_b \rightarrow p \pi^$ d s d s F • $\Lambda_b \rightarrow p K^-$

Charmless two-body *B* decays

- Such decays are sensitive probes of the Cabbibo-Kobayashi-Maskawa matrix. However due to "penguin pollutions" the CKM parameters are hard to determine accurately.
- On the other hand, such "pollutions" may be an interesting opportunity to reveal New Physics.

5/18

The possibilities of LHCb detector

- LHCb detector can reconstruct some $10^5 H_b \rightarrow h^+ h^-$ per year which can be exploited for **CP** violation measurements.
- These unprecedented sample sizes are a consequence of the large beauty production cross section at LHC, which is expected to be around 0.5 mb, and the excellent vertexing, triggering and particle identification capabilities of LHCb.
- Within a few months of commencing LHC operation at nominal luminosity, the collected sample became larger than those available at previous experiments: B factories and the Trevatron.

Proper time measurement

- Precise measurements of *B* hadrons decay time is essential for determining time-dependent *CP* violating observables.
- bad proper time resolution \rightarrow poor CP sensitivity
- Besides, average lifetimes are quite interesting observables themselves.

Determining proper decay time

- Due to trigger and offline selection cuts (to reject primary vertex particles) – shape of decay time is noticeably distorted (especially for low proper time)
- Proper decay time may be expressed as:

$$\tau_B = m_B \frac{L_B}{\rho_B},\tag{1}$$

where m_B , L_B , p_B are the mass, flight distance and momentum of the *B* meson.

• Experimentally, the proper time is obtained from decay rate function (dependent on resolution and acceptance):

$$\Gamma_{exp}(t) \propto [\Gamma_{th}(t') \otimes R_t(t-t')]\epsilon_t(t)$$
 (2)

Determining proper decay time

The theoretical decay rate depends on the channel:

• for $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$ it's quite complex:

$$\Gamma_{th}(t) \propto e^{-\frac{t}{\tau}} \left[(1+|\lambda|^2) \cosh\left(\frac{\Delta\Gamma}{2}t\right) - 2Re\lambda \sinh\left(\frac{\Delta\Gamma}{2}t\right) \right]$$
(3)

• for $B^0 \rightarrow K^+ \pi^-$ and $B^0_s \rightarrow \pi^+ K^-$ it simplifies a lot:

$$\Gamma_{th}(t) \propto e^{-\frac{t}{\tau}} \cosh\left(\frac{\Delta\Gamma}{2}t\right)$$
 (4)

 $(\Delta\Gamma \rightarrow 0$ for the former one, so it yields pure exp)

• for $\Lambda_b \rightarrow p \pi^-$ and $\Lambda_b \rightarrow p K^-$ (Λ_b baryons are not subject to mixing) it's pure exponential

9/18

$$\Gamma_{th}(t) \propto e^{-\frac{t}{\tau}} \tag{5}$$

Determining proper decay time

 In order not to rely on the mass it's useful to use such parametrisation:

$$\xi = \frac{t}{m_B c^2} = \frac{L_B}{p_B c^2} \tag{6}$$

- and this abbreviation: $au_{\xi} = rac{ au}{(m_B c^2)}$
- Then the p.d.f.'s become, respectively:

$$f(\xi) = \frac{1}{C} e^{-\frac{\xi'}{\tau_{\xi}}} \left[(1+|\lambda|^2) \cosh\left(\frac{\Delta\Gamma m_{\mathcal{B}}c^2}{2}\xi'\right) - 2Re\lambda \sinh\left(\frac{\Delta\Gamma m_{\mathcal{B}}c^2}{2}\xi'\right) \right] \otimes R_{\xi}(\xi-\xi')]\epsilon_{\xi}(\xi)$$
(7)

$$f(\xi) = \frac{1}{C'} e^{-\frac{\xi'}{\tau_{\xi}}} \cosh\left(\frac{\Delta\Gamma m_{B}c^{2}}{2}\xi'\right) \otimes R_{\xi}(\xi - \xi')]\epsilon_{\xi}(\xi)$$
(8)

$$f(\xi) = \frac{1}{C''} e^{-\frac{\xi'}{r_{\xi}}} \otimes R_{\xi}(\xi - \xi')]\epsilon_{\xi}(\xi)$$
(9)

Resolution of the proper time

Offline-selected events analysis accurately describes the resolution in terms of 3 gaussians with common mean:

$$R_{\xi}(\Delta\xi) = \frac{f_1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(\Delta\xi - b_{\xi})^2}{2\sigma_1^2}} + \frac{1 - f_1 - f_{tail}}{\sqrt{2\pi}\sigma_2} e^{-\frac{(\Delta\xi - b_{\xi})^2}{2\sigma_2^2}} + \frac{f_{tail}}{\sqrt{2\pi}\sigma_{tail}} e^{-\frac{(\Delta\xi - b_{\xi})^2}{2\sigma_{tail}^2}}$$
(10)

Resolution of the proper time

•
$$B^0 \rightarrow \pi^+ \pi^-$$

(top left)

- $B^0 \rightarrow K^+ \pi^-$ (top right)
- $B_s^0 \rightarrow \pi^+ K^-$ (middle left)
- $B_s^0 \rightarrow K^+ K^-$ (middle right)
- $\Lambda_b \rightarrow p \pi^-$ (bottom left)
- $\Lambda_b \rightarrow p \ K^-$ (bottom right)

Resolution of the proper time

The results are within statistical errors, but they show a bias of for ξ of roughly 0.6 fs/GeV (\rightarrow 3.2 fs bias for time). This shouldn't have any significant impact on **CP** violation measurements, but its origin is not understood.

Acceptance

Empirically (MC studies) the acceptance is assumed as:

$$\epsilon_{\xi}(\xi) \propto 1 - Erf\left(rac{c-\xi}{q\xi}
ight),$$
(11)

where

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 (12)

Now, we are equipped with all pieces of the decay rate eqs., except for acceptance function parameters.

Fitting the ξ

•
$$B^0 \rightarrow \pi^+ \pi^-$$

(top left)

- $B^0 \rightarrow K^+ \pi^-$ (top right)
- $B_s^0 \rightarrow \pi^+ K^-$ (middle left)
- $B_s^0 \rightarrow K^+ K^-$ (middle right)
- $\Lambda_b \rightarrow p \pi^-$ (bottom left)
- $\Lambda_b \rightarrow p \ K^-$ (bottom right)

Fitting the ξ

Below tables show the fit result for 2 cases:

• data only offline-selected

Channel	τ_{ξ} [ps/GeV]	c [ps/GeV]	q	$\tau_{\xi MC}$ [ps/GeV]
$B^0 \rightarrow \pi^+\pi^-$	0.286 ± 0.004	0.128 ± 0.002	0.47 ± 0.03	0.291
$B^0 \rightarrow K^+\pi^-$	0.289 ± 0.002	0.131 ± 0.001	0.47 ± 0.01	0.291
$B_s^0 \rightarrow \pi^+ K^-$	0.284 ± 0.008	0.133 ± 0.005	0.48 ± 0.06	0.272
$B_s^0 \rightarrow K^+K^-$	0.266 ± 0.003	0.130 ± 0.002	0.49 ± 0.02	0.272
$\Lambda_b \rightarrow p\pi^-$	0.208 ± 0.008	0.129 ± 0.007	0.48 ± 0.07	0.219
$\Lambda_b \rightarrow pK^-$	0.222 ± 0.007	0.130 ± 0.006	0.50 ± 0.06	0.219

data both triggered and offline-selected

Channel	τ_{ξ}	с	q	$\tau_{\xi MC}$
	[ps/GeV]	[ps/GeV]		[ps/GeV]
$B^0 \rightarrow \pi^+\pi^-$	0.289 ± 0.006	0.144 ± 0.003	0.34 ± 0.03	0.291
$B^0 \rightarrow K^+ \pi^-$	0.287 ± 0.003	0.149 ± 0.002	0.38 ± 0.02	0.291
$B_s^0 \rightarrow \pi^+ K^-$	0.272 ± 0.013	0.159 ± 0.011	0.49 ± 0.10	0.272
$B_s^0 \rightarrow K^+K^-$	0.273 ± 0.005	0.143 ± 0.003	0.34 ± 0.03	0.272
$\Lambda_b \rightarrow p\pi^-$	0.217 ± 0.012	0.144 ± 0.008	0.37 ± 0.07	0.219
$\Lambda_b \rightarrow pK^-$	0.222 ± 0.011	0.146 ± 0.008	0.38 ± 0.08	0.219

Conclusion: the decay time results match MC \rightarrow the mathematical model is accurate. Also, fit parameters differ in both tables \rightarrow trigger significantly affects (distorts) the proper time.

Summary and outlook

Although MC data are useful in creating the time resolution model – it's the experiment that may extend the knowledge of lifetimes of CP modes and then to e.g. use this quantity to determine $\Delta\Gamma_s$ and conclude about New Physics and its contributions to various decays.

KeepGelmAndPosters.com