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𝜽 − 𝝉 puzzle

𝜃0 → 𝜋0 + 𝜋0

𝜃0 → 𝜋+ + 𝜋−

𝜏0 → 𝜋0 + 𝜋0 + 𝜋0

𝜏0 → 𝜋+ + 𝜋− + 𝜋0

❑ In 1949 C.F. Powell discovered in cosmic rays:

• 𝜋 meson,

• a meson that disintegrated into three pions
(named 𝜏 meson),

• another particle ( 𝜃 ) that decays into two
pions had been known that time.

❑ 𝜃 and 𝜏 particles turned out to be indistinguishable other than
their mode of decay. Their masses and lifetimes were identical,
within the experimental uncertainties. Were they in fact the
same particle?

❑ If the CP symmetry is valid, 𝜃 and 𝜏 cannot be the same particle.

❑ First doubts arose… that P parity is not conserved in weak
interaction (confirmed by Wu experiment).
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𝜽 − 𝝉 puzzle



4

𝜽 − 𝝉 puzzle

❑ How can we distinguish 𝐾0 from ഥ𝐾0 ?
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Oscillations of Neutral Mesons

❑ The real questions here:

❑ How 𝜃0, 𝜏0 are related to 𝐾0, ഥ𝐾0 ?

❑ Are 𝐾0 different than ഥ𝐾0?

❑ This is not trivial…

❑ Using purely hadronic and leptonic decays, we cannot distinguish
them…
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Oscillations of Neutral Mesons

❑ The real questions here:

❑ How 𝜃0, 𝜏0 are related to 𝐾0, ഥ𝐾0 ?

❑ Are 𝐾0 different than ഥ𝐾0?

❑ This is not trivial…

❑ Now, semileptonic…
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Oscillations of Neutral Mesons

❑ These neutral kaons are produced in the strong
interactions with well defined strangeness, i.e.,
as eigenstates of the 𝒮 operator

𝒮 ۧ𝐾0 = +1 ۧ𝐾0 , 𝒮| ۧഥ𝐾0 = −1| ۧഥ𝐾0

# decays

lifetime

𝐾− + 𝑝 = ഥ𝐾0 + 𝑛

𝐾+ + 𝑛 = 𝐾0 + 𝑝

𝜋− + 𝑝 = Λ0 + 𝐾0

❑ Thus, 𝐾0 is an antiparticle of ഥ𝐾0 and they can be tell apart by the
value of their strangeness!

❑ After production by the strong forces the kaons are unstable and decay
– we can measure their lifetimes. Since they are antiparticles for each
other we expect (the 𝒞𝒫𝒯 theorem) that their masses and lifetimes
are the same!

❑ Instead a remarkable result
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Oscillations of Neutral Mesons

❑ Instead of well defined (single!) lifetime, as expected from a
unique eigenstate of free-particle Hamiltonian, the data indicate
two distinct lifetimes related to both 𝐾0 and ഥ𝐾0

❑ 𝐾0 and ഥ𝐾0 must be superposition of two distinct states with
different lifetimes

❑ We call them 𝐾1
0 (two pion channels) and 𝐾2

0 (three pion channels)

❑ The results found for 𝐾0 and ഥ𝐾0 are then consistent in the sense

that the lifetimes found for both their components 𝐾1
0 and 𝐾2

0 are

the same!

❑ One more thing, since 𝐾0 and ഥ𝐾0 share the same decay channels we
say that they can mix with each other via higher order weak
interactions

❑ Although they are produced as unique states (different S) they
propagate in time as a mixture of states (the same decay channels)

𝜏1 ≈ 0.9 × 10−10 𝑠

𝜏2 ≈ 5.0 × 10−8 𝑠
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Oscillations of Neutral Mesons

❑ To be more precise: 𝐾0 and ഥ𝐾0 are produced as orthogonal states

❑ This orthogonality is then broken by the weak interactions and the
transition 𝐾0 ↔ ഥ𝐾0 is possible – the weak interaction do not
conserve strangeness

❑ 𝐾0 and ഥ𝐾0 are the eigenstates of the strong hamiltonian but
cannot be the eigenstates of the weak interactions!

|𝐾0ۦ ۧഥ𝐾0 = 0 → ൻ𝐾0 𝐻𝑆𝑡𝑟𝑜𝑛𝑔 ۧഥ𝐾0 = 0

𝐻𝑆𝑡𝑟𝑜𝑛𝑔| ۧ𝐾0 = 𝑚𝐾0| ۧ𝐾0 𝐻𝑆𝑡𝑟𝑜𝑛𝑔| ۧഥ𝐾0 = 𝑚ഥ𝐾0| ۧഥ𝐾0

𝑚𝐾0 = 𝑚ഥ𝐾0 ≈ 498 𝑀𝑒𝑉

Kaons can mix!

Fantastic property!
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Oscillations of Neutral Mesons

❑ For the weak interactions we have then

❑ Kaons decay in weak processes, given that 𝐾1
0 and 𝐾2

0 have unique
lifetimes we can treat them as eigenstates of 𝐻𝑊𝑒𝑎𝑘

𝐾0ۦ 𝐻𝑊𝑒𝑎𝑘 ۧഥ𝐾0 ≠ 0

❑ Now quantum physics starts twist our
brains… Since we used the picture where 𝐾0

and ഥ𝐾0 are a mixture of 𝐾1
0 and 𝐾2

0 to
explain the weird lifetime data now we can
say that 𝐾1

0 and 𝐾2
0 are mixture of 𝐾0 and

ഥ𝐾0 - this makes description of the mass
states much nicer!

𝑲𝟏
𝟎

𝑲𝟐
𝟎
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Neutral Mesons and CP

❑ Let’s start with the assumption that 𝒞𝒫 is a good symmetry of the
weak interactions

❑ Kaons are pseudo-scalars, thus, have odd intrinsic parities

❑ Can use appropriate linear orthonormal combinations that are
eigenstates of 𝒞𝒫 operator

𝒞𝒫 ۧ𝐾0 = −𝒞 ۧ𝐾0 = −| ۧഥ𝐾0

𝒞𝒫 ۧഥ𝐾0 = −𝒞 ۧഥ𝐾0 = −| ۧ𝐾0

| ൿ𝐾1
0 =

1

2
| ۧ𝐾0 − | ۧഥ𝐾0

| ൿ𝐾2
0 =

1

2
| ۧ𝐾0 + | ۧഥ𝐾0

𝒞𝒫| ൿ𝐾1
0 =

1

2
𝒞𝒫 ۧ𝐾0 − 𝒞𝒫 ۧഥ𝐾0 =

1

2
−| ۧഥ𝐾0 + | ۧ𝐾0 =

1

2
| ۧ𝐾0 − | ۧഥ𝐾0 = | ൿ𝐾1

0

𝒞𝒫| ൿ𝐾2
0 = ⋯ = −| ൿ𝐾2

0
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Neutral Mesons and CP

❑ Now, 𝐾1
0 and 𝐾2

0 can be regarded as eigenstates of 𝓒𝓟 with even
and odd eigenvalues respectively

❑ One extraordinary thing – cannot define unique strangeness of
these states!

❑ Now can identify them as

❑ Since the phase space (density of states) for two body decay is
much larger than for three body one

❑ The rate of decay for 𝐾1
0 should be much larger than for 𝐾2

0

❑ Or in other words - 𝐾1
0 lifetime should be much shorter than for 𝐾2

0

❑ This is what the experiment showed us. Great!

𝜃0 ≡ 𝐾1
0 → 𝜋0 + 𝜋0

𝜏0 ≡ 𝐾2
0 → 𝜋0 + 𝜋0 + 𝜋0
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Flavour (strangeness) oscillation

❑ Strong interaction gives us kaons with definite strangeness, we
write down the following:

❑ Kaons are produced as eigenstates of strong Hamiltonian
(mixture of weak Hamiltonian states) but propagate through time
as eigenstates of weak one

❑ In time both components of strong states decay away and after a

sufficient amount of time we are going to have only | ൿ𝐾2
0 component

❑ However, since | ൿ𝐾2
0 is a mixture of | ۧ𝐾0 and | ۧഥ𝐾0 states, even

starting from pure | ۧ𝐾0 (or | ۧഥ𝐾0 ) state we end up with a mixture of
states of different strangeness

❑ This phenomenon is called flavour oscillation

| ۧ𝐾0 =
1

2
| ൿ𝐾1

0 + | ൿ𝐾2
0

| ۧഥ𝐾0 = −
1

2
| ൿ𝐾1

0 − | ൿ𝐾2
0
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Flavour (strangeness) oscillation

❑ This effect can be measured! Just need to put the anti-kaons in
some medium and observe them interacting strongly with it
(because strong interaction preserve strangeness!)

❑ Detecting hiperons is a proof of ഥ𝐾0 presence!

❑ Similar oscillation effects for beauty and charm mesons!

ഥ𝐾0 + 𝑝 → Σ+ + 𝜋+ + 𝜋−

ഥ𝐾0 + 𝑝 → Λ0 + 𝜋+ + 𝜋0

𝐾0 + 𝑝 → Σ+ + 𝜋+ + 𝜋−

𝐾0 + 𝑝 → Λ0 + 𝜋+ + 𝜋0
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Violation of CP symmetry

❑ Remember – 𝐾1
0 and 𝐾2

0 are eigenstates of 𝐶𝑃 operator

❑ In other words, if combined parity is conserved, processes such
these below should never happen!

❑ We should not be surprised by the fact that they indeed happen!
An experiment has been performed to study the behaviour of the
long-lived component of 𝐾0, which found them!

❑ So, we are for another redefinition of what the kaons really are…

❑ Because we see clearly that 𝐶𝑃 is broken, thus, we must accept
that neutral kaons are not composed out of 𝐾1

0 and 𝐾2
0

❑ The new states are called 𝑲𝑺
𝟎 and 𝑲𝑳

𝟎 instead…

𝒞𝒫| ൿ𝐾1
0 =

1

2
𝒞𝒫 ۧ𝐾0 − 𝒞𝒫 ۧഥ𝐾0 =

1

2
−| ۧഥ𝐾0 + | ۧ𝐾0 =

1

2
| ۧ𝐾0 − | ۧഥ𝐾0 = | ൿ𝐾1

0

𝐾2
0 → 𝜋0 + 𝜋0

𝐾2
0 → 𝜋+ + 𝜋−
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Violation of CP symmetry

❑ This may come as yet another surprise, but the effect is very
weak, the fractional branching ratios measured are of order of 0.1%

❑ Taking into account life-times of both 𝐾𝑆
0 and 𝐾𝐿

0 one can show that

❑ Ok – a small resume…

❑ 𝑪𝑷 is indeed violated

❑ The effect is tiny (not so tiny for beauty decays though…)

❑ Matter and anti-matter are not symmetrical

❑ 𝐶𝑃 , apart from small number of weak processes involving
neutral mesons, is conserved

𝐾𝐿
0 → 𝜋+ + 𝜋−

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 2.0 × 10−3
𝐾𝐿
0 → 𝜋0 + 𝜋0

𝐾𝐿
0 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

≈ 9.0 × 10−4

Γ 𝐾𝐿
0 → 2𝜋

Γ 𝐾𝑆
0 → 2𝜋

≈ 10−6
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Kaons revisited

❑ What we did was an attempt to describe time evolution of kaons
which are produced as strong Hamiltonian e-states that, in turn,
decay as weak e-states: 𝐾0, ഥ𝐾0 → 𝐾1

0, 𝐾2
0

❑ This fails because 𝐾1
0 and 𝐾2

0 are e-states of 𝑪𝑷, so we need new

particles, namely 𝐾𝑆
0 and 𝐾𝐿

0 that have the necessary behavior of 𝐾1
0

and 𝐾2
0 (i.e., long and short life-time) but are not 𝐶𝑃 e-states

❑ One remark – since the violation
effect is small – this would be a
hint that these new states are
almost identical to 𝐾1

0 and 𝐾2
0

𝑲𝟏
𝟎

𝑲𝟐
𝟎

𝑲𝑺
𝟎

𝑲𝑳
𝟎
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Kaons revisited

❑ One remark – since the violation effect is small – this would be a
hint that these new states are almost identical to 𝐾1

0 and 𝐾2
0

| ൿ𝐾𝑆
0 =

1

2 1 + 𝜖 2
1 + 𝜖 ۧ𝐾0 − 1 − 𝜖 ۧഥ𝐾0 =

=
1

2 1 + 𝜖 2
| ۧ𝐾0 − | ۧഥ𝐾0 + 𝜖 | ۧ𝐾0 + | ۧഥ𝐾0 =

=
1

1 + 𝜖 2
| ൿ𝐾1

0 + 𝜖| ൿ𝐾2
0

| ൿ𝐾𝐿
0 =

1

2 1 + 𝜖 2
1 + 𝜖 ۧ𝐾0 + 1 − 𝜖 ۧഥ𝐾0 =

=
1

2 1 + 𝜖 2
| ۧ𝐾0 + | ۧഥ𝐾0 + 𝜖 | ۧ𝐾0 − | ۧഥ𝐾0 =

=
1

1 + 𝜖 2
| ൿ𝐾2

0 + 𝜖| ൿ𝐾1
0
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Kaons Revisited

❑ How should we thing about what is going on…, so,…

❑ The transitions |2𝜋|𝐻𝑤ۦ ൿ𝐾𝐿
0 violate 𝐶𝑃 invariance. This can happen:

❑ because the e-states of the weak Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, are

not e-states of the 𝐶𝑃 operator

❑ we say, that the physical states are mixtures of 𝑪𝑷-even and
𝑪𝑷-odd components

❑ In other words – we observe small violation of 𝐶𝑃 in 𝐾𝐿
0 → 2𝜋

decays, because of small admixture of 𝐾1
0

❑ this type of violation is called indirect, and implies, that the
Hamiltonian itself is even under 𝐶𝑃 symmetry

❑ again… to add confusion, it turns out that the direct violation is
also possible for kaons (i.e., violation induced via the weak

Hamiltonian) |2𝜋|𝐻𝑤ۦ ൿ𝐾2
0 ≠ 0

❑ But that is another story…
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Measure of CP-violation

❑ How can we express the degree of 𝐶𝑃-violation?

| ൿ𝐾𝑆
0 =

1

1 + 𝜖 2
| ൿ𝐾1

0 + 𝜖| ൿ𝐾2
0 | ൿ𝐾𝐿

0 =
1

1 + 𝜖 2
| ൿ𝐾2

0 + 𝜖| ൿ𝐾1
0

𝜖 represents deviation of 𝐾𝑆
0 and 𝐾𝐿

0 from true 𝐶𝑃
e-states (in general this is complex number!)

𝒞𝒫| ൿ𝐾𝑆
0 =

1

1 + 𝜖 2
𝒞𝒫 ൿ𝐾1

0 + 𝜖𝒞𝒫 ൿ𝐾2
0 =

1

1 + 𝜖 2
ൿ𝐾1

0 − 𝜖 ൿ𝐾2
0 ≠ | ൿ𝐾𝑆

0

𝒞𝒫| ൿ𝐾𝐿
0 =

1

1 + 𝜖 2
𝒞𝒫 ൿ𝐾2

0 + 𝜖𝒞𝒫 ൿ𝐾1
0 =

1

1 + 𝜖 2
− ൿ𝐾1

0 + 𝜖 ൿ𝐾2
0 ≠ −| ൿ𝐾𝐿

0

𝐾𝐿
0 𝐾𝑆

0 =
1

1 + 𝜖 2 ൻ𝐾2
0| + 𝜖∗ൻ𝐾1

0| ൿ𝐾1
0 + 𝜖 ൿ𝐾2

0 =

1

1 + 𝜖 2 𝜖 𝐾2
0 𝐾2

0 + 𝜖∗ 𝐾1
0 𝐾1

0 =
𝜖 + 𝜖∗

1 + 𝜖 2 =
2𝑅𝑒(𝜖)

1 + 𝜖 2 = 𝐾𝑆
0 𝐾𝐿

0

𝐾𝑆
0 and 𝐾𝐿

0 are not orthogonal states!
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Measure of CP-violation

❑ Lack of orthogonality of 𝐾𝑆
0 and 𝐾𝐿

0 is expected – both of them

share the same decay channels

❑ This effect is at the same time a measure of 𝐶𝑃-violation via 𝝐

❑ In this picture the symmetry violation is a consequence of small
admixture of 𝐾1

0 state into the 𝐾𝐿
0, so, we observe its decays to 2𝜋

final state because the 𝐾1
0 can decay into it – once again this is

indirect process

❑ These kind of processes are referred to as 𝜟𝑺 = 𝟐, 𝜟𝑰 =
𝟏

𝟐
transitions

❑ Much smaller direct contribution to 𝐶𝑃-violation is a consequence of
the weak Hamiltonian having a 𝑪𝑷-violating term (it does not
commute with the 𝐶𝑃 operator)

❑ These kind of processes proceed via 𝜟𝑺 = 𝟏, 𝜟𝑰 =
𝟑

𝟐
transitions and

are called penguin (or loop) decays



22

Time Evolution of the Kaon System

❑ A phenomenological „effective” theoretical framework has been
introduced to describe what is going on with kaons produced in
strong interactions

❑ It is based on perturbation theory and describe the behavior of such
system in terms of an effective Hamiltonian

❑ We start with describing kaons in the absence of weak interactions

❑ In this case 𝐾0 and ഥ𝐾0 are distinct e-states of the strong
Hamiltonian

❑ Since the strong interactioins respect conservation of
strangeness these are stationary states!

| ۧ𝐾0 =
1
0

| ۧഥ𝐾0 =
0
1

Base vectors in 2-dim Hilbert space

| ۧ𝜓 =
1

𝑎2 + 𝑏2
𝑎 ۧ𝐾0 + 𝑏 ۧഥ𝐾0 =

1

𝑎2 + 𝑏2

𝑎
𝑏
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Time Evolution of the Kaon System

❑ Oh, well, unfortunately weak interaction cannot be switched off and
the kaons do decay

❑ Theory offers two approaches to attack this problem

❑ We could expand the 2-dim Hilbert space and take into account
all the possible final states

❑ or…, we could stay in the 2-dim space and introduce effective
Hamiltonian that is responsible for the kaons disintegration

❑ Usually the later option is picked up!

❑ Now, the leap to the Schrodinger equation describing two state
system with the effective Hamiltonian is done by noticing that we
no longer deal with stationary states – they can decay

❑ The consequence is that the Hamiltonian is no longer a Hermitian
operator – the probability is no longer conserved for decaying
states!
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Effective Hamiltonian

𝑖ℏ
𝜕| ۧ𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓| ۧ𝜓 𝑡

Complex 2 × 2 matrix 

ℋ𝑒𝑓𝑓 = ℳ −
𝑖

2
Γ

ℳ =
1

2
ℋ𝑒𝑓𝑓 +ℋ𝑒𝑓𝑓

† , Γ = 𝑖 ℋ𝑒𝑓𝑓 −ℋ𝑒𝑓𝑓
†

ℳ =ℳ† → ℳ𝑖𝑗 = ℳ𝑗𝑖
∗

Γ = Γ† → Γ𝑖𝑗 = Γ𝑗𝑖
∗Both Hermitian

❑ Mass matrix – its e-values represents masses of the states in their
CM frame (real parts of the energy levels)

❑ Decay matrix – introduced to describe decay characteristics of the
system



25

Effective Hamiltonian

❑ The main purpose here is to provide explicit form of the ℋ𝑒𝑓𝑓, and

one can start from writing down the ℋ𝑒𝑓𝑓 matrix in the most generic

form

❑ Next, let’s express the e-states of the effective Hamiltonian in
terms of our base states of the strong interactions

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐷

𝐾0 ℋ𝑒𝑓𝑓 𝐾
0 = 𝐴 ഥ𝐾0 ℋ𝑒𝑓𝑓

ഥ𝐾0 = 𝐷 = 𝐴

𝒞𝒫𝒯 theorem states that the masses of 
𝐾0 and ഥ𝐾0 must be the same

ℋ𝑒𝑓𝑓 =
𝐴 𝐵
𝐶 𝐴

The most generic form of the ℋ𝑒𝑓𝑓

consistent with 𝒞𝒫𝒯 theorem
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Effective Hamiltonian and its e-states

| ൿ𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝 ۧ𝐾0 + 𝑞 ۧഥ𝐾0 =

1

𝑝 2 + 𝑞 2

𝑝
𝑞

| ൿ𝐾𝐿
0 =

1

𝑟 2 + 𝑠 2
𝑟 ۧ𝐾0 + 𝑠 ۧഥ𝐾0 =

1

𝑟 2 + 𝑠 2

𝑟
𝑠

𝑝, 𝑞, 𝑟, 𝑠 are complex numbers defining

the decomposition of 𝐾𝑆
0 and 𝐾𝐿

0

❑ e-states of the effective Hamiltonian, 𝐾𝑆
0 and 𝐾𝐿

0, have e-values in

their CM frame as follow:

𝑚𝑆 −
𝑖

2
𝛾𝑆, 𝑚𝐿−

𝑖

2
𝛾𝐿

ℋ𝑒𝑓𝑓 ൿ𝐾𝑆
0 = 𝑚𝑆 −

𝑖

2
𝛾𝑆 ൿ𝐾𝑆

0 (∗)

ℋ𝑒𝑓𝑓| ൿ𝐾𝐿
0 = 𝑚𝐿 −

𝑖

2
𝛾𝐿 | ൿ𝐾𝐿

0

masses of the e-states widths of the e-states
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Effective Hamiltonian and its e-states

❑ So, the e-states of the effective Hamiltonian are:

❑ We can now express the parameters 𝑝, 𝑞 in terms of 𝜖

❑ And the strong e-states can be written as:

| ൿ𝐾𝑆
0 =

1

𝑝 2 + 𝑞 2
𝑝 ۧ𝐾0 + 𝑞 ۧഥ𝐾0

| ൿ𝐾𝐿
0 =

1

𝑝 2 + 𝑞 2
𝑝 ۧ𝐾0 − 𝑞 ۧഥ𝐾0

p = 1 + ϵ, 𝑞 = − 1 − 𝜖

| ۧ𝐾0 =
𝑝 2 + 𝑞 2

2𝑝
| ൿ𝐾𝑆

0 + | ൿ𝐾𝐿
0

| ۧഥ𝐾0 =
𝑝 2 + 𝑞 2

2𝑞
| ൿ𝐾𝑆

0 − | ൿ𝐾𝐿
0
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Effective Hamiltonian and its e-states

❑ 𝐾𝑆
0 and 𝐾𝐿

0 are the e-states of the ℋ𝑒𝑓𝑓, thus, the solutions of our

Schrodinger equation are

❑ These states decay with the lifetimes

❑ Note! Unlike 𝐾0 and ഥ𝐾0 the e-states of ℋ𝑒𝑓𝑓 - 𝐾𝑆
0 and 𝐾𝐿

0 are not

each other’s antiparticle! Thus, 𝑚𝑆 ≠ 𝑚𝐿 and 𝜏𝑆 ≠ 𝜏𝐿

❑ Awesome!

| ൿ𝐾𝑆
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

| ൿ𝐾𝑆
0

| ൿ𝐾𝐿
0 𝑡 = 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

| ൿ𝐾𝐿
0

𝑖ℏ
𝜕| ۧ𝜓 𝑡

𝜕𝑡
= ℋ𝑒𝑓𝑓| ۧ𝜓 𝑡

𝜏𝑆 =
ℏ

𝛾𝑆
= 0.9 × 10−10 𝑠 𝜏𝐿 =

ℏ

𝛾𝐿
= 5.0 × 10−8 𝑠
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Time Evolution Final! 

❑ Finally we are able to write down equations that govern the time
evolution of kaons, let’s assume that we start with a pure beam of
𝐾0

| ۧ𝐾0 𝑡 =
𝑝 2 + 𝑞 2

2𝑝
| ൿ𝐾𝑆

0(𝑡) + | ൿ𝐾𝐿
0(𝑡) =

𝑝 2 + 𝑞 2

2𝑝
𝑒
−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

| ൿ𝐾𝑆
0 + 𝑒

−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

| ൿ𝐾𝐿
0 =

𝑝 2 + 𝑞 2

2𝑝
𝑒
−
𝑖
ℏ
𝑚𝑆−

𝑖
2
𝛾𝑆 𝑡 1

𝑝 2 + 𝑞 2
𝑝 ۧ𝐾0 + 𝑞 ۧഥ𝐾0 + 𝑒

−
𝑖
ℏ
𝑚𝐿−

𝑖
2
𝛾𝐿 𝑡 1

𝑝 2 + 𝑞 2
𝑝 ۧ𝐾0 − 𝑞 ۧഥ𝐾0 =

1

2𝑝
𝑝 𝑒

−
𝑖
ℏ
𝑚𝑆−

𝑖
2
𝛾𝑆 𝑡

+ 𝑒
−
𝑖
ℏ
𝑚𝐿−

𝑖
2
𝛾𝐿 𝑡

| ۧ𝐾0 +

+
1

2𝑝
𝑝 𝑒

−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

− 𝑒
−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

| ۧഥ𝐾0
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Time Evolution Final! 

❑ So, the probability of finding 𝐾0 in the beam at some time 𝑡 is:

❑ And by analogy one can calculate the same for ഥ𝐾0

𝑃 𝐾0, 𝑡 = 𝐾0 𝐾0 𝑡 2 =
1

4
𝑒
−
𝑖
ℏ 𝑚𝑆−

𝑖
2𝛾𝑆 𝑡

+ 𝑒
−
𝑖
ℏ 𝑚𝐿−

𝑖
2𝛾𝐿 𝑡

2

=
1

4
𝑒
−
𝛾𝑆𝑡
ℏ + 𝑒

−
𝛾𝐿𝑡
ℏ + 𝑒

−
1
2ℏ

𝛾𝑆+𝛾𝐿 𝑡
× 2𝑐𝑜𝑠 𝑚𝐿 −𝑚𝑆

𝑡

ℏ

=
1

4
𝑒
−

𝑡
𝜏𝑆 +

1

4
𝑒
−

𝑡
𝜏𝐿 +

1

2
𝑒
−

1
𝜏𝑆
+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

𝑃 ഥ𝐾0, 𝑡 = ഥ𝐾0 𝐾0 𝑡 2

=
𝑞

𝑝

2
1

4
𝑒
−

𝑡
𝜏𝑆 +

1

4
𝑒
−

𝑡
𝜏𝐿 −

1

2
𝑒
−

1
𝜏𝑆
+
1
𝜏𝑆

𝑡
𝑐𝑜𝑠

Δ𝑚𝑡

ℏ

Δ𝑚 = 𝑚𝐿 −𝑚𝑆 ≈ 3.5 × 10−12 𝑀𝑒𝑉

Mass difference is
not zero!!
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Time Evolution Final! 

❑ The mass splitting of the weak Hamiltonian e-states can be
translated into mass splitting of the strong interactions

❑ Very precise test of 𝒞𝒫𝒯 symmetry

❑ Using our theoretical framework we could

also estimate the prob. of observing weak

e-states in the beam as a function of time

❑ By studying the number of decays as a

function of the proper time one can observe

QM interference in the 2𝜋 decay modes of

the 𝐾𝑆
0 and 𝐾𝐿

0

𝑚𝐾0 −𝑚ഥ𝐾0 < 10−18 𝑚𝐾0

𝑲𝑺,𝑳
𝟎 → 𝝅+ + 𝝅−
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Next time…

❑ Analogical calculations can be done for beauty mesons

❑ We are going to derive selected results presented today during our
tutorial sessions (2 or 3 weeks time)


