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Violation of CP symmetry

 Last time we learned that two of the fundamental symmetries
(space and charge parities) are maximally broken by the weak
interactions

 Also, there is a fascinating phenomena, occurring for neutral
mesons that we called flavour oscillations

 By analysing various processes we came to conclusion that
although both 𝒞 and 𝒫 are broken the combined symmetry ,i.e.,
𝐶𝑃 is exact

 Ah, yes… there was also this bizarre effect about kaons – we
decided that the particles that are produced in strong interactions
are not the same that decay later on via weak force

 A lot of new stuff! And today we are shifting to higher gear!
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Violation of CP symmetry

 From the last lecture – 𝐾1
0 and 𝐾2

0 are eigenstates of 𝐶𝑃 operator

 In other words, if combined parity is conserved, processes such
these below should never happen!

 We should not be surprised by the fact that they indeed happen!
An experiment has been performed to study the behaviour of the
long-lived component of 𝐾0, which found them!

 So, we are for another redefinition of what the kaons really are…

 Because we see clearly that 𝐶𝑃 is broken, thus, we must accept
that neutral kaons are not composed out of 𝐾1

0 and 𝐾2
0

 The new states are called 𝑲𝑺
𝟎 and 𝑲𝑳

𝟎 instead…

𝒞𝒫|  𝐾1
0 =

1

2
𝒞𝒫  𝐾0 − 𝒞𝒫   𝐾0 =

1

2
−|   𝐾0 + |  𝐾0 =

1

2
|  𝐾0 − |   𝐾0 = |  𝐾1

0

𝐾2
0 → 𝜋0 + 𝜋0

𝐾2
0 → 𝜋+ + 𝜋−
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Violation of CP symmetry

 This may come as yet another surprise, but the effect is very
weak, the fractional branching ratios measured are of order of 0.1%

 Taking into account life-times of both 𝐾𝑆
0 and 𝐾𝐿

0 one can show that

 Ok – a small resume…

 𝑪𝑷 is indeed violated

 The effect is tiny (not so tiny for beauty decays though…)

 Matter and anti-matter are not symmetrical

 𝐶𝑃 , apart from small number of weak processes involving
neutral mesons, is conserved

𝐾𝐿
0 → 𝜋+ + 𝜋−

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 2.0 × 10−3
𝐾𝐿

0 → 𝜋0 + 𝜋0

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 9.0 × 10−4

Γ 𝐾𝐿
0 → 2𝜋

Γ 𝐾𝑆
0 → 2𝜋

≈ 10−6
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Kaons revisited

 What we did was an attempt to describe time evolution of kaons
which are produced as strong Hamiltonian e-states that, in turn,
decay as weak e-states: 𝐾0,  𝐾0 → 𝐾1

0, 𝐾2
0

 This fails because 𝐾1
0 and 𝐾2

0 are e-states of 𝑪𝑷, so we need new

particles, namely 𝐾𝑆
0 and 𝐾𝐿

0 that have the necessary behavior of 𝐾1
0

and 𝐾2
0 (i.e., long and short life-time) but are not 𝐶𝑃 e-states

 One remark – since the violation effect is small – this would be a
hint that these new states are almost identical to 𝐾1

0 and 𝐾2
0

|  𝐾𝑆
0 =

1

2 1 + 𝜖 2
1 + 𝜖  𝐾0 − 1 − 𝜖   𝐾0 =

=
1

2 1 + 𝜖 2
|  𝐾0 − |   𝐾0 + 𝜖 |  𝐾0 + |   𝐾0 =

1

1 + 𝜖 2
|  𝐾1

0 + 𝜖|  𝐾2
0

|  𝐾𝐿
0 =

1

2 1 + 𝜖 2
1 + 𝜖  𝐾0 + 1 − 𝜖   𝐾0 =

=
1

2 1 + 𝜖 2
|  𝐾0 + |   𝐾0 + 𝜖 |  𝐾0 − |   𝐾0 =

1

1 + 𝜖 2
|  𝐾2

0 + 𝜖|  𝐾1
0
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Kaons Revisited

 How should we thing about what is going on…, so,…

 The transitions  2𝜋|𝐻𝑤|  𝐾𝐿
0 violate 𝐶𝑃 invariance. This can happen:

 because the e-states of the weak Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, are

not e-states of the 𝐶𝑃 operator

 we say, that the physical states are mixtures of 𝑪𝑷-even and
𝑪𝑷-odd components

 In other words – we observe small violation of 𝐶𝑃 in 𝐾𝐿
0 → 2𝜋

decays, because of small admixture of 𝐾1
0

 this type of violation is called indirect, and implies, that the
Hamiltonian itself is even under 𝐶𝑃 symmetry

 again… to add confusion, it turns out that the direct violation is
also possible for kaons (i.e., violation induced via the weak

Hamiltonian)  2𝜋|𝐻𝑤|  𝐾2
0 ≠ 0

 But that is another story…
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Measure of CP-violation

 How can we express the degree of 𝐶𝑃-violation?

|  𝐾𝑆
0 =

1

1 + 𝜖 2
|  𝐾1

0 + 𝜖|  𝐾2
0 |  𝐾𝐿

0 =
1

1 + 𝜖 2
|  𝐾2

0 + 𝜖|  𝐾1
0

𝜖 represents deviation of 𝐾𝑆
0 and 𝐾𝐿

0 from true 𝐶𝑃
e-states (in general this is complex number!)

𝒞𝒫|  𝐾𝑆
0 =

1

1 + 𝜖 2
𝒞𝒫  𝐾1

0 + 𝜖𝒞𝒫  𝐾2
0 =

1

1 + 𝜖 2
 𝐾1

0 − 𝜖  𝐾2
0 ≠ |  𝐾𝑆

0

𝒞𝒫|  𝐾𝐿
0 =

1

1 + 𝜖 2
𝒞𝒫  𝐾2

0 + 𝜖𝒞𝒫  𝐾1
0 =

1

1 + 𝜖 2
−  𝐾1

0 + 𝜖  𝐾2
0 ≠ −|  𝐾𝐿

0

𝐾𝐿
0 𝐾𝑆

0 =
1

1 + 𝜖 2  𝐾2
0| + 𝜖∗ 𝐾1

0|  𝐾1
0 + 𝜖  𝐾2

0 =

1

1 + 𝜖 2 𝜖 𝐾2
0 𝐾2

0 + 𝜖∗ 𝐾1
0 𝐾1

0 =
𝜖 + 𝜖∗

1 + 𝜖 2 =
2𝑅𝑒(𝜖)

1 + 𝜖 2 = 𝐾𝑆
0 𝐾𝐿

0

𝐾𝑆
0 and 𝐾𝐿

0 are not orthogonal states!
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Measure of CP-violation

 Lack of orthogonality of 𝐾𝑆
0 and 𝐾𝐿

0 is expected – both of them

share the same decay channels

 This effect is at the same time a measure of 𝐶𝑃-violation via 𝝐

 In this picture the symmetry violation is a consequence of small
admixture of 𝐾1

0 state into the 𝐾𝐿
0, so, we observe its decays to 2𝜋

final state because the 𝐾1
0 can decay into it – once again this is

indirect process

 These kind of processes are referred to as 𝜟𝑺 = 𝟐, 𝜟𝑰 =
𝟏

𝟐
transitions

 Much smaller direct contribution to 𝐶𝑃-violation is a consequence of
the weak Hamiltonian having a 𝑪𝑷-violating term (it does not
commute with the 𝐶𝑃 operator)

 These kind of processes proceed via 𝜟𝑺 = 𝟏, 𝜟𝑰 =
𝟑

𝟐
transitions and

are called penguin (or loop) decays
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Time Evolution of the Kaon System

 A phenomenological „effective” theoretical framework has been
introduced to describe what is going on with kaons produced in
strong interactions

 It is based on perturbation theory and describe the behavior of such
system in terms of an effective Hamiltonian

 We start with describing kaons in the absence of weak interactions

 In this case 𝐾0 and  𝐾0 are distinct e-states of the strong
Hamiltonian

 Since the strong interactioins respect conservation of
strangeness these are stationary states!

|  𝐾0 =
1
0

|   𝐾0 =
0
1

Base vectors in 2-dim Hilbert space

|  𝜓 =
1

𝑎2 + 𝑏2
𝑎  𝐾0 + 𝑏   𝐾0 =

1

𝑎2 + 𝑏2

𝑎
𝑏
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Time Evolution of the Kaon System

 Oh, well, unfortunately weak interaction cannot be switched off and
the kaons do decay

 Theory offers two approaches to attack this problem

 We could expand the 2-dim Hilbert space and take into account
all the possible final states

 or…, we could stay in the 2-dim space and introduce effective
Hamiltonian that is responsible for the kaons disintegration

 Usually the later option is picked up!

 Now, the leap to the Schrodinger equation describing two state
system with the effective Hamiltonian is done by noticing that we
no longer deal with stationary states – they can decay

 The consequence is that the Hamiltonian is no longer a Hermitian
operator – the probability is no longer conserved for decaying
states!
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Effective Hamiltonian

𝑖ℏ
𝜕|  𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓|  𝜓 𝑡

Complex 2 × 2 matrix 

ℋ𝑒𝑓𝑓 = ℳ −
𝑖

2
Γ

ℳ =
1

2
ℋ𝑒𝑓𝑓 + ℋ𝑒𝑓𝑓

† , Γ = 𝑖 ℋ𝑒𝑓𝑓 − ℋ𝑒𝑓𝑓
†

ℳ = ℳ† → ℳ𝑖𝑗 = ℳ𝑗𝑖
∗

Γ = Γ† → Γ𝑖𝑗 = Γ𝑗𝑖
∗Both Hermitian

 Mass matrix – its e-values represents masses of the states in their
CM frame (real parts of the energy levels)

 Decay matrix – introduced to describe decay characteristics of the
system
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Effective Hamiltonian

 The main purpose here is to provide explicit form of the ℋ𝑒𝑓𝑓, and

one can start from writing down the ℋ𝑒𝑓𝑓 matrix in the most generic

form

 Next, let’s express the e-states of the effective Hamiltonian in
terms of our base states of the strong interactions

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐷

𝐾0 ℋ𝑒𝑓𝑓 𝐾0 = 𝐴  𝐾0 ℋ𝑒𝑓𝑓
 𝐾0 = 𝐷 = 𝐴

𝒞𝒫𝒯 theorem states that the masses of 
𝐾0 and  𝐾0 must be the same

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐴

The most generic form of the ℋ𝑒𝑓𝑓

consistent with 𝒞𝒫𝒯 theorem
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Effective Hamiltonian and its e-states

|  𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0 =

1

𝑝 2 + 𝑞 2

𝑝
𝑞

|  𝐾𝐿
0 =

1

𝑟 2 + 𝑠 2
𝑟  𝐾0 + 𝑠   𝐾0 =

1

𝑟 2 + 𝑠 2

𝑟
𝑠

𝑝, 𝑞, 𝑟, 𝑠 are complex numbers defining

the decomposition of 𝐾𝑆
0 and 𝐾𝐿

0

 e-states of the effective Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, have e-values in

their CM frame as follow:

𝑚𝑆 −
𝑖

2
𝛾𝑆, 𝑚𝐿−

𝑖

2
𝛾𝐿

ℋ𝑒𝑓𝑓  𝐾𝑆
0 = 𝑚𝑆 −

𝑖

2
𝛾𝑆  𝐾𝑆

0 (∗)

ℋ𝑒𝑓𝑓|  𝐾𝐿
0 = 𝑚𝐿 −

𝑖

2
𝛾𝐿 |  𝐾𝐿

0

masses of the e-states widths of the e-states
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Effective Hamiltonian and its e-states

 Now, in the basis of 𝐾𝑆
0 and 𝐾𝐿

0 e-states, the diagonal elements of

the effective Hamiltonian are as above

 We can relate them to the diagonal elements of the same operator
expressed in the 𝐾0 and  𝐾0 basis using the trace of matrix (trace
is invariant w.r.t. base transformations)

 Now, rewrite the equation (*)

𝑇𝑟 ℋ𝑒𝑓𝑓 = 2𝐴 = 𝑚𝑆 −
𝑖

2
𝛾𝑆 + 𝑚𝐿 −

𝑖

2
𝛾𝐿

𝐴 =
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

𝐴 𝐵
𝐶 𝐴

𝑝
𝑞 = 𝑚𝑆 −

𝑖

2
𝛾𝑆

𝑝
𝑞

𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆 𝐵

𝐶 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

𝑝
𝑞 = 0

A system of coupled
linear homogenous
equations!
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 Non trivial solution exists only if:

 Substituting to equations describing short and long states
respectively one can get:

Effective Hamiltonian and its e-states

𝑑𝑒𝑡
𝐴 − 𝑚𝑆 +

𝑖

2
𝛾𝑆 𝐵

𝐶 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

= 0

𝐵𝐶 = 𝐴 − 𝑚𝑆 +
𝑖

2
𝛾𝑆

2

=
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

2

± 𝐵𝐶 =
1

2
𝑚𝑆 + 𝑚𝐿 −

𝑖

4
𝛾𝑆 + 𝛾𝐿

𝑝

𝑞
= ±

𝐵

𝐶
,
𝑟

𝑠
= ∓

𝐵

𝐶
= −

𝑝

𝑞

𝒓 = 𝒑, 𝒔 = −𝒒
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Effective Hamiltonian and its e-states

 So, the e-states of the effective Hamiltonian are:

 We can now express the parameters 𝑝, 𝑞 in terms of 𝜖

 And the strong e-states can be written as:

|  𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0

|  𝐾𝐿
0 =

1

𝑝 2 + 𝑞 2
𝑝  𝐾0 − 𝑞   𝐾0

p = 1 + ϵ, 𝑞 = − 1 − 𝜖

|  𝐾0 =
𝑝 2 + 𝑞 2

2𝑝
|  𝐾𝑆

0 + |  𝐾𝐿
0

|   𝐾0 =
𝑝 2 + 𝑞 2

2𝑞
|  𝐾𝑆

0 − |  𝐾𝐿
0
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Effective Hamiltonian and its e-states

 𝐾𝑆
0 and 𝐾𝐿

0 are the e-states of the ℋ𝑒𝑓𝑓, thus, the solutions of our

Schrodinger equation are

 These states decay with the lifetimes

 Note! Unlike 𝐾0 and  𝐾0 the e-states of ℋ𝑒𝑓𝑓 - 𝐾𝑆
0 and 𝐾𝐿

0 are not

each other’s antiparticle! Thus, 𝑚𝑆 ≠ 𝑚𝐿 and 𝜏𝑆 ≠ 𝜏𝐿

 Awesome!

|  𝐾𝑆
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

|  𝐾𝑆
0

|  𝐾𝐿
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|  𝐾𝐿
0

𝑖ℏ
𝜕|  𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓|  𝜓 𝑡

𝜏𝑆 =
ℏ

𝛾𝑆
= 0.9 × 10−10 𝑠 𝜏𝐿 =

ℏ

𝛾𝐿
= 5.0 × 10−8 𝑠
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Time Evolution Final! 

 Finally we are able to write down equations that govern the time
evolution of kaons, let’s assume that we start with a pure beam of
𝐾0

|  𝐾0 𝑡 =
𝑝 2 + 𝑞 2

2𝑝
|  𝐾𝑆

0(𝑡) + |  𝐾𝐿
0(𝑡) =

𝑝 2 + 𝑞 2

2𝑝
𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

|  𝐾𝑆
0 + 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|  𝐾𝐿
0 =

𝑝 2 + 𝑞 2

2𝑝
𝑒

−
𝑖
ℏ

𝑚𝑆−
𝑖
2
𝛾𝑆 𝑡 1

𝑝 2 + 𝑞 2
𝑝  𝐾0 + 𝑞   𝐾0 + 𝑒

−
𝑖
ℏ

𝑚𝐿−
𝑖
2
𝛾𝐿 𝑡 1

𝑝 2 + 𝑞 2
𝑝  𝐾0 − 𝑞   𝐾0 =

1

2𝑝
𝑝 𝑒

−
𝑖
ℏ

𝑚𝑆−
𝑖
2
𝛾𝑆 𝑡

+ 𝑒
−

𝑖
ℏ

𝑚𝐿−
𝑖
2
𝛾𝐿 𝑡

|  𝐾0 +

+
1

2𝑝
𝑝 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

− 𝑒
−

𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

|   𝐾0
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Time Evolution Final! 

 So, the probability of finding 𝐾0 in the beam at some time 𝑡 is:

 And by analogy one can calculate the same for  𝐾0

𝑃 𝐾0, 𝑡 = 𝐾0 𝐾0 𝑡 2 =
1

4
𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

+ 𝑒
−

𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

2

=
1

4
𝑒−

𝛾𝑆𝑡
ℏ + 𝑒−

𝛾𝐿𝑡
ℏ + 𝑒−

1
2ℏ

𝛾𝑆+𝛾𝐿 𝑡 × 2𝑐𝑜𝑠 𝑚𝐿 − 𝑚𝑆

𝑡

ℏ

=
1

4
𝑒

−
𝑡
𝜏𝑆 +

1

4
𝑒

−
𝑡
𝜏𝐿 +

1

2
𝑒

−
1
𝜏𝑆

+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

𝑃  𝐾0, 𝑡 =  𝐾0 𝐾0 𝑡 2

=
𝑞

𝑝

2
1

4
𝑒

−
𝑡
𝜏𝑆 +

1

4
𝑒

−
𝑡
𝜏𝐿 −

1

2
𝑒

−
1
𝜏𝑆

+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

Δ𝑚 = 𝑚𝐿 − 𝑚𝑆 ≈ 3.5 × 10−12 𝑀𝑒𝑉

Mass difference is
not zero!!
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Time Evolution Final! 

 The mass splitting of the weak Hamiltonian e-states can be
translated into mass splitting of the strong interactions

 Very precise test of 𝒞𝒫𝒯 symmetry

 Using our theoretical framework we could

also estimate the prob. of observing weak

e-states in the beam as a function of time

 By studying the number of decays as a

function of the proper time one can observe

QM interference in the 2𝜋 decay modes of

the 𝐾𝑆
0 and 𝐾𝐿

0

𝑚𝐾0 − 𝑚 𝐾0 < 10−18 𝑚𝐾0

𝑲𝑺,𝑳
𝟎 → 𝝅+ + 𝝅−
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Next time…

 Analogical calculations can be done for beauty mesons

 We are going to derive selected results presented today during our
tutorial sessions (2 or 3 weeks time)


