

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, Agnieszka Obłąkowska-Mucha

WFiIS AGH Kraków 2020

Pomiary jonizacji

2

- Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej liczby par jonelektron generowanych na drodze cząstki jonizującej
- UWAGA należy zawsze używać sformułowań jak poniżej
 - Cząstka naładowana deponuje energię (nie ładunek!!)
 - Deponowanie energii powoduje generację ładunku wzdłuż toru cząstki

Pomiary jonizacji

- Wyróżniamy tu jonizację pierwotną n_p(liczba pierwotnie wytworzonych par e-jon) oraz wtórną (związaną z elektronami δ) oraz całkowitą N_T(suma obu).
- Nośniki ładunku mogą zostać wytworzone, gdy energia zdeponowana będzie powyżej pewnego progu W.
- Próg ten jest wyższy od potencjału jonizacyjnego I₀, ponieważ część energii może być rozproszona na procesy nie prowadzące do jonizacji.
- W praktyce rozpatrujemy dwa typy detektorów, które wykorzystujemy do "pomiarów jonizacji":
 - o Gazy,

3

Ciała stałe (ss)

Jonizacja

Średnia energia potrzebna do produkcji par jon-elektron, W jest w zasadzie stała dla danego materiału (zależy b. słabo od parametrów cząstek penetrujących)

Gas	Density $\rho ~[g/cm^3]$	$I_0 [\mathrm{eV}]$	W [eV]	$n_{\rm p}~[{\rm cm}^{-1}]$	$n_{\rm T}~[{\rm cm}^{-1}]$
H_2	$8.99\cdot 10^{-5}$	15.4	37	5.2	9.2
He	$1.78 \cdot 10^{-4}$	24.6	41	5.9	7.8
N_2	$1.25 \cdot 10^{-3}$	15.5	35	10	56
O_2	$1.43 \cdot 10^{-3}$	12.2	31	22	73
Ne	$9.00 \cdot 10^{-4}$	21.6	36	12	39
Ar	$1.78 \cdot 10^{-3}$	15.8	26	29	94
Kr	$3.74 \cdot 10^{-3}$	14.0	24	22	192
Xe	$5.89 \cdot 10^{-3}$	12.1	22	44	307
$\rm CO_2$	$1.98 \cdot 10^{-3}$	13.7	33	34	91
CH_4	$7.17 \cdot 10^{-4}$	13.1	28	16	53
C_4H_{10}	$2.67 \cdot 10^{-3}$	10.8	23	46	195

Fluktuacje

Całkowita jonizacja, N_T, (liczba par nośników, które zostały wygenerowane) wynosi:

$$V_{Tot} = \frac{\Delta E}{W}$$

- □ Gdzie: ΔE całkowita strata jonizacyjna energii, W średnia energia potrzebna do generacji pary "jon"-elektron (dla gazów ~30 eV dla krzemu (germanu) ~3.6 eV (~2.8 eV), ŚREDNIO!!!
- Zależność jest prawdziwa, gdy cała zdeponowana energia została przekazana na jonizację.
- Oznacza to, że dla ciał stałych produkowana liczba nośników jest o rząd wielkości wyższa niż dla gazów (a fluktuacje mniejsze).
- Liczba wygenerowanych nośników jest zmienną losową, w pierwszym przybliżeniu o rozkładzie Poissona.
- □ Zatem fluktuacje wokół wartości średniej powinny być rzędu \sqrt{N} .
- \Box Są jednak mniejsze o czynnik \sqrt{F} (współczynnik Fano).

Pomiary jonizacji

- Rozdzielczość pomiaru (dokładność) będzie zależeć od średniej liczby wyprodukowanych par j-e (N)
- Dokładna analiza statystyczna (ćwiczenia!) prowadzi do wyrażenia:

$$\sigma^2 = F \cdot \langle N \rangle$$

/	
Absorber	F
$Ar + 10\% CH_4$	pprox 0.2
Si	0.12
Ge	0.13
GaAs	0.10
Diamond	0.08

- Współczynnik Fano, F, zależy od materiału czynnego
- Zwiększa rozdzielczość energii detektora w porównaniu do tej, którą otrzymalibyśmy zakładając jedynie zależność do fluktuacji w produkcji par j-e
- Pamiętamy ciągle o zdarzających się bardzo dużych stratach energii, zwłaszcza w cienkich absorberach (p. rozkład Landaua)

Rozpraszania wielokrofne

- To "koszmar" dla detektorów pozycjo-czułych!
- Naładowana cząstka przechodząc przez materię jest rozpraszana przez "Kolumbowski" potencjał jądra i innych elektronów (niewielki wpływ na cząstki ciężkie)
- Rozpraszanie elastyczne nie obserwujemy strat energii cząstek jonizujących – zmiany pędu

Głównie oddziaływanie typu Coulomba cząstka – jądro

Dla hadronów możliwy również wkład od oddziaływań silnych

Cząstka podlega bardzo wielu zderzeniom z bardzo małym odchyleniem w każdym procesie (dlaczego?).

 \Box Rozkład kąta rozproszenia jest gaussowski wokół $\Theta = 0$

300 micron Si : RMS = 0.9 mrad $/\beta p$ 1 mm Be : RMS = 0.8 mrad $/\beta p$

Rozpraszania wielokrofne

grubość medium rozpraszającego w jednostkach długości radiacyjnej X_0

Zasięg cząstek (range)

- Już wiemy, że cząstki naładowane tracą energię podczas oddziaływania z materią (detektorem)
- Skoro tak... to jak daleko mogą one penetrować materiał?
 - Musi nastąpić takie moment, w którym cząstka traci całą swoją energię i po prostu zatrzymuje się
 - Wydaje się, że dla danego typu cząstek, ich energii oraz penetrowanego materiału zasięg powinien być dobrze zdefiniowaną wartością (stałą)

Nie zapominajmy o statystyce – proces depozycji energii jest stochastyczny!

Zasięg cząstek (range)

- Pomiary zasięgu cząstek są w zasadzie dość proste
 - "Produkujemy" wiązkę cząstek o danej energii, a następnie naświetlamy nią badany materiał
 - Używając różnych grubości materiału możemy zmierzyć współczynnik transmisji (liczba cząstek za materiałem do liczby cząstek padających)

Y Krzywa transmisji wygląda interesująco...

Wyznaczanie zasięgu

- W przybliżeniu rozrzut zasięgu można opisać przy pomocy rozkładu normalnego, którego wartość średnia odpowiada współczynnikowi transmisji cząstek $\epsilon = 0.5$
- Prowadząc prostą styczną do krzywej zasięgu w punkcie ε = 0.5 dostaniemy estymator tak zwanego zasięgu efektywnego (która lepiej odzwierciedla grubość absorbera zatrzymującego wszystkie cząstki)
- Obliczenia "teoretyczne" zasięgu można w zasadzie przeprowadzić używając formuły BB, zapiszemy:

$$s(E_{kin}^{0}) = \int_{0}^{E_{kin}^{0}} \left(\frac{dE}{dx}\right)^{-1} dE$$

Formuła ta nie uwzględnia niestety MS oraz innych sposobów przekazu energii (w szczególności "katastroficznych")

Wyznaczanie zasięgu

Biorąc pod uwagę te problemy – musimy posiłkować się efektywną formułą półempiryczną:

$$s_{eff}(E_{kin}^0) = s_{eff}^0(E_{kin}^{min}) + \int_{E_{kin}^{min}}^{E_{kin}^0} \left(\frac{dE}{dx}\right)^{-1} dE$$

- Energia odcięcia oznacza minimalną wartość energii cząstki przy której formuła BB jeszcze obowiązuje, składnik s⁰_{eff}(E^{min}_{kin}) wyznaczany jest doświadczalnie i opisuje straty energii przy b. niskich energiach
- Zakładając, ze dla niezbyt wysokich energii równanie BB jest odwrotnie proporcjonalne do kwadratu prędkości:

$$\left(-\frac{dE}{dx}\right)_{ion} \propto \beta^{-2} \propto E_{kin}^{-1}$$

Zasięg powinien być proporcjonalny do kwadratu energii:

$$s_{eff}(E_{kin}^0) \propto E_{kin}^2$$

Pomiar zasięgu

- Pomiary zasięgu wykonane dla różnych cząstek (aluminium)
- W skali log-log zasięg ma charakter liniowy, nasze "grube" przybliżenia są więc całkiem dobre!
- Dokładne dopasowanie daje nam zależność pomiędzy zasięgiem a energią w postaci: $s_{eff}(E_{kin}^0) \propto E_{kin}^{1.75}$
- Znajomość zasięgów dla różnych cząstek ma zastosowanie do szybkiego szacowania ich energii
- Znajomość zasięgów ma też wielkie znaczenie przy konstrukcji detektorów (wymiary aparatury) oraz...
- Przy wyznaczaniu osłon (biologicznych oraz technologicznych przed różnymi typami promieniowania

Pomiar zasięgu

Skalowanie zasięgu

Z uwagi na to, że straty radiacyjne podlegają skalowaniu możemy zapisać podobne formuły dla zasięgu dla różnych cząstek w tym samym materiale:

$$s_{eff}^{(2)}\left(E_{kin}^{(02)}\right) = \frac{M_2}{M_1} \frac{z_1^2}{z_2^2} \cdot s_{eff}^{(1)}\left(E_{kin}^{(01)}\right) = \frac{M_2}{M_1} \frac{z_1^2}{z_2^2} \cdot s_{eff}^{(1)}\left(E_{kin}^{(01)}\frac{M_1}{M_2}\right)$$

Podobną formułę możemy zapisać w przypadku takich samych cząstek dla różnych materiałów czynnych (Bragg-Kleeman):

$$\frac{s_{eff}^{(1)}}{s_{eff}^{(2)}} = \frac{\rho_1}{\rho_2} \cdot \frac{\sqrt{A_1}}{\sqrt{A_2}}$$

gdzie: ρ_i - gęstości materiałów, A_i - masa atomowa

Przykład

- Przykład 1. Załóżmy, że chcemy oszacować ilość energii zdeponowanej w liczniku scyntylacyjnym, o grubości 2 cm, przez miony pochodzące z promieniowania kosmicznego
 - Miony z PK posiadają wysoką energię (muszą, żeby można je obserwować na Ziemi...)
 - Możemy więc założyć, że są one cząstkami minimalnie jonizującymi (~300 MeV dla mionów)
 - Dla plastikowego scyntylatora minimalna jonizacja wynosi $\sim \frac{dE}{dx} \approx 1.9 \left[\frac{MeV}{gcm^2}\right]$, z uwagi na prawie stałą wartość strat energii możemy stratę energii policzyć jako (przyjmujemy, że gęstość plastiku wynosi 1.03 $\left[\frac{g}{cm^3}\right]$):

$$\Delta E \approx \int_0^x \frac{dE}{dx} dx = \frac{dE}{dx} x = 1.9 \cdot 1.03 \cdot 2 = 3.9 \ [MeV]$$

 Ten depozyt powinien być widoczny przy pomiarze amplitudy sygnału z detektora (idealny do kalibracji)

Przykład

Terapia protonowa wymaga z reguły zmiany energii wiązki, można to zrobić stosując np. przesłony. Jaka powinna być grubość przesłony wykonanej z miedzi aby zmniejszyć energię wiązki od 600 do 400 MeV?

Ponownie możemy odwołać się do równania BB

Λr	\int^{500}	$\left(\frac{dE}{dE}\right)^{-1} dE$		
$\Delta \lambda =$	J_{600}	dx	uL	

Range (MeV)	$\frac{1}{\rho} \frac{dE}{dx}$	$\Delta x = \Delta E \left(\frac{1}{\rho} \frac{dE}{dx}\right)^{-1}$
600 - 580	1.768	11.31
580-560	1.791	11.17
560-540	1.815	11.02
540-520	1.841	10.86
520-500	1.870	10.69
500 - 480	1.901	10.52
480-460	1.934	10.34
460 - 440	1.971	10.15
440-420	2.012	9.94
420 - 400	2.056	9.73

$$\Delta x_{Cu} = 105.73 \left[\frac{g}{cm^2} \right] = 11.8 \ [cm]$$

To nie jest koniec historii...

- Wkład (zależny od energii!) do całkowitej straty energii dadzą nam jeszcze:
 - Bezpośrednia produkcja par elektron-pozyton
 - **Reakcje foto-nuklearne** (foto-jądrowe)
- Dla cząstek ciężkich (naładowanych) ten mechanizm może nawet dominować nad promieniowaniem hamowania
 - Polega na produkcji par e-p przez wirtualne fotony w silnym polu elektrycznym jąder atomowych
 - Wartość straty energii proporcjonalna do energii cząstek penetrujących:

$$\left(-\frac{dE}{dx}\right)_{pair} = b_{pair}(Z, A, E) \cdot E\left[\frac{MeV}{g/cm^2}\right]$$

D Np. dla mionów o energii $\sim 100 \text{ GeV}$

$$\left(-\frac{dE}{dx}\right)_{pair} = 3.0 \cdot 10^{-6} \cdot 10^{5} = 0.3 \left[\frac{MeV}{g/cm^{2}}\right]$$

to dopiero początek

- Naładowane cząstki mogą też bezpośrednio oddziaływać nieelastycznie z jądrami atomowymi
 - Stosunek przekrojów czynnych na oddziaływanie z elektronami atomowymi do na oddziaływanie z jądrem atomowym ma się w przybliżeniu tak jak stosunek i przekrojów geometrycznych ~10⁴ – 10⁵)

Wartość strat energii można wyrazić jako poniżej:

$$\left(-\frac{dE}{dx}\right)_{photo} = b_{photo}(Z, A, E) \cdot E\left[\frac{MeV}{g/cm^2}\right]$$

□ Dla mionów o energii ~100 *GeV* mamy:

$$\left(-\frac{dE}{dx}\right)_{photo} = 0.04 \left[\frac{MeV}{g/cm^2}\right]$$

Mechanizm ten ma znaczenie wyłącznie dla leptonów naładowanych – dla cząstek hadronowych dominują całkowicie bezpośrednie oddziaływania silne

Co chcemy zrobić?

- Konstrukcja (rodzaj) detektora zależy bezpośrednio od tego jaką wielkość fizyczną chcemy zmierzyć
- Zwykle jesteśmy zainteresowani:

21

- Detekcją cząstek (wykrycie obecności, np. Geiger-Müller duże ograniczenia związane z brakiem zależności pomiędzy energią zdeponowaną a sygnałem oraz saturacja dla dużych strumieni cząstek związane z czasem martwym)
- Pomiarem energii (np. detektory krzemowe)
- D Pomiarem położenia, trajektorii oraz pędu
- Identyfikacją cząstek
- Intuicyjnie rozumiemy, że wykrycie bądź pomiar energii są "łatwe" i nie wymagają (zwykle) skomplikowanych urządzeń hybrydowych
 - □ To się może zmienić, jeżeli widmo energii jest szerokie,
 - Bądź kompozycja strumienia cząstek jest złożona (fotony, elektrony...)
- Pomiary trajektorii, pędu (wektor!) czy rodzaju cząstki są trudne

I bardzo skomplikowane

- Bez względu na rodzaj promieniowania oraz aparatury jakiej używamy, zawsze interesować nas będzie (skrót myślowy...):
 - Detekcja cząstek
 - lacksquare Estymacja 4-pędu p^{μ}
 - Identyfikacja (PID Particle IDentification)

Geometria typu 4π

Eksperymenty FWE

- Obserwacja cząstek zawsze jako konsekwencja oddziaływania z materiałem "czynnym" detektora
- Bez względu na typ cząstki i własności oddziaływania na końcu zawsze mamy jonizację!

Eksperymenty FWE

Układy śladowe powinny zawierać jak najmniej materiału (wielokrotne rozproszenia, straty na jonizację)

 Kalorymetry "odwrotnie" powinny zawierać jak
 najwięcej materiału ("katastroficzne" pochłonięcie cząstek)

Eksperymenty (IV)

Eksperymenty FWE

Układy śladowe (I)

28

- Pomiar pędu jest procesem b. skomplikowanym i wymaga użycia detektorów hybrydowych
- Odpowiednio skonstruowany detektor, który jest w stanie zmierzyć pozycję cząstki naładowanej (na podstawie wygenerowanego w detektorze ładunku) umożliwia pomiar pędu

Cząstka naładowana musi poruszać się w polu magnetycznym

- Dø pomiaru pozycji używa się głównie detektorów gazowych oraz półprzewodnikowych (mikro-paskowe lub pikselowe)
 - Zasada detekcji oraz rekonstrukcji położenia praktycznie jednakowa komory jonizacyjne
 - Fizyka oddziaływania inna detektory krzemowe oferują znacznie większą amplitudę generowanego sygnału

Układy śladowe (II)

29

TR threshold - electron/pion separation

5.5 keV

0.2 keV

MIP threshold – precise tracking/drift

R = 122.5 mm

R = 88.5 mm

R = 50.5 mm

R = 0 mm

Pixels

Y

e-

mm

Atlas TRT – Transition Radiation Tracker

Beryllium beam pi

TRT

SCT

Pixels

Scyntylatory

- Bardzo popularne detektory do detekcji przejścia cząstek naładowanych
 Ograniczona czułość dotycząca krotności
 Niezwykle użyteczne, gdy nie potrzebna jest dokładna informacja
 - dotycząca **położenia cząstek**

Również użyteczne w budowaniu układów koincydencyjnych

Materiały scyntylacyjne wykazują własności tzw. luminescencji, na skutek wzbudzenia przez cząstki naładowane – cząstki scyntylatora pochłaniają energię i emitują fotony przy de-ekscytacji

32

Fotopowielacze

- Detektory światła
- Fotony są absorbowane na fotokatodzie, wybity fotoelektron jest następnie przyspieszany i powielany na kolejnych fotodynodach
- Wzmocnienia ok. 10⁶-10⁸, a sygnał jest proporcjonalny do liczby pjerwotnych fotonów
- Problem: praca w polu magnetycznym

Efekt Czerenkowa

- Naładowane cząstki mogą powodować polaryzację molekuł materiału o własnościach dielektrycznych, który penetrują
- Po przejściu molekuły powracają do stanu podstawowego poprzez emisję fotonów
- Jeżeli prędkość cząstek jest większa niż prędkość światła w tym materiale, v = c/n, wówczas może zajść konstruktywna interferencja – czyli obserwujemy promieniowanie Czerenkowa
- Promieniowanie to jest koherentne i emitowane pod ściśle określonym kątem, θ , w stosunku do toru cząstki

Efekt Czerenkowa

□ Éfekt Czerenkowa pozwala wykryć cząstki relatywistyczne

- Powszechne zastosowanie w detekcji neutrin
- Detektory Czerenkowa powszechnie stosuje się do identyfikacji naładowanych hadronów – efekt progowy
- Promieniowanie jest emitowane tylko wtedy gdy prędkość cząstki jest większa niż $\beta > 1/n$, można łatwo pokazać, że:

Symulacja

- Symulacje oddziaływania promieniowania z materią przeprowadzamy programem FLUKA.
- Instrukcja jest na: <u>https://agnieszkamucha.github.io/OPJzM/</u>
- Będzie on dostępny z naszego grupowego serwera poprzez połączenie z taurusa.
- Lokalnie można spróbować zainstalować program z:

https://fluka.cern/

