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Introduction, i.e., the Big Picture

 What seems to be the trouble? Well, there is something wrong
with the Universe we know…

 If matter and anti-matter are always produced in the same
amount why do not we see any anti-matter left after the Big
Bang (BB)?

 We know that the Universe is not empty…

 but…, the Universe is almost empty! For each 10 ∙ 109 𝑞 and
10 ∙ 109  𝑞 created in the BB ONE! 𝒒 survived

 How bizarre…

𝑵𝑩𝒂𝒓𝒚𝒐𝒏𝒔

𝑵𝑷𝒉𝒐𝒕𝒐𝒏𝒔
≈ 𝟏𝟎−𝟏𝟎
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Introduction, i.e., the Big Picture

 The way to attack this problem in HEP is to understand

 What the Universe is built of – „matter particles”

 How these matter particles interact – forces (also particles…)

 The most successful recipe is the Standard Model which is based
on principle of gauge invariance = symmetry

 In other words – forces are consequence of various symmetries,
in order to study them we need to understand their invariance
principles

 Let check this out – familiar example – energy conservation
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Introduction, i.e., the Big Picture

 The way to attack this problem in HEP is to understand

 What the Universe is built of – „matter particles”

 How these matter particles interact – forces (also particles…)

 The most successful recipe is the Standard Model which is based
on principle of gauge invariance = symmetry

 In other words – forces are consequence of various symmetries,
in order to study them we need to understand their invariance
principles

 Let check this out – familiar example – energy conservation

Macroscopic (classic) gravity force is invariant under time
translation

Symmetry w.r.t. time translations = conservation of Energy
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Introduction, i.e., the Big Picture

 The way to attack this problem in HEP is to understand

 What the Universe is built of – „matter particles”

 How these matter particles interact – forces (also particles…)

 The most successful recipe is the Standard Model which is based
on principle of gauge invariance = symmetry

 In other words – forces are consequence of various symmetries,
in order to study them we need to understand their invariance
principles

 Let check this out – and not so familiar example…

Invariance w.r.t. arbitrary change of a wave function phase –
electric charge conservation (gauge transformation)

Absolute phase of a quantum state cannot be measured



6

Introduction, i.e., the Big Picture

 There is more… Discrete symmetries! 𝓒,𝓟,𝓣

 𝓒 – particle anti-particle conjugation (change sign of all additive
quantum numbers…, eh, not quite classical…)

 𝓟 – mirror symmetry (reflection in a plane mirror and a rotation
by 180𝑜)

 𝓣 – time reversal (formal reversing the sign of the time axis)

 Known and used in classical physics for quite some time, regarded
as just something curies (quantum physics made them great!)

 Classical physics treats time and charge conjugations as trivial

 More interesting stuff going on with the parity

𝒫 𝑟 → − 𝑟

Polar vector

 𝑣 =
𝑑 𝑟

𝑑𝑡
,  𝑝 = 𝑚  𝑣,  𝐹 =

𝑑  𝑝

𝑑𝑡
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Introduction, i.e., the Big Picture

 𝐹𝐿 = 𝑞 𝐸 +  𝑣 × 𝐵 → 𝒫  𝐹𝐿 = −  𝐹𝐿 → 𝒫𝐵 = 𝐵

Axial vector

 Already within the framework of the classical physics we can have
four classes of quantities with different behavior under parity
transformation

 Scalars (𝑚)

 (Polar) Vectors (  𝑝,  𝐹)

 Pseudo-scalars (e.g., 𝐸 ∙ 𝐵)

 (Axial Vectors) Pseudo-vectors (𝐵, 𝐿)

 Nice, but let’s see what the quantum theory does for us…
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Introduction, i.e., the Big Picture

 𝓒 – formally changes a field 𝜙 into a related one 𝜙†, the latter one

has just all its additive quantum numbers with opposite signs

 Charge

 Lepton number

 Barion number

 …

 We know based on experimental work that the invariance under 𝒞
transformation always holds for the strong and e-m interactions

 Cannot distinguish between matter and anti-matter using any
observable related to strong or e-m forces!
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Introduction, i.e., the Big Picture

 𝓟 – parity invariance regarded as „common sense”, why physics
would distinguish between the real and mirror worlds? No way…

 But, we got so called 𝜃 − 𝜏 puzzle (see the previous lecture)

 To deal with it, the theorists realised that the weak interactions
must be described by quantities that are mixture of vectors and
pseudo-vectors (V-A theory)!

 That was a huge step forward in getting to the SM

 Now this may lead to quantities that will behave as pseudo-
scalars under parity transformation, thus…

 the difference between the real and mirror world!
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Introduction, i.e., the Big Picture

 So, what such pseudo-scalar observable would look like? Meet
the fantastic helicity! (Well, meet it the second time, see the last
lecture…)

H=+1 (“right-handed”)

H=-1 (“left-handed”)            

𝐻 =
 𝑠 ∙  𝑝

 𝑠 ∙  𝑝
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Introduction, i.e., the Big Picture

 Now, how this new „handedness” observable make things exciting?

 Lederman experiment: 𝜋+ → 𝜇+ + 𝜈𝜇, 𝜋
− → 𝜇− +  𝜈𝜇

Spin „0” Always opposite spin 

alignment
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Introduction, i.e., the Big Picture

 Now, how this new „handedness” observable make things exciting?

 Lederman experiment: 𝜋+ → 𝜇+ + 𝜈𝜇, 𝜋
− → 𝜇− +  𝜈𝜇

 Note! Helicity of muon always the same as that for neutrino

Spin „0” Always opposite spin 

alignment

𝓒 𝓒

𝓟

𝓟
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Introduction, i.e., the Big Picture

 Now, how this new „handedness” observable make things exciting?

 Lederman experiment: 𝜋+ → 𝜇+ + 𝜈𝜇, 𝜋
− → 𝜇− +  𝜈𝜇

 Maximal (100%) violation of parity and charge conjugation!

 CP seems to be good symmetry (matter – anti-matter)

Spin „0” Always opposite spin 

alignment

𝓒 𝓒

𝓟

𝓟
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A Small Detour – Parity Operator

 𝓟 – operator and its eigenstates

 Two successive parity transformation leave a vector unchanged

 this gives us:

 this is known fact – parity operator eigenvalues can only be ±1

 So, for any parity invariant Hamiltonian the following is true:

 If both operators commute the eigenstates of the Hamiltonian are also
eigenstates of parity operator with eigenvalues of either +1 or −1

 Since wave function transforms under parity as follow: 𝒫𝛼 𝑟 = 𝛼 −𝑟 , this

implies that any stationary eigenstates of parity invariant Hamiltonian have
definite parity!

 We call them odd and even states

𝒫 𝑟 → − 𝑟, 𝒫 − 𝑟 →  𝑟

𝒫 𝒫  𝛼 = 𝒫2  𝛼 = +1|  𝛼

𝒫,  𝐻 = 0
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Oscillations of Neutral Mesons

 We saw that the weak interactions maximally violate charge and
space parities

 Also, there was a hint that the combined symmetry 𝒞𝒫 may be
exact one

 Invariance under 𝒞𝒫 implies matter – anti-matter symmetry

 Ok, wait a moment… we know this is not true! Just look out in the
night! The Universe is dominated by matter…

 So, 𝒞𝒫 cannot be the exact symmetry of the Universe! Are there
any hints regarding breaking the combined symmetry?

 Let’s have a look at 𝜃 − 𝜏 puzzle again…

𝜃0 → 𝜋0 + 𝜋0

𝜃0 → 𝜋+ + 𝜋−

𝜏0 → 𝜋0 + 𝜋0 + 𝜋0

𝜏0 → 𝜋+ + 𝜋− + 𝜋0
What is the 

connection with 

neutral Kaons?

𝐾− + 𝑝 =  𝐾0 + 𝑛

𝐾+ + 𝑛 = 𝐾0 + 𝑝

𝜋− + 𝑝 = Λ0 + 𝐾0
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Oscillations of Neutral Mesons

 The real questions here:

 How 𝜃0, 𝜏0 are related to 𝐾0,  𝐾0 ?

 Are 𝐾0 different than  𝐾0?

 This is not trivial…

 Using purely hadronic and leptonic decays, we cannot distinguish
them…
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Oscillations of Neutral Mesons

 The real questions here:

 How 𝜃0, 𝜏0 are related to 𝐾0,  𝐾0 ?

 Are 𝐾0 different than  𝐾0?

 This is not trivial…

 Now, semileptonic…
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Oscillations of Neutral Mesons

 These neutral kaons are produced in the strong interactions with
well defined strangeness, i.e., as eigenstates of the 𝒮 operator

 Thus, 𝐾0 is an antiparticle of  𝐾0 and they can be tell apart by the
value of their strangeness!

 After production by the strong forces the kaons are unstable and
decay – we can measure their lifetimes. Since they are antiparticles
for each other we expect (the 𝒞𝒫𝒯 theorem) that their masses and
lifetimes are the same!

 Instead a remarkable result

𝒮  𝐾0 = +1  𝐾0 , 𝒮|   𝐾0 = +1|   𝐾0

# decays

lifetime
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Oscillations of Neutral Mesons

 Instead of well defined (single!) lifetime, as expected from a
unique eigenstate of free-particle Hamiltonian, the data indicate
two distinct lifetimes related to both 𝐾0 and  𝐾0

 𝐾0 and  𝐾0 must be superposition of two distinct states with
different lifetimes

 We call them 𝐾1
0 (two pion channels) and 𝐾2

0 (three pion channels)

 The results found for 𝐾0 and  𝐾0 are then consistent in the sense

that the lifetimes found for both their components 𝐾1
0 and 𝐾2

0 are

the same!

 One more thing, since 𝐾0 and  𝐾0 share the same decay channels we
say that they can mix with each other via higher order weak
interactions

 Although they are produced as unique states (different S) they
propagate in time as a mixture of states (the same decay channels)

𝜏1 ≈ 0.9 × 10−10 𝑠

𝜏2 ≈ 5.0 × 10−8 𝑠
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Oscillations of Neutral Mesons

 To be more precise: 𝐾0 and  𝐾0 are produced as orthogonal states

 This orthogonality is then broken by the weak interactions and the
transition 𝐾0 ↔  𝐾0 is possible – the weak interaction do not
conserve strangeness

 𝐾0 and  𝐾0 are the eigenstates of the strong hamiltonian but
cannot be the eigenstates of the weak interactions!

 𝐾0|   𝐾0 = 0 →  𝐾0 𝐻𝑆𝑡𝑟𝑜𝑛𝑔   𝐾0 = 0

𝐻𝑆𝑡𝑟𝑜𝑛𝑔|  𝐾0 = 𝑚𝐾0|  𝐾0 𝐻𝑆𝑡𝑟𝑜𝑛𝑔|   𝐾0 = 𝑚 𝐾0|   𝐾0

𝑚𝐾0 = 𝑚 𝐾0 ≈ 498 𝑀𝑒𝑉

Kaons can mix!

Fantastic property!
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Oscillations of Neutral Mesons

 For the weak interactions we have then

 Kaons decay in weak processes, given that 𝐾1
0 and 𝐾2

0 have unique
lifetimes we can treat them as eigenstates of 𝐻𝑊𝑒𝑎𝑘

 Now quantum physics starts twist our brains… Since we used the
picture where 𝐾0 and  𝐾0 are a mixture of 𝐾1

0 and 𝐾2
0 to explain the

weird lifetime data now we can say that 𝐾1
0 and 𝐾2

0 are mixture of
𝐾0 and  𝐾0 - this makes description of the mass states much nicer!

 Just follow to the next slide…

 𝐾0 𝐻𝑊𝑒𝑎𝑘   𝐾0 ≠ 0
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Neutral Mesons and CP

 Let’s start with the assumption that 𝒞𝒫 is a good symmetry of the
weak interactions

 Kaons are pseudo-scalars, thus, have odd intrinsic parities

 Can use appropriate linear orthonormal combinations that are
eigenstates of 𝒞𝒫 operator

𝒞𝒫  𝐾0 = −𝒞  𝐾0 = −|   𝐾0

𝒞𝒫   𝐾0 = −𝒞   𝐾0 = −|  𝐾0

|  𝐾1
0 =

1

2
|  𝐾0 − |   𝐾0

|  𝐾2
0 =

1

2
|  𝐾0 + |   𝐾0

𝒞𝒫|  𝐾1
0 =

1

2
𝒞𝒫  𝐾0 − 𝒞𝒫   𝐾0 =

1

2
−|   𝐾0 + |  𝐾0 =

1

2
|  𝐾0 − |   𝐾0 = |  𝐾1

0

𝒞𝒫|  𝐾2
0 = ⋯ = −|  𝐾2

0
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Neutral Mesons and CP

 Now, 𝐾1
0 and 𝐾2

0 can be regarded as eigenstates of 𝓒𝓟 with even
and odd eigenvalues respectively

 One extraordinary thing – cannot define unique strangeness of
these states!

 Now can identify them as

 Since the phase space (density of states) for two body decay is
much larger than for three body one

 The rate of decay for 𝐾1
0 should be much larger than for 𝐾2

0

 Or in other words - 𝐾1
0 lifetime should be much shorter than for 𝐾2

0

 This is what the experiment showed us. Great!

𝜃0 = 𝐾1
0 → 𝜋0 + 𝜋0

𝜏0 = 𝐾2
0 → 𝜋0 + 𝜋0 + 𝜋0
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Flavour (strangeness) oscillation

 Strong interaction gives us kaons with definite strangeness, we
write down the following:

 Kaons are produced as eigenstates of strong Hamiltonian
(mixture of weak Hamiltonian states) but propagate through time
as eigenstates of weak one

 In time both components of strong states decay away and after a

sufficient amount of time we are going to have only |  𝐾2
0 component

 However, since |  𝐾2
0 is a mixture of |  𝐾0 and |   𝐾0 states, even

starting from pure |  𝐾0 (or |   𝐾0 ) state we end up with a mixture of
states of different strangeness

 This phenomenon is called flavour oscillation

|  𝐾0 =
1

2
|  𝐾1

0 + |  𝐾2
0

|   𝐾0 = −
1

2
|  𝐾1

0 − |  𝐾2
0
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Flavour (strangeness) oscillation

 This effect can be measured! Just need to put the anti-kaons in
some medium and observe them interacting strongly with it
(because strong interaction preserve strangeness!)

 Detecting hiperons is a proof of  𝐾0 presence!

 Similar oscillation effects for beauty and charm mesons!

 𝐾0 + 𝑝 → Σ+ + 𝜋+ + 𝜋−

 𝐾0 + 𝑝 → Λ0 + 𝜋+ + 𝜋0

𝐾0 + 𝑝 → Σ+ + 𝜋+ + 𝜋−

𝐾0 + 𝑝 → Λ0 + 𝜋+ + 𝜋0
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Next time…

 Discovering CP-violation

 Framework to the quantitative description of CPV

 CKM matrix – flavour and mass states


