Methods for measuring γ at tree-level CP Violation Seminar

Krzysztof Janas

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

17.12.2015r.

Contents

- **1** Time-integrated measurements
- **2** Time-dependent measurements
- **3** Summary of current measurements of γ

Short introduction

There is two main ways to measure γ on LHCb:

- direct CPV CPV in decay (time-independent measurements),
- indirect CPV CPV in mixing (time-dependent measurements), with analysis different B mesons decays.

Both method use process at tree-level, what means that there is any loop in Feynman diagrams.

Time-integrated measurements of $B^- \to DK^-$

- The weak-phase difference between V_{ub} and V_{cb} is $-\gamma$.¹
- Interference between these two amplitudes when the D^0 or \overline{D}^0 decay to the same final state gives sensitivity to $-\gamma$.

¹This is assuming that there is a negligible weak-phase difference between V_{us} and V_{cs} , which is a good approximation in the three-generation quark model. K. Janas, WFIIS AGH 4/10

Time-integrated measurements of $\bar{B^0} \to D K^{*0}$

Both diagrams are colour colour suppressed, which

- reduces the branching fraction, but
- increases the size of the interference.

Different D-decay modes

The measurement of γ with $B^- \to DK^-$ depends on D-decay modes.

- GLW Gronau, London and Wyler final states: $\pi^+\pi^-$ or K^+K^- ;
- ADS Atwood, Dunietz and Soni final states: $\pi^+ K^-$ or $\pi^- K^+$;
- Dalitz plot analyses with $D \to K_S^0 \pi^+ \pi^-$ (more complicated).

Parameters in time-integrated measurements as an example: GVL method

Additional parameters in time-integrated measurements:

- r_B ratio between the magnitude of the suppressed amplitude and the favoured amplitude; the size of r_B governs the amount of interference and hence the sensitivity of measurement to γ .
- \blacksquare δ_B the strong-phase difference between two amplitudes.

Parameters in time-integrated measurements as an example: GVL method

The results of measurements of the $B \to DK^-$ GLW modes are presented in terms of the asymmetries A_{\pm} and ratios R_{\pm} :²

$$\begin{split} A_{\pm} &= \frac{\Gamma(B^- \to D_{\pm}K^-) - \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)} \\ &= \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma} \\ R_{\pm} &= 2 \frac{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to D^0K^+)} \\ &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \end{split}$$

Only three of these parameters are independent: $A_+R_+ = -A_-R_-$.

²Where D_{\pm} denotes a decay of a D^0 or $\bar{D^0}$ to a CP_± eigenstate - convention: $D_{\pm} = \frac{1}{2}(D^0 \pm \bar{D^0})$ K. Janas, WFiIS AGH 8/10

Time-dependent measurements of $\bar{B}^0_s \to D^{\pm}_s K^{\mp}$

Measurements of the time-dependent CP asymmetries in $\bar{B}^0_s \to D^{\pm}_s K^{\mp}$ allows $\gamma - \varphi_M$ to be determined. The φ_M is the B^0_s mixing phase, it can be measurement in $\bar{B}^0_s \to J/\psi\phi$ decay.

The tree-level sensitivity to γ arises from the interference between the direct decay of B_s^0 and $\bar{B_s^0}$ to $D_s^+ K^-$ and decay after mixing.

Other time-dependent CP asymmetries in $B^0 \to D^{\pm} \pi^{\mp}$ allow $\gamma + 2\beta$ to be measured (similar formalism, a bit different practice).

K. Janas, WFiIS AGH 9/10

Results

Results received by two collaborations:

Parameter	UTfit	CKMfitter
γ	$(78 \pm 12)^{\circ}$	$(70^{+27}_{-29})^{\circ}$
r_B	0.102 ± 0.017	$0.087\substack{+0.022\\-0.018}$
δ_B	_	$(110^{+22}_{-27})^{\circ}$