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Symmetries
 They started to flourish thanks to Greek philosophers, and after a while 

they were completely lost for science (but were doing fine in arts and 

engineering though…)

 Re-discovered again at the end of 19th century

 So, why they are so cool and fundamental now? Why they occupy a central 

place in modern science? Well, it has to do with the nice abstraction 

they bring along – using symmetry we are insensitive to any specific 

details regarding given natural phenomenon

 Why theorist love symmetries so much? Well, if they search for new 

physics not knowing any details about it – symmetry can still guide them 

and impose important restrictions on reasonable models

 Important vocabulary:

 Symmetries can be exhibited by physical systems

 They are associated with transformations of such systems

 If we apply a transformation and we find the system to be 

indistinguishable from the original one – we say we found a 

symmetry for this system – or just that the system has symmetry
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Transformations
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 Now, what would happen if the symmetries were all perfect? Nothing! 

There would be no way to detect them – so, in other words the most 

interesting symmetries are the one that are broken…

 Since physical systems (in our line of duty) are described using Hilbert 

space objects (states, state space), we need to learn how to map one state 

into another

 This is done via a unitary operator 𝒰:

 The unitarity condition here is essential, since in this way we can 

maintain the transformed state normalisation (conservation of probability)

 There is even a fundamental theorem by Wigner, stating that for each 

transformation as the above one, where: 𝜓′ 𝜙′ 2 = 𝜓 𝜙 2 the 

operators providing mapping can always be chosen to be unitary (or 

anti-unitary), or in other words, symmetry transformation is represented

by an unitary operator

| ۧ𝜓 → ۧ𝜓′ = 𝒰 ۧ𝜓 ,𝒰†𝒰 = 𝒰𝒰† = 1
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Transformations
 It is easy to check that indeed we can achieve the conservation of probab. 

Using unitary (anti-unitary) operators:

 … and remembering that only squared modulus quantities have meaning 

(they are measurable)

 One more interesting consequence: if we apply different unitary 

operators to the same state vector, the transformations differ from each 

other at most by phase factors!

 Two pictures: active and passive transformations

 Active: we consider two systems | ۧ𝜓 and | ۧ𝜓′ described by the same 

observer 𝑂 (i.e., the same reference frame)

 Passive: we consider one system | ۧ𝜓 that is described by two observers 𝑂
and 𝑂′ (in a transformed reference frame)

𝜓1 𝒰
†𝒰 𝜓2 = 𝝍𝟏 𝝍𝟐 , 𝜓1 𝒜

†𝒜 𝜓2 = 𝝍𝟏 𝝍𝟐
∗
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Transformations
 Remember: in quantum physics we have two actors – states and 

operators (observables) – their relations is what matters (we can attach 

to these relations some physical meaning)

 Using active transformations we look for symmetries by comparing 

properties of the transformed system | ۧ𝜓′ w.r.t. the original one | ۧ𝜓

 Using passive way the symmetries can be found by checking if both 

observers using the same equations to describe the same system

 „Active math”: we act with an operator 𝓤 on the state vectors, all 

Hermitian operators 𝒪 corresponding to observed quantities are not 

changed (we also have a special name for that: Schrödinger picture: SP)

 „Passive math”: two observers are looking at the same system 

represented by two different state vectors: | ۧ𝜓 and 𝒰| ۧ𝜓

| ۧ𝜓 → ۧ𝜓′ = 𝒰 ۧ𝜓 , 𝒪 → 𝒪
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Transformations
 An equivalent approach to SP one is offered by, so called, Heisenberg 

picture – we allow the state vectors (SV) to remain unchanged 

varying operators instead in the opposite way

 By the very definitione both pictures result in the same matrix elements:

 And of course: if the unitary transformation is a symmetry of the system 

the new matrix element is equal to the original one!

 So, to get the same result we either transform the system in one way or 

the reference system oppositely. The SP is related to the state vectors 

transformations and the HP to the operators transformations

 In more formal way we could say, that SV transformation | ۧ𝜓 → 𝒰| ۧ𝜓
could be considered to be equivalent to: 𝒪 → 𝒰𝒪𝒰† (in the sense that if 

both transformations SP and HP are applied they cancel each other!)

| ۧ𝜓 → | ۧ𝜓 , 𝒪 → 𝒪′ = 𝒰−1𝒪𝒰 = 𝒰†𝒪𝒰

𝝍𝟏 𝓞 𝝍𝟐 → 𝜓1
′ 𝒪 𝜓2

′
𝑆 = 𝜓1 𝒪

′ 𝜓2 𝐻 = 𝝍𝟏 𝓤
†𝓞𝓤 𝝍𝟐
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Symmetries and conservation laws

 Building on all of that we can search for symmetries by examining 
observables after transformation: if a Hermitian operator commutes with 
the one describing the transformation, 𝓞,𝓤 = 𝟎, the measured values do 
not change

 Can add Hamiltonian to the picture now: it drives the time evolution of a 
state, if 𝒪 commutes with ℋ the related observable is constant in time

 This allows both operators to be reduced to the diagonal form at the same 
time – they have a complete set of stationary states (energy e-states), which 
are also e-states of 𝒪

 Note! The Hamiltonian must be invariant w.r.t. each (unitary) 
transformation 𝒰 that represent a symmetry of a system 𝒰,ℋ = 0

 In other words: if a unitary operator 𝓤 commutes with the Hamiltonian, 
the energy and time evolution are not affected at all by such 
transformation. 

𝒪 = 𝜓 𝒪 𝜓 → 𝜓 𝒰†𝒪𝒰 𝜓 = 𝜓 𝒰†𝒰𝒪 𝜓 = 𝒪

𝑖ℏ
𝑑

𝑑𝑡
𝒪 = 𝒪,ℋ
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Let’s do it step by step then…

 Dynamic Schrödinger equations (natural units):

 We mentioned two pictures of quantum state evolution, the relation 
between them can be summarised as follow:

 If we know our 𝓗 e-basis, we can make the notation even more explicit:

 So, the evolved observable:

𝑖
𝑑| ۧ𝜓

𝑑𝑡
= ℋ| ۧ𝜓 , 𝑖

𝑑𝒪

𝑑𝑡
= ℋ𝒪

𝒪𝐻 𝑡 = 𝒰† 𝑡 𝒪𝑆𝒰 𝑡 , | ۧ𝜓 → | ۧ𝜓′ = | ۧ𝜓 𝑡 = 𝒰(𝑡, 𝑡0)| ۧ𝜓(𝑡0)

𝒪 = 𝜓′ 𝒪 𝜓′ = 𝜓(𝑡) 𝒪 𝜓(𝑡) = (𝒰𝜓(𝑡0)) 𝒪 𝒰𝜓(𝑡0) =

𝜓(𝑡0) 𝒰
†𝒪𝒰 𝜓(𝑡0) = 𝜓 𝒰†𝒪𝒰 𝜓

| ۧ𝜓 =෍
𝑘
𝑐𝑘| ۧ𝜖𝑘 → ۧ𝜓′ = 𝒰 ۧ𝜓 = 𝑒−𝑖ℋ𝑡| ۧ𝜓 =෍

𝑘
𝑐𝑘𝑒

−𝑖𝜖𝑘𝑡| ۧ𝜖𝑘

𝒪 =෍
𝑘,𝑙
𝑐𝑘
∗𝑐𝑙 𝜖𝑘 𝒪 𝜖𝑙 →෍

𝑘,𝑙
𝑐𝑘
∗𝑐𝑙 𝜖𝑘 𝒪 𝜖𝑙 𝑒

−𝑖(𝜖𝑙−𝜖𝑘)𝑡



9

Let’s do it step by step then…

 Now, it is fairly easy to write down the equation using Heisenberg picture, which is 
useful for exposing an interesting fact:

 If 𝒪 does not depend explicitly on time, we have:

 So, if 𝒪 and ℋ commute, then 𝒪 is constant. The quantity (observable) corresponding 
to the Hermitian operator 𝒪 is conserved.

 Nice! Now, let’s have a look at something more familiar – translations! We can start 
with infinitesimal one along 𝑥 axis:

 We say, that 𝛿𝒟𝑥 generates infinitesimal translations, using linear momentum 
representation we can write:

𝑑𝒪

𝑑𝑡
= −𝑖

𝜕𝒪

𝜕𝑡
+ 𝒪,ℋ

𝑑𝒪

𝑑𝑡
= −𝑖 𝒪,ℋ

𝑥 → 𝑥′ = 𝑥 + 𝑑𝑥, | ۧ𝜓 → | ۧ𝜓 𝑥′ = | ۧ𝜓(𝑥 + 𝑑𝑥)

| ۧ𝜓 𝑥 + 𝑑𝑥 = | ۧ𝜓 𝑥 + 𝑑𝑥
𝜕| ۧ𝜓 𝑥

𝜕𝑥
= 1 + 𝑑𝑥

𝜕

𝜕𝑥
| ۧ𝜓(𝑥) = 𝛿𝒟𝑥| ۧ𝜓(𝑥)

𝛿𝐷𝑥 = 1 +
𝑖

ℏ
𝑑𝑥𝑝𝑥
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Continuous transformations

 A finite translation ∆𝑥 can be made as a series of small ones:

 Now, looking at this our previous discussion seems to be well justified…

 We obtained a symmetry transformation that is represented by an unitary 
operator!

 We also say, that the linear momentum is the generator of the translation 
(operator). If the ℋ is invariant w.r.t. space translations (along x axis), we have

 And that is a pretty heavy stuff – since 𝑝𝑥 is a Hermitian operator, and 
𝑑𝑝𝑥

𝑑𝑡
= 0

we see that the momentum is conserved!

 The following statements are true (and can always be extended to other quantities):

 The Hamiltonian is invariant w.r.t. space translations

 The linear momentum operator commutes with the Hamiltonian

 The linear momentum is conserved

𝒟𝑥 = lim
𝑛→∞

1 +
𝑖

ℏ
𝑑𝑥𝑝𝑥

𝑛

= 𝑒𝑥𝑝
𝑖

ℏ
∆𝑥𝑝𝑥

𝒟𝑥
†𝒟𝑥 = 1

𝒟𝑥 ,ℋ = 0 → 𝑝𝑥 ,ℋ = 0
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Gear up… Groups

 That was nice! But we could do even better… Let’s go more abstract

 A set of elements 𝑔1, 𝑔2, … , 𝑔𝑛 is called a group 𝔾, if the following is true

 Closure property 𝔾 ∋ (𝑔𝑗 , 𝑔𝑙) → 𝑔𝑗⨀𝑔𝑙 = 𝑔𝑘 ∈ 𝔾

 A unit element exists in 𝔾: 𝔾 ∋ 𝑒 →∨ 𝑔𝑗 ∈ 𝔾: 𝑒⨀𝑔𝑗 = 𝑔𝑗⨀𝑒 = 𝑔𝑗

 The associative low holds:(𝑔𝑗⨀𝑔𝑙) ⨀𝑔𝑘 = 𝑔𝑗⨀(𝑔𝑙⨀𝑔𝑘)

 Inverse element: ∨ 𝑔𝑗 ∈ 𝔾 ∧ 𝑔𝑗
−1 ∈ 𝔾: 𝑔𝑗⨀𝑔𝑗

−1 = 𝑔𝑗
−1⨀𝑔𝑗 = 𝑒

 Symmetry transformations in physics satisfy those axioms, for instance space 
translations 𝑥 → 𝑥′ = 𝑥 + 𝑑𝑥, phase (or gauge) transformations | ۧ𝜓 → 𝑒𝑖𝛼| ۧ𝜓

 A special type of groups are called Lie groups – they are continuous ones and depend 
analytically on a finite number of real parameters (both above examples are Lie 
groups)

 Imagine we have a group of continuous symmetry transformations and we are able to 
construct its unitary representation. Now, in the neighbourhood of the identity:

𝒰 𝛼1, 𝛼2, … , 𝛼𝑛 = 𝑒𝑥𝑝 ෍
𝑙
𝑖𝛼𝑙𝒢𝑙
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Gear up… Groups

 Here (last slide actually…): 𝛼𝑙 , 𝑙 = 1,… , 𝑛 are the group real parameters, 𝒢𝑙 are 
operators, that have a special name: the group generators

 We know, that the operators representing symmetry transformations are unitary, 
which implies that generators must be Hermitian!! (remember 𝛿𝒟𝑥…?)

 The generator is Hermitian and corresponds to an observable

 The symmetry implies the existence of an unitary operator that commutes with the 
Hamiltonian

 This leads to (we know that already for the momentum!) 𝒢,ℋ = 0

 Thus, the expectation value of the generator is constant, or a symmetry 
transformation leads to a conservation law for the corresponding generator

 So, again – the generator is the constant of motion

𝒰 = 1 + 𝑖𝜀𝒢

1 = 𝒰𝒰† = 1 + 𝑖𝜀𝒢 1 − 𝑖𝜀𝒢† = 1 + 𝑖𝜀 𝒢 − 𝒢† + 𝑂 𝜀2

ℋ → ℋ′ = 𝒰† 𝛼 ℋ𝒰 𝛼 = ℋ

1 − 𝑖𝛼𝒢 ℋ 1 + 𝑖𝛼𝒢 ≈ ℋ − 𝑖𝛼 𝒢,ℋ = ℋ
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And now, the cool stuff (résumé)

 Two essential aspects of our discussion so far:

 Invariance (symmetry) of the equations used to describe a system under some 
transformation (e.g., translation, rotation, …)

 Conservation of the related physical quantities (translation - linear momentum)

 Important to understand/remember: the invariance properties are abstract features 
of the math we use to describe physics. 

 Invariance means conservation: homogeneity of space means that the linear 
momentum is conserved. Formally, this is summarised by Noether’s theorem (each 
conserved quantity corresponds to an invariant)

 The way we use that is: each interaction must obey various invariance requirements, 
that means each interaction obeys corresponding conservation laws – this pose 
strong limits on its possible mathematical description!

 Transformations, that lead to symmetries, can be continuous or discrete. This is 
important distinction that leads to additive and multiplicative conservation laws 
respectively

 It is also pedagogical to look at the classical invariance principles, since they are 
expressed using Lagrange equations, that play vital role in quantum theories
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Invariance in classical physics

 The state of a system with n degrees of freedom can be described by a Lagrangian
that contains n generalised coordinates 𝑞𝑘 for which n conjugated momenta 𝑝𝑘 can 
be derived

 Similarly to the Heisenberg equation, using the Lagrangian some things are exposed 
in a very natural way: if the Lagrangian does not depend (or is symmetric) on the 𝑞𝑗

we see at once that 
𝜕𝐿

𝜕𝑞𝑘
= 0, thus the conjugated momentum 

𝑑𝑝𝑘

𝑑𝑡
= 0

 For free Lagrangian, we get for translational symmetry:

 A conserved quantity is associated to a continuous symmetry (the reverse is also 
true) or in other words: any symmetry constraints the Lagrangian (its form)

 Adding relativistic theory, we get also Poincare invariance principle: invariance under 
Lorentz transformations (boosts) and space-time translations requires that the 

Lagrangian function transforms as a scalar (we are going to revisit this many times)

𝐿 𝑞1, … , 𝑞𝑛 = 𝐸𝑘𝑖𝑛 − 𝐸𝑝𝑜𝑡 , 𝑞𝑘: 𝑘 = {1,… , 𝑛}, 𝑝𝑘 =
𝜕𝐿

𝜕 ሶ𝑞𝑘

𝐿 𝑞1, … , 𝑞𝑛 =
𝑑𝑝𝑘
𝑑𝑡

−
𝜕𝐿

𝜕𝑞𝑘
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑘
−

𝜕𝐿

𝜕𝑞𝑘

𝐿 = 𝐸𝑘𝑖𝑛 =
1

2
𝑚 ሶ𝑥2, 𝑝𝑥 =

𝜕𝐿

𝜕 ሶ𝑥
= 𝑚 ሶ𝑥
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Parity

 This is the first symmetry transformation that belongs to this strange gang of discrete 
operations – cannot be obtained as a sequence of infinitesimal transformations, as a 
consequence the discrete transformations do not have generators

 So, this one is special!

 We say, that the parity (space inversion) converts a right handed coordinate system 
into left handed one

 Let see, what happens if we act with the parity operator on states in Hilbert space

 For position operator we require:

Note! Here we actually have 

an active transformation, we 

changed the state!

| ۧ𝝍 → ۧ𝝍′ = 𝓟 ۧ𝝍 ,𝓟†𝓟 = 𝟏

𝜓′ 𝒳 𝜓′ = (𝒫𝜓) 𝒳𝒫 𝜓 = 𝜓 𝒫†𝒳𝒫 𝜓 = − 𝜓 𝒳 𝜓
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Parity

 So, we must have:

 Parity and position operators anti-commute. Let | ۧ𝑥 be position operator e-state:

 The parity operator has e-values: ±1, and 𝒫−1 = 𝒫† = 𝒫

 What about other quantities…, for instance momentum. In a second we understand
that this one is tricky. We basically need to have a particle/state that has momentum
in the first place…

 First, let’s do a smart trick and add translation generator in the picture: the following
operators should be equivalent:

 Translation followed by space inversion – 𝒫δ𝒟𝑥

 Space inversion followed by translation in the opposite direction – 𝛿𝒟−𝑥𝒫

𝒫†𝒳𝒫 = −𝒳 → 𝒫𝒳 = −𝒳𝒫

𝒳 ۧ𝑥 = 𝑥 ۧ𝑥 → 𝒳𝒫 ۧ𝑥 = −𝒫𝒳 ۧ𝑥 = −𝑥 𝒫| ۧ𝑥

𝒫| ۧ𝑥 = 𝑒𝑖𝜑| ۧ−𝑥 → 𝒫| ۧ𝑥 = | ۧ−𝑥

𝒫𝒫| ۧ𝑥 = 𝒫2 ۧ𝑥 = 𝒫 ۧ−𝑥 = | ۧ𝑥 → 𝒫2 = 1

𝒫δ𝒟𝑥 = 𝛿𝒟−𝑥𝒫 → δ𝒟𝑥 = 1 −
𝑖

ℏ
𝑑𝑥𝓅𝑥

𝒫,𝓅𝑥 = 0 → 𝒫†𝓅𝒫 = −𝓅
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 Let’s have a look at the momentum for a bit longer. For the time being we assume 
that parity is an exact symmetry. Let’s start with a single particle

 That we already knew, however what happens if we explicitly use momentum e-
functions

 We see, that a particle (state) can be an e-state of the parity operator with the e-
value 𝑃𝜓 only if the particle is at rest! For this reason we call 𝑃𝜓 the intrinsic parity of 

a particle.

 If we deal with a particle systems we make the following generalisation:

 So, here we see that we have multiplicative conservation rule!

Parity

𝒫| ۧ𝜓 𝑥, 𝑡 = 𝑝𝜓𝑒
𝑖𝜑| ۧ𝜓(−𝑥, 𝑡)

𝒫2| ۧ𝜓 𝑥, 𝑡 = | ۧ𝜓 𝑥, 𝑡 → 𝑃𝜓 = ±1

| ൿ𝜓𝑝 𝑥, 𝑡 = 𝑒𝑖 𝑝𝑥−𝐸𝑡

𝒫| ൿ𝜓𝑝 𝑥, 𝑡 = 𝑃𝜓| ൿ𝜓𝑝 −𝑥, 𝑡 = 𝑃𝜓| ൿ𝜓−𝑝 𝑥, 𝑡

𝒫| ۧ𝜓 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑡 = 𝑃1𝑃2⋯𝑃𝑛| ۧ𝜓 −𝑥1, −𝑥2, … , −𝑥𝑛, 𝑡
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Parity and angular momentum

 Write it down first and use what we already know about the parity

 So, the parity and the angular momentum do commute!

 In 3-dim space (isomorphic with ℝ3) the parity operator can be represented as a 
matrix

 What if we operate in the Hilbert space? Does the relation above still hold?

 We say, under rotations 𝑥 and Ԧ𝐽 behave like vectors (tensors of rank 1), but with 
different e-values (odd – vector and even – pseudo-vector)

𝐿 = Ԧ𝑥 × Ԧ𝑝

𝒫†𝐿𝒫 = 𝒫† Ԧ𝑥 × Ԧ𝑝𝒫 = 𝒫† Ԧ𝑥𝒫 × 𝒫† Ԧ𝑝𝒫 = − Ԧ𝑥 − Ԧ𝑝 = 𝐿

𝒫, 𝐿 = 0

𝒫(ℝ3) =
−1 0 0
0 −1 0
0 0 −1

→ 𝒫(ℝ3)ℛ = ℛ𝒫(ℝ3), ℛ ∈ 𝕆(3)

𝒫𝛿𝒟𝜀 = 𝛿𝒟𝜀𝒫, 𝛿𝒟𝜀 = 1 −
𝑖

ℏ
𝜀𝜀0 ∙ Ԧ𝐽

𝒫, Ԧ𝐽 = 0 → 𝒫† Ԧ𝐽𝒫 = Ԧ𝐽
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Parity and scalar products

 There is something very interesting, when we look at different scalar products, let’s 
consider momentum-position and spin-position

 We say, that quantities behaving under rotations as scalars (tensors of rank 0) under 
space inversion operation can be even (scalars) or odd (pseudo-scalars)

 Parity turned out to be very important and is used as quantum number for particle 
classification (PDG – Particle Data Group notation 𝐽𝑃)

 Parity can always be assigned to bosons without ambiguity. 

 In case of fermions, the angular momentum plays a role via their spin – they must 
always be produced in pairs. For that reason we assume a convention where the 
proton’s parity is set to be 𝑃𝑝 = +1 and the other fermions have the parity assigned 

relatively to the proton

 QFT requires that fermions and anti-fermions have the opposite parity, boson and 
anti-bosons have the same parity. We also assume that all quarks have positive parity

𝒫† Ԧ𝑥 ⋅ Ԧ𝑝𝒫 = 𝒫† Ԧ𝑥𝒫 ⋅ 𝒫† Ԧ𝑝𝒫 = − Ԧ𝑥 ⋅ − Ԧ𝑝 = Ԧ𝑥 ⋅ Ԧ𝑝

𝒫† Ԧ𝑥 ⋅ Ԧ𝑆𝒫 = 𝒫† Ԧ𝑥𝒫 ⋅ 𝒫† Ԧ𝑆𝒫 = − Ԧ𝑥 ⋅ Ԧ𝑆 = − Ԧ𝑥 ⋅ Ԧ𝑆



20

Parity 2-particle states

 Let’s consider a system with 2 particles of known intrinsic parities 𝑃1, 𝑃2. The system 
can only be a parity e-state in the centre of mass system. We can describe it using two
bases:

 Ok, now inversion in polar coordinates: 𝑟, 𝜃, 𝜑 → 𝑟, 𝜋 − 𝜃, 𝜋 + 𝜑

| ۧ𝑝, 𝜃, 𝜑 = | ۧԦ𝑝, − Ԧ𝑝

| ۧ𝑝, 𝑙,𝑚

| ۧ𝑝, 𝑙,𝑚 =෍
𝜃,𝜑

| ۧ𝑝, 𝜃, 𝜑 𝑝, 𝜃, 𝜑 𝑝, 𝑙,𝑚 =෍
𝜃,𝜑
𝑌𝑙
𝑚 𝜃, 𝜑 | ۧ𝑝, 𝜃, 𝜑

𝑌𝑙
𝑚 𝜃, 𝜑 → 𝑌𝑙

𝑚 𝜋 − 𝜃, 𝜋 + 𝜑 = −1 𝑙𝑌𝑙
𝑚 𝜃, 𝜑

𝒫| ۧ𝑝, 𝑙, 𝑚 = 𝑃1𝑃2෍
𝜃,𝜑

𝑌𝑙
𝑚 𝜋 − 𝜃, 𝜋 + 𝜑 | ۧ𝑝, 𝜃, 𝜑 =

= 𝑃1𝑃2 −1 𝑙෍
𝜃,𝜑

𝑌𝑙
𝑚 𝜃, 𝜑 | ۧ𝑝, 𝜃, 𝜑 = 𝑃1𝑃2 −1 𝑙| ۧ𝑝, 𝑙,𝑚

𝑷𝟐−𝒑𝒂𝒓𝒕 = 𝑷𝟏𝑷𝟐 −𝟏 𝒍


