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Violation of CP symmetry

 Last time we learned that two of the fundamental symmetries
(space and charge parities) are maximally broken by the weak
interactions

 Also, there is a fascinating phenomena, occurring for neutral
mesons that we called flavour oscillations

 By analysing various processes we came to conclusion that
although both 𝒞 and 𝒫 are broken the combined symmetry ,i.e.,
𝐶𝑃 is exact

 Ah, yes… there was also this bizarre effect about kaons – we
decided that the particles that are produced in strong interactions
are not the same that decay later on via weak force

 A lot of new stuff! And today we are shifting to higher gear!
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Violation of CP symmetry

 From the last lecture – 𝐾1
0 and 𝐾2

0 are eigenstates of 𝐶𝑃 operator

 In other words, if combined parity is conserved, processes such
these below should never happen!

 We should not be surprised by the fact that they indeed happen!
An experiment has been performed to study the behaviour of the
long-lived component of 𝐾0, which found them!

 So, we are for another redefinition of what the kaons really are…

 Because we see clearly that 𝐶𝑃 is broken, thus, we must accept
that neutral kaons are not composed out of 𝐾1

0 and 𝐾2
0

 The new states are called 𝑲𝑺
𝟎 and 𝑲𝑳

𝟎 instead…

𝒞𝒫|  𝐾1
0 =

1

2
𝒞𝒫  𝐾0 − 𝒞𝒫   𝐾0 =

1

2
−|   𝐾0 + |  𝐾0 =

1

2
|  𝐾0 − |   𝐾0 = |  𝐾1

0

𝐾2
0 → 𝜋0 + 𝜋0

𝐾2
0 → 𝜋+ + 𝜋−
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Violation of CP symmetry

 This may come as yet another surprise, but the effect is very
weak, the fractional branching ratios measured are of order of 0.1%

 Taking into account life-times of both 𝐾𝑆
0 and 𝐾𝐿

0 one can show that

 Ok – a small resume…

 𝑪𝑷 is indeed violated

 The effect is tiny (not so tiny for beauty decays though…)

 Matter and anti-matter are not symmetrical

 𝐶𝑃 , apart from small number of weak processes involving
neutral mesons, is conserved

𝐾𝐿
0 → 𝜋+ + 𝜋−

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 2.0 × 10−3
𝐾𝐿

0 → 𝜋0 + 𝜋0

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 9.0 × 10−4

Γ 𝐾𝐿
0 → 2𝜋

Γ 𝐾𝑆
0 → 2𝜋

≈ 10−6
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Kaons revisited

 What we did was an attempt to describe time evolution of kaons
which are produced as strong Hamiltonian e-states that, in turn,
decay as weak e-states: 𝐾0,  𝐾0 → 𝐾1

0, 𝐾2
0

 This fails because 𝐾1
0 and 𝐾2

0 are e-states of 𝑪𝑷, so we need new

particles, namely 𝐾𝑆
0 and 𝐾𝐿

0 that have the necessary behavior of 𝐾1
0

and 𝐾2
0 (i.e., long and short life-time) but are not 𝐶𝑃 e-states

 One remark – since the violation effect is small – this would be a
hint that these new states are almost identical to 𝐾1

0 and 𝐾2
0

|  𝐾𝑆
0 =

1

2 1 + 𝜖 2
1 + 𝜖  𝐾0 − 1 − 𝜖   𝐾0 =

=
1

2 1 + 𝜖 2
|  𝐾0 − |   𝐾0 + 𝜖 |  𝐾0 + |   𝐾0 =

1

1 + 𝜖 2
|  𝐾1

0 + 𝜖|  𝐾2
0

|  𝐾𝐿
0 =

1

2 1 + 𝜖 2
1 + 𝜖  𝐾0 + 1 − 𝜖   𝐾0 =

=
1

2 1 + 𝜖 2
|  𝐾0 + |   𝐾0 + 𝜖 |  𝐾0 − |   𝐾0 =

1

1 + 𝜖 2
|  𝐾2

0 + 𝜖|  𝐾1
0
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Kaons Revisited

 How should we thing about what is going on…, so,…

 The transitions  2𝜋|𝐻𝑤|  𝐾𝐿
0 violate 𝐶𝑃 invariance. This can happen:

 because the e-states of the weak Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, are

not e-states of the 𝐶𝑃 operator

 we say, that the physical states are mixtures of 𝑪𝑷-even and
𝑪𝑷-odd components

 In other words – we observe small violation of 𝐶𝑃 in 𝐾𝐿
0 → 2𝜋

decays, because of small admixture of 𝐾1
0

 this type of violation is called indirect, and implies, that the
Hamiltonian itself is even under 𝐶𝑃 symmetry

 again… to add confusion, it turns out that the direct violation is
also possible for kaons (i.e., violation induced via the weak

Hamiltonian)  2𝜋|𝐻𝑤|  𝐾2
0 ≠ 0

 But that is another story…
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Measure of CP-violation

 How can we express the degree of 𝐶𝑃-violation?

|  𝐾𝑆
0 =

1

1 + 𝜖 2
|  𝐾1

0 + 𝜖|  𝐾2
0 |  𝐾𝐿

0 =
1

1 + 𝜖 2
|  𝐾2

0 + 𝜖|  𝐾1
0

𝜖 represents deviation of 𝐾𝑆
0 and 𝐾𝐿

0 from true 𝐶𝑃
e-states (in general this is complex number!)

𝒞𝒫|  𝐾𝑆
0 =

1

1 + 𝜖 2
𝒞𝒫  𝐾1

0 + 𝜖𝒞𝒫  𝐾2
0 =

1

1 + 𝜖 2
 𝐾1

0 − 𝜖  𝐾2
0 ≠ |  𝐾𝑆

0

𝒞𝒫|  𝐾𝐿
0 =

1

1 + 𝜖 2
𝒞𝒫  𝐾2

0 + 𝜖𝒞𝒫  𝐾1
0 =

1

1 + 𝜖 2
−  𝐾1

0 + 𝜖  𝐾2
0 ≠ −|  𝐾𝐿

0

𝐾𝐿
0 𝐾𝑆

0 =
1

1 + 𝜖 2  𝐾2
0| + 𝜖∗ 𝐾1

0|  𝐾1
0 + 𝜖  𝐾2

0 =

1

1 + 𝜖 2 𝜖 𝐾2
0 𝐾2

0 + 𝜖∗ 𝐾1
0 𝐾1

0 =
𝜖 + 𝜖∗

1 + 𝜖 2 =
2𝑅𝑒(𝜖)

1 + 𝜖 2 = 𝐾𝑆
0 𝐾𝐿

0

𝐾𝑆
0 and 𝐾𝐿

0 are not orthogonal states!
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Measure of CP-violation

 Lack of orthogonality of 𝐾𝑆
0 and 𝐾𝐿

0 is expected – both of them

share the same decay channels

 This effect is at the same time a measure of 𝐶𝑃-violation via 𝝐

 In this picture the symmetry violation is a consequence of small
admixture of 𝐾1

0 state into the 𝐾𝐿
0, so, we observe its decays to 2𝜋

final state because the 𝐾1
0 can decay into it – once again this is

indirect process

 These kind of processes are referred to as 𝜟𝑺 = 𝟐, 𝜟𝑰 =
𝟏

𝟐
transitions

 Much smaller direct contribution to 𝐶𝑃-violation is a consequence of
the weak Hamiltonian having a 𝑪𝑷-violating term (it does not
commute with the 𝐶𝑃 operator)

 These kind of processes proceed via 𝜟𝑺 = 𝟏, 𝜟𝑰 =
𝟑

𝟐
transitions and

are called penguin (or loop) decays
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Time Evolution of the Kaon System

 A phenomenological „effective” theoretical framework has been
introduced to describe what is going on with kaons produced in
strong interactions

 It is based on perturbation theory and describe the behavior of such
system in terms of an effective Hamiltonian

 We start with describing kaons in the absence of weak interactions

 In this case 𝐾0 and  𝐾0 are distinct e-states of the strong
Hamiltonian

 Since the strong interactioins respect conservation of
strangeness these are stationary states!

|  𝐾0 =
1
0

|   𝐾0 =
0
1

Base vectors in 2-dim Hilbert space

|  𝜓 =
1

𝑎2 + 𝑏2
𝑎  𝐾0 + 𝑏   𝐾0 =

1

𝑎2 + 𝑏2

𝑎
𝑏
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Time Evolution of the Kaon System

 Oh, well, unfortunately weak interaction cannot be switched off and
the kaons do decay

 Theory offers two approaches to attack this problem

 We could expand the 2-dim Hilbert space and take into account
all the possible final states

 or…, we could stay in the 2-dim space and introduce effective
Hamiltonian that is responsible for the kaons disintegration

 Usually the later option is picked up!

 Now, the leap to the Schrodinger equation describing two state
system with the effective Hamiltonian is done by noticing that we
no longer deal with stationary states – they can decay

 The consequence is that the Hamiltonian is no longer a Hermitian
operator – the probability is no longer conserved for decaying
states!
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Effective Hamiltonian

𝑖ℏ
𝜕|  𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓|  𝜓 𝑡

Complex 2 × 2 matrix 

ℋ𝑒𝑓𝑓 = ℳ −
𝑖

2
Γ

ℳ =
1

2
ℋ𝑒𝑓𝑓 + ℋ𝑒𝑓𝑓

† , Γ = 𝑖 ℋ𝑒𝑓𝑓 − ℋ𝑒𝑓𝑓
†

ℳ = ℳ† → ℳ𝑖𝑗 = ℳ𝑗𝑖
∗

Γ = Γ† → Γ𝑖𝑗 = Γ𝑗𝑖
∗Both Hermitian

 Mass matrix – its e-values represents masses of the states in their
CM frame (real parts of the energy levels)

 Decay matrix – introduced to describe decay characteristics of the
system
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Effective Hamiltonian

 The main purpose here is to provide explicit form of the ℋ𝑒𝑓𝑓, and

one can start from writing down the ℋ𝑒𝑓𝑓 matrix in the most generic

form

 Next, let’s express the e-states of the effective Hamiltonian in
terms of our base states of the strong interactions

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐷

𝐾0 ℋ𝑒𝑓𝑓 𝐾0 = 𝐴  𝐾0 ℋ𝑒𝑓𝑓
 𝐾0 = 𝐷 = 𝐴

𝒞𝒫𝒯 theorem states that the masses of 
𝐾0 and  𝐾0 must be the same

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐴

The most generic form of the ℋ𝑒𝑓𝑓

consistent with 𝒞𝒫𝒯 theorem
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Effective Hamiltonian and its e-states

|  𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0 =

1

𝑝 2 + 𝑞 2

𝑝
𝑞

|  𝐾𝐿
0 =

1

𝑟 2 + 𝑠 2
𝑟  𝐾0 + 𝑠   𝐾0 =

1

𝑟 2 + 𝑠 2

𝑟
𝑠

𝑝, 𝑞, 𝑟, 𝑠 are complex numbers defining

the decomposition of 𝐾𝑆
0 and 𝐾𝐿

0

 e-states of the effective Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, have e-values in

their CM frame as follow:

𝑚𝑆 −
𝑖

2
𝛾𝑆, 𝑚𝐿−

𝑖

2
𝛾𝐿

ℋ𝑒𝑓𝑓  𝐾𝑆
0 = 𝑚𝑆 −

𝑖

2
𝛾𝑆  𝐾𝑆

0 (∗)

ℋ𝑒𝑓𝑓|  𝐾𝐿
0 = 𝑚𝐿 −

𝑖

2
𝛾𝐿 |  𝐾𝐿

0

masses of the e-states widths of the e-states
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Effective Hamiltonian and its e-states

 Now, in the basis of 𝐾𝑆
0 and 𝐾𝐿

0 e-states, the diagonal elements of

the effective Hamiltonian are as above

 We can relate them to the diagonal elements of the same operator
expressed in the 𝐾0 and  𝐾0 basis using the trace of matrix (trace
is invariant w.r.t. base transformations)

 Now, rewrite the equation (*)

𝑇𝑟 ℋ𝑒𝑓𝑓 = 2𝐴 = 𝑚𝑆 −
𝑖

2
𝛾𝑆 + 𝑚𝐿 −

𝑖

2
𝛾𝐿

𝐴 =
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

𝐴 𝐵
𝐶 𝐴

𝑝
𝑞 = 𝑚𝑆 −

𝑖

2
𝛾𝑆

𝑝
𝑞

𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆 𝐵

𝐶 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

𝑝
𝑞 = 0

A system of coupled
linear homogenous
equations!
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 Non trivial solution exists only if:

 Substituting to equations describing short and long states
respectively one can get:

Effective Hamiltonian and its e-states

𝑑𝑒𝑡
𝐴 − 𝑚𝑆 +

𝑖

2
𝛾𝑆 𝐵

𝐶 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

= 0

𝐵𝐶 = 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

2

=
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

2

± 𝐵𝐶 =
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

𝑝

𝑞
= ±

𝐵

𝐶
,
𝑟

𝑠
= ∓

𝐵

𝐶
= −

𝑝

𝑞

𝒓 = 𝒑, 𝒔 = −𝒒
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Effective Hamiltonian and its e-states

 So, the e-states of the effective Hamiltonian are:

 We can now express the parameters 𝑝, 𝑞 in terms of 𝜖

 And the strong e-states can be written as:

|  𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0

|  𝐾𝐿
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 − 𝑞   𝐾0

p = 1 + ϵ, 𝑞 = − 1 − 𝜖

|  𝐾0 =
𝑝 2 + 𝑞 2

2𝑝
|  𝐾𝑆

0 + |  𝐾𝐿
0

|   𝐾0 =
𝑝 2 + 𝑞 2

2𝑞
|  𝐾𝑆

0 − |  𝐾𝐿
0
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Effective Hamiltonian and its e-states

 𝐾𝑆
0 and 𝐾𝐿

0 are the e-states of the ℋ𝑒𝑓𝑓, thus, the solutions of our

Schrodinger equation are

 These states decay with the lifetimes

 Note! Unlike 𝐾0 and  𝐾0 the e-states of ℋ𝑒𝑓𝑓 - 𝐾𝑆
0 and 𝐾𝐿

0 are not

each other’s antiparticle! Thus, 𝑚𝑆 ≠ 𝑚𝐿 and 𝜏𝑆 ≠ 𝜏𝐿

 Awesome!

|  𝐾𝑆
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

|  𝐾𝑆
0

|  𝐾𝐿
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|  𝐾𝐿
0

𝑖ℏ
𝜕|  𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓|  𝜓 𝑡

𝜏𝑆 =
ℏ

𝛾𝑆
= 0.9 × 10−10 𝑠 𝜏𝐿 =

ℏ

𝛾𝐿
= 5.0 × 10−8 𝑠
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Time Evolution Final! 

 Finally we are able to write down equations that govern the time
evolution of kaons, let’s assume that we start with a pure beam of
𝐾0

|  𝐾0 𝑡 =
𝑝 2 + 𝑞 2

2𝑝
|  𝐾𝑆

0(𝑡) + |  𝐾𝐿
0(𝑡) =

𝑝 2 + 𝑞 2

2𝑝
𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

|  𝐾𝑆
0 + 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|  𝐾𝐿
0 =

𝑝 2 + 𝑞 2

2𝑝
𝑒

−
𝑖
ℏ

𝑚𝑆−
𝑖
2
𝛾𝑆 𝑡 1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0 + 𝑒

−
𝑖
ℏ

𝑚𝐿−
𝑖
2
𝛾𝐿 𝑡 1

𝑝 2 + 𝑞 2
𝑝  𝐾0 − 𝑞   𝐾0 =

1

2𝑝
𝑝 𝑒

−
𝑖
ℏ

𝑚𝑆−
𝑖
2
𝛾𝑆 𝑡

+ 𝑒
−

𝑖
ℏ

𝑚𝐿−
𝑖
2
𝛾𝐿 𝑡

|  𝐾0 +

+
1

2𝑝
𝑝 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

− 𝑒
−

𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|   𝐾0
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Time Evolution Final! 

 So, the probability of finding 𝐾0 in the beam at some time 𝑡 is:

 And by analogy one can calculate the same for  𝐾0

𝑃 𝐾0, 𝑡 = 𝐾0 𝐾0 𝑡 2 =
1

4
𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

+ 𝑒
−

𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

2

=
1

4
𝑒−

𝛾𝑆𝑡
ℏ + 𝑒−

𝛾𝐿𝑡
ℏ + 𝑒−

1
2ℏ

𝛾𝑆+𝛾𝐿 𝑡 × 2𝑐𝑜𝑠 𝑚𝐿 − 𝑚𝑆

𝑡

ℏ

=
1

4
𝑒

−
𝑡
𝜏𝑆 +

1

4
𝑒

−
𝑡
𝜏𝐿 +

1

2
𝑒

−
1
𝜏𝑆

+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

𝑃  𝐾0, 𝑡 =  𝐾0 𝐾0 𝑡 2

=
𝑞

𝑝

2
1

4
𝑒

−
𝑡
𝜏𝑆 +

1

4
𝑒

−
𝑡
𝜏𝐿 −

1

2
𝑒

−
1
𝜏𝑆

+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

Δ𝑚 = 𝑚𝐿 − 𝑚𝑆 ≈ 3.5 × 10−12 𝑀𝑒𝑉

Mass difference is
not zero!!
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Time Evolution Final! 

 The mass splitting of the weak Hamiltonian e-states can be
translated into mass splitting of the strong interactions

 Very precise test of 𝒞𝒫𝒯 symmetry

 Using our theoretical framework we could

also estimate the prob. of observing weak

e-states in the beam as a function of time

 By studying the number of decays as a

function of the proper time one can observe

QM interference in the 2𝜋 decay modes of

the 𝐾𝑆
0 and 𝐾𝐿

0

𝑚𝐾0 − 𝑚 𝐾0 < 10−18 𝑚𝐾0

𝑲𝑺,𝑳
𝟎 → 𝝅+ + 𝝅−
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Next time…

 Analogical calculations can be done for beauty mesons

 We are going to derive selected results presented today during our
tutorial sessions (2 or 3 weeks time)


