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Violation of CP symmetry

d Last time we learned that two of the fundamental symmetries
(space and charge parities) are maximally broken by the weak
interactions

Q Also, there is a fascinating phenomena, occurring for neutral
mesons that we called flavour oscillations

d By analysing various processes we came to conclusion that
although both ¢ and P are broken the combined symmetry ,i.e,,
CP is exact

ad Ah, yes... there was also this bizarre effect about kaons - we
decided that the particles that are produced in strong interactions
are not the same that decay later on via weak force

a A lot of new stuff! And today we are shifting to higher gear!
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4 —— N
Violation of CP symmetry

O From the last lecture - K and K are eigenstates of CP operator

i 0y _ 70 =i_—0 ozi 0y _ [0V — |KO
ﬁ(cvblm CPIK)) ﬁ( IK°) + |K°)) ﬁ(llﬂ 1K) = |KP)

d In other words, if combined parity is conserved, processes such
these below should never happen!

CP|K?) =

KZO-/>7T0+7TO
KO bnt+n

O We should not be surprised by the fact that they indeed happen!
An experiment has been performed to study the behaviour of the
long-lived component of K°, which found them!

d So, we are for another redefinition of what the kaons really are...

O Because we see clearly that CP is broken, thus, we must accept
that neutral kaons are not composed out of K and K

Q The new states are called K$ and K instead...
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4 —— N
Violation of CP symmetry

d This may come as yet another surprise, but the effect is very
weak, the fractional branching ratios measured are of order of 0.1%

K)>nt+n~ s K -+ n®
~ 2.0x 10

0 - 0 — ~9.0x 107
K; - anything K;' — anything

0 Taking into account life-times of both K and K? one can show that

Ik - 2m)
[(KQ - 2m)

107°

d Ok - a small resume...
Q CP is indeed violated
d The effect is tiny (not so tiny for beauty decays though...)
O Matter and anti-matter are not symmetrical

a cp, apart from small number of weak processes involving
neutral mesons, is conserved
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4 - I

d What we did was an attempt to describe time evolution of kaons
which are produced as strong Hamiltonian e-states that, in turn,
decay as weak e-states: (K% K°) - (K2, K?)

Q This fails because K and K; are e-states of CP, so we need new
particles, namely K2 and Kk that have the necessary behavior of K}
and k) (i.e., long and short life-time) but are not CP e-states

O One remark - since the violation effect is small - this would be a
hint that these new states are almost identical to K and K

1K?)

(1+e)K% —(1-e)IK%) =

" 20+ 1P
((IK°) — |K°)) + e(JK°) + |K°))) =

(1K) + €lk3))

1 1
20+ e VA + [e?)

1K)

(A +e)IK%) + (1 - e)IK®)) =

V2 e
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Kaons Revisited

O How should we thing about what is going on..., so,...
O The transitions (2x|H,,|K}) violate CP invariance. This can happen:

O because the e-states of the weak Hamiltonian, k? and k?, are
not e-states of the CP operator

O we say, that the physical states are mixtures of CP-even and
cP-odd components

Q In other words - we observe small violation of CP in K? - 2n
decays, because of small admixture of K}

QA this type of violation is called indirect, and implies, that the
Hamiltonian itself is even under CP symmetry

d again... to add confusion, it turns out that the direct violation is
also possible for kaons (i.e., violation induced via the weak
Hamiltonian) (2x|H,,|KJ) # 0

O But that is another story...
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Measure of CP-violation

d How can we express the degree of CP-violation?

™~

IKS) = NeEIrD (1K) + il(z())) lel(ﬂ)
e represents deviation of K and kK from true cP
e-states (in general this is complex number!)
CPIKE) = e (€PN eCPIKE) = s () — elKE) # 10
CP|K}) = Ta j = (CP|KF) + eCP|KY)) = Ta j = (—|K?) + €|K3)) ¢i

(k2 |KS) = T (K21 + e (KPD(KT) + e|k2)) =

1 e+e*  2Re(e)
0 0 * 0 0 _ . _ 0 0
1+ |e|? (e(kJ|K2) + (KD |KD)) = T+l 142 (KQ|KD)

@ K?Q and K are not orthogonal states!
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Measure of CP-violation

Q Lack of orthogonality of K2 and K? is expected - both of them
share the same decay channels

O This effect is at the same time a measure of CP-violation via €

Q In this picture the symmetry violation is a consequence of small
admixture of K state into the K, so, we observe its decays to 2r
final state because the K can decay into it - once again this is
indirect process

d These kind of processes are referred to as 4S5 = 2,41 = % transitions

d Much smaller direct contribution to CP-violation is a consequence of
the weak Hamiltonian having a cP-violating term (it does not
commute with the CP operator)

O These kind of processes proceed via A4S = 1,AI=% transitions and
are called penguin (or loop) decays
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4 . . N
Time Evolution of the Kaon System

d A phenomenological ,effective” theoretical framework has been
introduced to describe what is going on with kaons produced in
strong interactions

A It is based on perturbation theory and describe the behavior of such
system in terms of an effective Hamiltonian

O We start with describing kaons in the absence of weak interactions

Q In this case K° and K° are distinct e-states of the strong
Hamiltonian

a Since the strong interactioins respect conservation of
strangeness these are stationary states!

=), =0

Base vectors in 2-dim Hilbert space

1 _
) = (alK®) + DIK®)) =
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4 . . N
Time Evolution of the Kaon System

ad Oh, well, unfortunately weak interaction cannot be switched off and
the kaons do decay

A Theory offers two approaches to attack this problem

O We could expand the 2-dim Hilbert space and take into account
all the possible final states

Q or..., we could stay in the 2-dim space and introduce effective
Hamiltonian that is responsible for the kaons disintegration

a Usually the later option is picked up!

O Now, the leap to the Schrodinger equation describing two state
system with the effective Hamiltonian is done by noticing that we
no longer deal with stationary states - they can decay

O The consequence is that the Hamiltonian is no longer a Hermitian
operator - the probability is no longer conserved for decaying
states!
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Effective Hamiltonian

0
w200 @)

y
Complex 2 x 2 matrix \

[
}[eff =M—§F

1 .
M =5 (Hepr +35p) T = i(Hepy = Hpr)

M =M > My = M

Both Hermitian

d Mass matrix - its e-values represents masses of the states in their
CM frame (real parts of the energy levels)

d Decay matrix - introduced to describe decay characteristics of the
system
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Effective Hamiltonian

d The main purpose here is to provide explicit form of the H,¢, and
one can start from writing down the #,¢r matrix in the most generic

form
A B
Hepr = (C D)
<K0|7{eff|K0>=¢A (KO|Hesr|K®) =D = A

CPT theorem states that the masses of
K° and K° must be the same

Hepr = (él fl)

The most generic form of the H,,
consistent with CPT theorem

O Next, let's express the e-states of the effective Hamiltonian in
terms of our base states of the strong interactions
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Effective Hamiltonian and its e-states

K) (pIK®) + q|K°)) =

B p
JUpl2 + 1912 JUpl2 + 1q?) (q)

IK7) (r|K®) + s|K®)) =

- (s)
NGEED JaZ+ 15

p,q, 7, s are complex numbers defining
the decomposition of K and K

O e-states of the effective Hamiltonian, KJ and kP, have e-values in
their CM frame as follow:

widths of the e-states

masses of the e—staf/ me — EVS; my — EVL

i
K}’) = (ms — EVS)
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Effective Hamiltonian and its e-states

a Now, in the basis of K¢ and K? e-states, the diagonal elements of
the effective Hamiltonian are as above

d We can relate them to the diagonal elements of the same operator
expressed in the K° and K° basis using the trace of matrix (trace
is invariant w.r.t. base transformations)

i i
Tr(Hepp) = 24 = <m5 — Eyg) + (mL - EVL)
1 i
A =E(ms +my) —Z(Vs +vL)

O Now, rewrite the equation (*)

(? fl) (Z) — (ms — %Vs) (Z ,lA SYStim of coupled
e % inear bomogsno
—mg+=Yy B
. i (Z) =0

@ C A—m5+§]/5
A, /




d Non trivial solution exists only if:

[
A—mS+EyS B
det . =0

i =
C A—m5+z)/5

1 [
+VB =E(m5+mL) _Z(VS+VL)

O Substituting to equations describing short and
respectively one can get:

B B
P_L|Br_s|B__p
q C's C q

o
.

. 2 .
i 1 i
BC = (A — mg +§ys) = lz(ms +my) _Z(Vs +n)]

Effective Hamiltonian and its e-states

2
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Effective Hamiltonian and its e-states

O So, the e-states of the effective Hamiltonian are:

1 _
K?) = (pIK®) + qIR)
)= T e

(pIK®) — qlK®))

Kp) =
) JZ + 191D

d We can now express the parameters p,q in terms of ¢

p=1+¢q=—-(1—-¢)

O And the strong e-states can be written as:

2 2
2 2
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Effective Hamiltonian and its e-states

QO K¢ and K are the e-states of the #,¢r, thus, the solutions of our
Schrodinger equation are

0 — —i(ms—i)’s)t 0
KO)=e TP IS) IS oy
. . in Py errW ()
ki) = e Hm-irdeyegy |~

O These states decay with the lifetimes

h h
TS=—=O.9X1O_1OS TL=—=5.OX1O_88
Vs 144

QO Note! Unlike K° and K° the e-states of H,;s - K¢ and K are not
each other’s antiparticle! Thus, m¢ # m; and 15 # 17,

O Awesome!
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Time Evolution Final!

Q Finally we are able to write down equations that govern the time
evolution of kaons, let’'s assume that we start with a pure beam of

KO
(Ipl? + 1q1?)
ko) = YLD (oo + o) =
2 2
JUpIZ +1ql )( Lmg—Lys)t 1K) + ™ Lmy-Ly,)e K9)) =
2p
J(|p|2+|q|2)[ Lms-Lys)e S o PO _
s72s (pIK®) + qIR)) + e MM 72" (plK®) — qIR%))| =
2p JpE+1qm e JarExam

% [p(e_ %(ms_%ys)t + e %(mL_%YL)t)lKO)] +

[P ms—glfs —e %(mL_%YL)t) ”?0 )]
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Time Evolution Final!

Q So, the probability of finding K° in the beam at some time t is:

1 i i i i 2
P(K®, ) = KKOIKO@)[? = 7 e ilms2s)t 4 ¢ malmzni)]
1/ _vst _yit _L t
= Z(e ho+e  ho+e RIS x 2c0s(my, — my) £>
-t 1 (AL Amt
=7¢ TS+Ze TL+§e (TS+TS)tCOST

—_—
Q And by analogy one can calculate the same for K°

P(K?,t) = (K°|K° ()

2
1 -t -1 (AL Amt
% [Ze TS+Ze TL—Ee (TS+TS)tcosT

Am =m; —mg =~ 3.5 x 10712 MeV
T e —
\ Mass difference is
not zero!!
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Time Evolution Final!

d The mass splitting of the weak Hamiltonian e-states can be
translated into mass splitting of the strong interactions

Mygo — Mgo < 10718 mye0

Q Very precise test of CPT symmetry

0 + -
K¢, -m +m

—
o
-

O Using our theoretical framework we could
also estimate the prob. of observing weak
e-states in the beam as a function of time -

d By studying the number of decays as a

function of the proper time one can observe

Number of Events / 0.5 x 10-19 sec

QM interference in the 2r decay modes of 102

the KQ and K

llllllllllllll
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K Proper Time x 10-10 sec /




d Analogical calculations can be done for beauty mesons

O We are going to derive selected results presented today during our
tutorial sessions (2 or 3 weeks time)




