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Last time on CPV
 Symmetries are incredibly useful in building theories – strong 

constraints on possible scenarios

 Central place here belongs to the unitary transformations
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| ۧ𝜓 → ۧ𝜓′ = 𝒰 ۧ𝜓

𝒰†𝒰 = 𝒰𝒰† = 1

𝝍𝟏 𝓞 𝝍𝟐 → 𝜓1
′ 𝒪 𝜓2

′
𝑆 = 𝝍𝟏 𝓤

†𝓞𝓤 𝝍𝟐

𝓞,𝓤 = 𝟎

𝜓 𝒰†𝒰𝒪 𝜓
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Last time on CPV…
 Symmetries are incredibly useful in building theories – strong 

constraints on possible scenarios

 Central place here belongs to the unitary transformations

One conclusion of paramount meaning – if 𝒰 is going to be a 

symmetry of a system the following must be always true

| ۧ𝜓 → ۧ𝜓′ = 𝒰 ۧ𝜓

𝒰†𝒰 = 𝒰𝒰† = 1

𝝍𝟏 𝓞 𝝍𝟐 → 𝜓1
′ 𝒪 𝜓2

′
𝑆 = 𝝍𝟏 𝓤

†𝓞𝓤 𝝍𝟐

𝓞,𝓤 = 𝟎

𝜓 𝒰†𝒰𝒪 𝜓

𝓤,𝓗 = 𝟎

𝓤†𝓗𝓤 = 𝓗
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Last time on CPV…
What is also awesome, is that we can connect unitary 

symmetry transformations with group theory

For the continuous transformations we can write the 

related operators in a form

If 𝒰 is unitary, then 𝒢𝑙 must be Hermitian and we 

call it the transformation’s generator

So, 𝒰 being the symmetry implies conservation of 

group generators

𝒰 𝛼1, 𝛼2, … , 𝛼𝑛 = 𝑒𝑥𝑝 ෍
𝑙
𝑖𝛼𝑙𝒢𝑙

𝓖,𝓗 = 𝟎
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Last time on CPV…
Now the parity is one tough cookie…

| ۧ𝝍 → ۧ𝝍′ = 𝓟 ۧ𝝍 ,𝓟†𝓟 = 𝟏

𝜓′ 𝒳 𝜓′ = (𝒫𝜓) 𝒳𝒫 𝜓 = 𝜓 𝒫†𝒳𝒫 𝜓 = − 𝜓 𝒳 𝜓

𝓟†𝓧𝓟 = −𝓧
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Last time on CPV…
Now the parity is one tough cookie…

Now the same trick with momentum is not that easy…

Need some doing to show that:

| ۧ𝝍 → ۧ𝝍′ = 𝓟 ۧ𝝍 ,𝓟†𝓟 = 𝟏

𝜓′ 𝒳 𝜓′ = (𝒫𝜓) 𝒳𝒫 𝜓 = 𝜓 𝒫†𝒳𝒫 𝜓 = − 𝜓 𝒳 𝜓

𝓟†𝓧𝓟 = −𝓧

𝒫δ𝒟𝑥 = 𝛿𝒟−𝑥𝒫 → δ𝒟𝑥 = 1 −
𝑖

ℏ
𝑑𝑥𝓅𝑥

𝓟,𝒑 = 𝟎 → 𝓟†𝒑𝓟 = −𝒑
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Last time on CPV…
Even worse… for a particle to be an e-state of the 

parity operator it must be at rest!

Thus, we define the intrinsic parity
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Last time on CPV…
Even worse… for a particle to be an e-state of the 

parity operator it must be at rest!

Thus, we define the intrinsic parity

All in all, we have the following rules and naming

convention

𝓟†𝓧𝓟 = −𝓧

𝓟†𝒑𝓟 = −𝒑

𝓟†Ԧ𝑱𝓟 = Ԧ𝑱

𝓟†𝒙 ⋅ 𝒑𝓟 = −𝒙 ⋅ −𝒑 = 𝒙 ⋅ 𝒑

𝓟†𝒙 ⋅ 𝑺𝓟 = −𝒙 ⋅ 𝑺 = −𝒙 ⋅ 𝑺

Vector

Vector

Pseudo-Vector

Scalar

Pseudo-Scalar
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And now the conclusions…
Today:

 Charge parity as unitary operator

 Bilinear forms (with spinors) and why they matter so much 

(Lagrangian scalars)

 C and P transformations of the bi-linears

 Current current representation of the weak interactions



Charge conjugation
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 As we can guess, 𝒞, is a unitary operator that changes particle into its 

antiparticle (and vice-versa). Since 𝒞 reverses not only the charge but also 

a lot of other quantum numbers it is somewhat more appropriate to call 

it charge parity operation

 It does not affect momentum, spin or helicity

 Similar to the parity, when applying 𝒞 twice we need to arrive at the same 

state:

 So, as a consequence of unitarity these guys must be phase factors

𝒞 ۧ𝜓 𝑝, 𝜆 = 𝑐𝜓 ൿത𝜓 𝑝, 𝜆 , 𝑝 = 𝐸, Ԧ𝑝 , 𝜆 = Ԧ𝑠 ∙ Ԧ𝑝0

𝒫 ۧ𝜓 𝑝, 𝜆 = 𝑝𝜓 ۧ𝜓 ෤𝑝, −𝜆 , ෤𝑝 = 𝐸, − Ԧ𝑝

𝒞2 = 1: 𝒞 = 𝒞−1 = 𝒞†

ۧ𝜓 = 𝒞2 ۧ𝜓 = 𝑐𝜓𝒞| ൿത𝜓 = 𝑐𝜓𝑐ഥ𝜓| ۧ𝜓

𝑐𝜓𝑐ഥ𝜓 = 1

𝑐𝜓 = 𝑒𝑖𝜑𝑐 , 𝑐ഥ𝜓 = 𝑒−𝑖𝜑𝑐 = 𝑐𝜓
∗
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 Ok, let’s discuss a bit… What actually can be an e-state of such operator 

and what about the similarity form? 𝓒†𝓗𝓒 = 𝓗?

 If a state 𝜓 is e-state of C-parity operator, we have:

 Ok, so far C-parity is very similar to P-parity. It is even a multipicative

quantum number. However, look at a proton | ۧ𝑝

 Proton is not an e-state of C-parity operator! Acting with the 𝒞
operator on a state introduces quite a change! (all additive quantum 

numbers reverse)

 So, only particles that have all their additive quantum numbers equal to 0 

can possibly be e-states of 𝒞

Charge conjugation

𝑐𝜓 = 𝑐ഥ𝜓 = ±1

𝒬 ۧ𝑝 = 𝑞 ۧ𝑝 , 𝒬| ۧҧ𝑝 = −𝑞| ۧҧ𝑝

𝒞| ۧ𝑝 = | ۧҧ𝑝

𝒞 ۧ𝜋0 = 𝑐𝜋0 ۧ𝜋0 , 𝒞2 ۧ𝜋0 = 𝑐𝜋0𝒞 ۧ𝜋0 = 𝑐𝜋0
2 | ۧ𝜋0 → 𝑐𝜋0 = ±1
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 Another obvious candidate to be the 𝒞 e-state is the photon. Here the 

deal is a bit more tricky – let’s start from the 4-current (density):

 We need the photon to interact with the 4-current, QED Lagrangian that 

corresponds to interactions:

 This is the reason why we assume 𝒞| ۧ𝑛𝛾 = −1 𝑛| ۧ𝛾

 C-parity is conserved in the QED and QCD it is maximally broken in the 

WI

Charge conjugation

𝐽𝜇 = 𝐽0, 𝐽1, 𝐽2, 𝐽3 = 𝜚, Ԧ𝑗

𝒞†𝐽𝜇𝒞 = −𝐽𝜇

𝐽𝜇𝐴
𝜇 → 𝒞†𝐽𝜇𝐴

𝜇𝒞 =?

𝒞†𝐽𝜇𝐴
𝜇𝒞 = 𝒞†𝐽𝜇𝒞𝒞

†𝐴𝜇𝒞 = −𝐽𝜇𝒞
†𝐴𝜇𝒞

This must be invariant

𝒞†𝐴𝜇𝒞 = −𝐴𝜇

𝜋0 → 𝛾 + 𝛾, 𝒞| ۧ𝜋0 = +1| ۧ𝜋0
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Some comments…
 This is the time to wonder a little bit: what is the same and what is 

different about C- and P-parity…

 They both are discrete unitary transformations, but we intuitively feel that 

the C-parity introduces more „radical changes”

 The big difference is of course that the parity can be defined for all 

particles and that there can not be states of mixed parity (or in other 

words we either have bosons or fermions)

 Parity is conserved in the QED and QCD interactions and maximally 

violated in the WI

𝒫,ℋ = 0 → 𝒫†ℋ𝒫 = ℋ Parity is conserved, odd state 

remains odd and even remains even

𝒫ℋ ۧ𝜓 = 𝒫 𝜖 ۧ𝜓 = 𝜖𝒫| ۧ𝜓 = ±𝜖| ۧ𝜓
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And now…, spinors!

 That was a lot of cool stuff, but what about Dirac equation and spinors…?

 There are two main points here – how to construct the P operator that is
able to act on Dirac bi-spinors and what it actually does to them

ۧ𝜓 → ۧ𝜓′ = 𝒫 ۧ𝜓 ,𝒫 ۧ𝜓′ = | ۧ𝜓

𝑖𝛾𝜇𝜕𝜇 ۧ𝜓 − 𝑚 ۧ𝜓 = 0

𝑖𝛾1
𝜕| ۧ𝜓

𝜕𝑥
+ 𝑖𝛾2

𝜕| ۧ𝜓

𝜕𝑦
+ 𝑖𝛾3

𝜕| ۧ𝜓

𝜕𝑧
−𝑚| ۧ𝜓 = −𝑖𝛾0

𝜕| ۧ𝜓

𝜕𝑡

𝑖𝛾1
𝜕| ۧ𝜓′

𝜕𝑥′
+ 𝑖𝛾2

𝜕| ۧ𝜓′

𝜕𝑦′
+ 𝑖𝛾3

𝜕| ۧ𝜓′

𝜕𝑧′
−𝑚| ۧ𝜓′ = −𝑖𝛾0

𝜕| ۧ𝜓′

𝜕𝑡′

| ۧ𝜓′ 𝑥′, 𝑦′, 𝑧′, 𝑡′ = 𝒫| ۧ𝜓 𝑥, 𝑦, 𝑧, 𝑡

𝑖𝛾1𝒫
𝜕| ۧ𝜓′

𝜕𝑥
+ 𝑖𝛾2𝒫

𝜕| ۧ𝜓′

𝜕𝑦
+ 𝑖𝛾3𝒫

𝜕| ۧ𝜓′

𝜕𝑧
− 𝑚𝒫| ۧ𝜓′ = −𝑖𝛾0𝒫

𝜕| ۧ𝜓′

𝜕𝑡

𝑖𝛾0𝛾1𝒫
𝜕| ۧ𝜓′

𝜕𝑥′
+ 𝑖𝛾0𝛾2𝒫

𝜕| ۧ𝜓′

𝜕𝑦′
+ 𝑖𝛾0𝛾3𝒫

𝜕| ۧ𝜓′

𝜕𝑧′
− 𝑚𝛾0𝒫| ۧ𝜓′ = −𝑖𝛾0𝛾0𝒫

𝜕| ۧ𝜓′

𝜕𝑡′

𝒫
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 Using gamma-matrices algebra we have: 𝛾0𝛾𝑗 = −𝛾𝑗𝛾0

 By convention we set: 𝒫 = +𝛾0

 Remember, we showed that a solution of the Dirac equation was a four 
component bi-spinor, say 𝑢1, 𝑢2 correspond to a particle and 𝑣1, 𝑣2 to its 
antiparticle, then we have:

 So, picking the positive gamma-0 matrix for the parity operator makes the 
picture complete – intrinsic relative parities for fermions are positive and for 
anti-fermions are negative

And now…, spinors!

𝑖𝛾1𝛾0𝒫
𝜕| ۧ𝜓′

𝜕𝑥′
+ 𝑖𝛾2𝛾0𝒫

𝜕| ۧ𝜓′

𝜕𝑦′
+ 𝑖𝛾3𝛾0𝒫

𝜕| ۧ𝜓′

𝜕𝑧′
−𝑚𝛾0𝒫| ۧ𝜓′ = −𝑖𝛾0𝛾0𝒫

𝜕| ۧ𝜓′

𝜕𝑡′

𝛾0𝒫 ∝ ℐ,𝒫2 = ℐ → 𝒫 = ±𝛾0

𝒫𝑢1 = +𝑢1, 𝒫𝑢2 = +𝑢2, 𝒫𝑣1 = −𝑣1, 𝒫𝑣2 = −𝑣2
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Charge conjugation for spinors

 An extra step here is to understand that when applying C-parity to spinors 
we cannot neglect the interactions – we are changing charge!

 Interaction term must be added to the Dirac equation via modified (so 
called covariant) derivative:

 Here, 𝜓′ is vector (in Dirac representation) describing a particle which has 
the same mass as electron but with the opposite charge

𝑖𝜕𝜇 → 𝑖𝜕𝜇 − 𝑞𝐴𝜇

𝛾𝜇 𝜕𝜇 − 𝑖𝑒𝐴𝜇 𝜓 + 𝑖𝑚𝜓 = 0

𝛾𝜇 𝜕𝜇 + 𝑖𝑒𝐴𝜇 𝜓′ + 𝑖𝑚𝜓′ = 0

𝜓′ = 𝒞𝜓 = 𝑖𝛾2𝜓∗

𝜓 = 𝑢1𝑒
𝑖 Ԧ𝑝∙ Ԧ𝑥−𝐸𝑡 → 𝒞𝜓 = 𝑖𝛾2𝜓∗ = 𝑖𝛾2𝑣1

∗𝑒− Ԧ𝑝∙ Ԧ𝑥−𝐸𝑡 = 𝑣1𝑒
− Ԧ𝑝∙ Ԧ𝑥−𝐸𝑡

𝜓′ = 𝒞(𝑢2𝑒
𝑖 Ԧ𝑝∙ Ԧ𝑥−𝐸𝑡 ) = 𝑣2𝑒

− Ԧ𝑝∙ Ԧ𝑥−𝐸𝑡
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Covariant currents

 A general continuity equation for a conserved quantity (let it be electric 
charge) goes like that:

 In quantum theory we use particle density function and probability current

 Now, using our Dirac language (a.k.a. picture), and covariant notation

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ Ԧ𝑗 = 0

𝜕𝜓∗𝜓

𝜕𝑡
+ 𝛻 ∙ Ԧ𝑗 = 0, Ԧ𝑗 ∝ 𝜓∗𝛻𝜓 − 𝜓𝛻𝜓∗

𝜓∗ → 𝜓† = 𝜓∗ 𝑇 , 𝜓† = 𝜓1
∗, 𝜓2

∗ , 𝜓3
∗ , 𝜓4

∗

𝜕 𝜓†𝜓

𝜕𝑡
+ 𝛻 ∙ 𝜓† Ԧ𝛼𝜓 → 𝜌 = 𝜓†𝜓, Ԧ𝑗 = 𝜓† Ԧ𝛼𝜓

𝜕𝜇𝑗
𝜇 = 0, 𝑗𝜇 = 𝜌, Ԧ𝑗 = 𝜓†𝛾0𝛾𝜇𝜓; 𝛾0𝛾0 = ℐ, 𝛾0𝛾𝜇 = 𝛼𝑘

𝑗𝜇 = ത𝜓𝛾𝜇𝜓, ത𝜓 = 𝜓†𝛾0
Adjoint spinor
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Bi-linear forms

 Last time we stated that Lagrangian invariance is essential for physics for it 
exposes conservation laws and allows to deduct equations of motions (such 
as Dirac equation)

 Since the system dynamic is governed by Lagrangian it also must show 
the same invariance w.r.t. given transformation group

 E.g., since QED is invariant w.r.t. parity transformation so must be the 
QED Lagrangian

 In quantum theory each measurement is related to a, so called, matrix 
element that also must be invariant – since it represents an observable

ℳ𝑖𝑓 𝑒−𝜇− → 𝑒−𝜇− ∝ ത𝜓𝑒𝛾
𝜇𝜓𝑒

𝛼𝑞𝑒𝑑
𝑞2

ത𝜓𝜇𝛾
𝜇𝜓𝜇

ℳ𝑖𝑓 𝑒−𝜇− → 𝑒−𝜇− ∝
𝛼𝑞𝑒𝑑
𝑞2

𝑗𝜇
(𝑒)
𝑗(𝜇)
𝜇
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 We use charged current interaction picture to express matrix elements

 „Physics” sits in the propagator (4-momentum exchange) and in the 
coupling constant

 The covariant currents are used to represent initial and final state

 Relation between the i- and f-state (spinors) is given by the gamma-
matrices

 The electromagnetic interactions have vector nature 

 Why we use such bi-linear forms? Well, they are the simplest expression 
there is wich allows to formulate invariant ℳ𝑖𝑓

Bi-linear forms

ℳ𝑖𝑓 𝑒−𝜇− → 𝑒−𝜇− ∝
𝛼𝑞𝑒𝑑
𝑞2

𝑗𝜇
𝑒
𝑗 𝜇
𝜇

=
𝛼𝑞𝑒𝑑
𝑞2

𝜂𝜇𝜈𝑗𝜇
𝑒
𝑗 𝜇
𝜇

𝜂𝜇𝜈𝑗𝜇
𝑒
𝑗 𝜇
𝜇

= 𝑗(𝑒)
0 𝑗(𝜇)

0 − Ԧ𝑗(𝑒) ∙ Ԧ𝑗(𝜇)
Scalar (a complex number)
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Weak bi-linears

 The QED picture, as we know, is very successful in describing physics

 Use lazy approach and try to re-use and extend it to describe the WI

 The basic premise: we use a generalised four-current (bi-linear) to calculate 
weak matrix elements

 Where 𝒪𝑘 is the operator that tells us all there is about the interaction type 
and is expressed via gamma-matrices

 The complication arises from the fact, that the bi-linear now is required to 
behave (depending on the particular interaction type) as: a scalar (S), a 
pseudo-scalar (P), a vector (V), an axial-vector (A) and a tensor (T)

 As usual, the symmetries (in this case broken symmetries) determine the 
form of the four-current

 It can be shown (tutorial) that the WI have mixed vector–axial-vector 
nature which allows for the parity to be broken and bosons to couple to the 
particles of specific handedness

𝑗𝜇 = ത𝜓𝒪𝑘𝜓

𝑗𝜇 = ത𝜓𝒪𝑘𝜓, 𝑘 = {𝑆, 𝑃, 𝑉, 𝐴, 𝑇}
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C- and P-parity against weak bi-linears

 P-parity

 C-parity

𝒫: 𝑥 = Ԧ𝑥, 𝑡 → 𝑥′ = −Ԧ𝑥, 𝑡

Scalar ത𝜓1𝜓2 → ത𝜓1𝜓2

Pseudo-scalar ത𝜓1𝛾
5𝜓2 → − ത𝜓1𝛾

5𝜓2

Vector ത𝜓1𝛾
μ𝜓2 → ത𝜓1𝛾

μ𝜓2

Axial-vector ത𝜓1𝛾
μ𝛾5𝜓2 → − ത𝜓1𝛾

μ𝛾5𝜓2

𝒞: 𝑥 = Ԧ𝑥, 𝑡 → 𝑥′ = Ԧ𝑥, 𝑡

Scalar ത𝜓1𝜓2 → ത𝜓2𝜓1

Pseudo-scalar ത𝜓1𝛾
5𝜓2 → ത𝜓2𝛾

5𝜓1

Vector ത𝜓1𝛾
μ𝜓2 → − ത𝜓2𝛾

μ𝜓1

Axial-vector ത𝜓1𝛾
μ𝛾5𝜓2 → ത𝜓2𝛾

μ𝛾5𝜓1
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CP (or PC) transformations

 Spoiler alert! This will be also discussed during later lectures

𝒞𝒫: 𝑥 = Ԧ𝑥, 𝑡 → 𝑥′ = −Ԧ𝑥, 𝑡

Scalar ത𝜓1𝜓2 → ത𝜓2𝜓1

Pseudo-scalar ത𝜓1𝛾
5𝜓2 → − ത𝜓2𝛾

5𝜓1

Vector ത𝜓1𝛾
μ𝜓2 → − ത𝜓2𝛾

μ𝜓1

Axial-vector ത𝜓1𝛾
μ𝛾5𝜓2 → − ത𝜓2𝛾

μ𝛾5𝜓1
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The weak four-current

 Let’s build up now the weak four-current using the knowledge gained so far

 As mentioned already, in order to accommodate the experimental results 
we need to write the currents in a mixed V-A form

ℳ𝑖𝑓 𝑛 + 𝜐𝑒 → 𝑝𝑒− ∝ 𝑗𝜇
(𝑙)
𝑗(𝑏)
𝜇

𝑗(𝑙)
𝜇
= ത𝜓𝑒𝒪𝑘𝜓𝜈𝑒 = 𝜓𝑒 𝒪𝑘 𝜓𝜈𝑒 , 𝑗(𝑏)

𝜇
= ത𝜓𝑝𝒪𝑘𝜓𝑛 = 𝜓𝑝 𝒪𝑘 𝜓𝑛

𝑗(𝑙)
𝜇
= 𝑐𝑉𝑉(𝑙)

𝜇
+ 𝑐𝐴𝐴(𝑙)

𝜇
, 𝑐𝑉 = −𝑐𝐴 = 1

𝑗(𝑙)
𝜇
= ത𝜓𝑒𝛾

𝜇𝜓𝜈𝑒 −
ത𝜓𝑒𝛾

𝜇𝛾5𝜓𝜈𝑒 =
ത𝜓𝑒𝛾

𝜇 1 − 𝛾5 𝜓𝜈𝑒
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 The inner combination of gamma-matrices looks almost like the projection 
operator used for the chirality representation of spinors, just a touch…

 Now, what about the barionic current…? Well here we have some 
additional players – quarks!

 In principle, one can consider neutrons and protons and notice 
some rules regarding changing angular momenta and things, but it is 
much easier if we use quarks, that are ½ spin fermions that looks a 
lot like Dirac particles…

The weak four-current

𝛾𝜇 1 − 𝛾5 =
1

2
1 + 𝛾5 𝛾𝜇 1 − 𝛾5

𝑗(𝑙)
𝜇
= 2 ത𝜓𝑒

1 + 𝛾5

2
𝛾𝜇

1 − 𝛾5

2
𝜓𝜈𝑒 = 2 ത𝜓𝑒 𝐿𝛾

𝜇 𝜓𝜈𝑒 𝐿

𝑗(𝑏)
𝜇

= 𝑔𝑉 ത𝜓𝑢𝛾
𝜇𝜓𝑑 + 𝑔𝐴 ത𝜓𝑢𝛾

𝜇𝛾5𝜓𝑑
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 The complication, we need to deal with is now related to the fact that the 
quark states that couple to weak bosons are not „pure”

 This will be discussed in later lectures and is called quark mixing

 That is quite different from the pure lepton states and requires to introduce 
a set of effective coupling constants describing probabilities of different qq
transitions

 Using spinors and covariant formalism we are able to prepare an elegant 
picture for all quarks

The weak four-current

„down” type quark

𝐷 ∈ {𝑑, 𝑠, 𝑏}

„up” type quark

𝑈 ∈ {𝑢, 𝑐, 𝑡}

Coupling constant
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 Another spoiler alert! CP-violation

 For CP-violation to occur we need:

 Massive quarks

 At least three generations of quarks

 Coupling constants must „somehow” be complex numbers!

The weak four-current

𝑽𝒊𝒋 ≠ 𝑽𝒊𝒋
∗

𝑾− 𝑾+
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Summary

 So, what have we learned…?

 C-parity is very special, and affects not only a particle but has impact on the 
interaction the particle undergo

 Special place belongs to bi-linear forms that can be created by combining 
spinors – in this way we can define 4-currents and describe interactions 
using current-current model

 Returning to symmetries: first we have elegant covariant notation that is 
guaranteed to be invariant w.r.t. to Lorentz group and second we can 
combine currents to create various „scalars” that, in turn, make the 
respective matrix elements invariant

 The weak interactions are again very intriguing and have much more 
complicated structure than the QED

 To accommodate all observed effects we need to assume that the WI is a 
mixture of vector and axial-vector currents


