
AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Telecommunications

Ph.D. Thesis
Andrzej Kamisiński

Methods for Dependability
Provisioning in Flow-Oriented
Telecommunication Networks

Supervisor:
Prof. dr hab. inż. Andrzej Jajszczyk
Co-Supervisor:
Dr hab. inż. Jerzy Domżał

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Telecommunications

Al. Mickiewicza 30, 30-059 Kraków, Poland
tel. +48 12 617 39 37
fax. +48 12 634 23 72

http://www.agh.edu.pl
http://www.iet.agh.edu.pl
http://www.kt.agh.edu.pl

Reviewers:

Prof. dr hab. inż. Józef Lubacz1

Prof. dr hab. inż. Jacek Rak2

1 Warsaw University of Technology
2 Gdańsk University of Technology

ISBN 978-83-64189-01-2

Copyright c© Andrzej Kamisiński, 2017
All rights reserved

Cover and LATEX template by Rafał Stankiewicz

Printed in Poland
by Drukarnia UNIDRUK, ul. Bronowicka 117, Kraków

http://www.agh.edu.pl
http://www.iet.agh.edu.pl
http://www.kt.agh.edu.pl

To my parents

Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Andrzej
Jajszczyk, for his support, kindness, and invaluable comments that enabled me to
succeed in my work.

During my research stay at Norwegian University of Science and Technology in
Trondheim, Norway, I received outstanding support from several members of the
Department of Information Security and Communication Technology. In par-
ticular, I would like to express my gratitude to Professor Bjarne E. Helvik for
his guidance and advice, as well as to my collaborators for their friendliness,
constructive comments, and excellent ideas.

Furthermore, I would like to thank the members of the Faculty Board and the
Department Board for their assistance which was important at various stages of
my graduate career. I am also grateful to my colleagues from the Department
of Telecommunications who supported me during my research. I also thank my
co-supervisor, dr hab. inż. Jerzy Domżał.

Finally, I would like to thank the reviewers for their insightful comments and
suggestions that allowed me to improve the final version of this dissertation.

Abstract

Title: Methods for Dependability Provisioning in Flow-Oriented Telecommunica-
tion Networks

This dissertation is focused on dependability provisioning in flow-oriented
computer and communication networks. Four different solutions are proposed
to improve the dependability of the selected flow-oriented networks with respect
to the following issues: failures of network elements, forwarding loops, and
link congestions (two solutions). In addition, in the case of Software-Defined
Networks, the dependability requirements for traffic flows are explicitly defined,
the corresponding measure of decreased dependability is introduced, and a risk
assessment scheme is proposed to enable service providers to estimate the risk
of violation of Service Level Agreements with respect to the proposed metric.
One part of the evaluation of the presented solutions is based on experiments in
two laboratory networks containing the custom-built prototype routing devices
and off-the-shelf network equipment, while the other part relies on discrete-event
flow-level simulation in different scenarios using the specifically-designed and
implemented tools. The evaluation results have shown that the impact of failures,
forwarding loops, and link congestions on traffic flows in the selected flow-oriented
networks can be reduced with the aid of the proposed solutions, improving the
overall network dependability perceived by users. In addition, the presented
service degradation measure and the risk assessment scheme for Software-Defined
Networks have the potential to enable service providers to select the desired
recovery mechanisms more effectively with respect to the related expenditures and
the estimated risk of violation of Service Level Agreements signed with customers.

Streszczenie

Temat rozprawy doktorskiej: Metody zapewniania niezawodności w sieciach
telekomunikacyjnych zorientowanych na przepływy

Przedmiotem rozprawy doktorskiej są zagadnienia związane z zapewnianiem
niezawodności w sieciach telekomunikacyjnych zorientowanych na przepływy.
W pracy przedstawiono cztery rozwiązania umożliwiające poprawę niezawodności
wybranych typów sieci w przypadku występowania uszkodzeń jej elementów,
a także w przypadku wystąpienia pętli rutingu oraz przeciążeń łączy. Ponadto,
zaproponowano jednoznaczny sposób oceny niezawodności obsługi przepływów
w sieciach sterowanych programowo (ang. Software-Defined Networks), wprowa-
dzono odpowiednią miarę określającą spadek niezawodności w kontekście zdolności
sieci sterowanych programowo do prawidłowej obsługi przepływów, a następnie
przedstawiono metodę oceny ryzyka niespełnienia warunków umów SLA (ang.
Service Level Agreement), zawieranych przez dostawców usług telekomunika-
cyjnych z klientami, ze względu na wartość zaproponowanej miary. Weryfikacja
skuteczności części zaproponowanych w pracy rozwiązań, została przeprowadzona
w dwóch sieciach laboratoryjnych, zawierających stworzone przez autora prototypy
ruterów sieciowych oraz istniejące komercyjne urządzenia teleinformatyczne. Po-
zostałe mechanizmy zostały przeanalizowane w ramach różnych scenariuszy, przy
użyciu autorskich narzędzi symulacyjnych działających na poziomie przepływów
ruchu. Otrzymane wyniki pozwalają na stwierdzenie, że opracowane rozwiązania
umożliwiają zwiększenie niezawodności wybranych typów sieci zorientowanych na
przepływy, w sytuacjach związanych z występowaniem uszkodzeń, pętli rutingu
oraz przeciążeń łączy. Ponadto, przedstawiona miara spadku niezawodności ob-
sługi przepływów oraz metoda oparta na analizie ryzyka w sieciach sterowanych
programowo, otwierają nowe możliwości w zakresie optymalnego doboru mecha-
nizmów zapewniania niezawodności w tego typu sieciach, ze względu na koszt

x

i skuteczność rozwiązań, a także szacowaną wartość ryzyka niespełnienia warunków
umów SLA w odniesieniu do zaproponowanej miary.

Contents

Contents xi

List of Figures xv

List of Tables xix

List of Symbols xxi

Abbreviations xxiii

1 Introduction 1
1.1 Dependability of Computer and Communication Networks 2

1.1.1 Definitions and Attributes of Dependability 2
1.1.2 Different Factors Affecting the Dependability of Computer

and Communication Networks 3
1.2 The Concept of Flow-Oriented Networks 4

1.2.1 Definition of a Traffic Flow 4
1.2.2 Dependability Objectives in Relation to Traffic Flows . . . 5

1.3 Scope and Thesis . 5
1.4 Previously Published Material . 7
1.5 Organization . 10

2 Combating Routing Loops 11
2.1 Related Work . 12
2.2 Dealing with Routing Loops in Specific Flow-Oriented Network

Types . 14
2.2.1 A New Algorithm to Prevent Persistent Routing Loops . . 16
2.2.2 Deployment Considerations and Limitations 18

xii Contents

2.3 Summary . 19

3 Responding to Failures of Network Elements 21
3.1 Related Work . 23
3.2 GroupAndReroute: An Effective IP Fast Reroute Scheme for Traffic

Flows . 25
3.2.1 GroupAndReroute Operation 26
3.2.2 The Initial State of the Relation Graph 27
3.2.3 Computation of the Routing Scheme 27
3.2.4 Selection of an Alternative Output Interface 29
3.2.5 Impact of Failures on the Relation Graph 33
3.2.6 Memory Requirements . 33
3.2.7 Evaluation Environment . 34
3.2.8 Evaluation Results . 39
3.2.9 Dealing with Forwarding Loops 45
3.2.10 Deployment Considerations and Limitations 45

3.3 Summary . 46

4 Dealing with Network Congestions 47
4.1 Related Work . 48
4.2 New Reallocation-Based Congestion Control Algorithms 49

4.2.1 Algorithm I: Max Path Load and Path Overload Probability 49
4.2.2 Algorithm II: Max Path Load and Path Length 51
4.2.3 Evaluation Environment . 51
4.2.4 Evaluation Results . 52
4.2.5 Deployment Considerations and Limitations 60

4.3 Summary . 61

5 Risk Analysis and its Role in the Provisioning of Network Ser-
vices 63
5.1 Related Work . 64
5.2 SDN Architecture and SLAs . 66
5.3 Assessment of the SLA Violation Risk in SDN 68

5.3.1 Evaluation Environment . 72
5.3.2 Evaluation Results . 74
5.3.3 Deployment Considerations and Limitations 75

5.4 Summary . 77

6 A Flow-Level Discrete-Event Network Simulator for Dependabil-
ity Research 79
6.1 Design . 79

6.1.1 Data Generation Module 79

Contents xiii

6.1.2 Data Management Module 80
6.1.3 Simulation Module . 81

6.2 Summary . 84

7 Conclusion and Future Work 85
7.1 Contributions . 85
7.2 Open Issues and Future Work . 86
7.3 Final Remarks . 87

Appendices 87

A Estimating the Length of the Transient Period of a Simulation 91

Bibliography 93

List of Figures

1.1 Different attributes of dependabililty, based on [10]. 3

2.1 A Flow Forwarding Table (FFT) and the typical routing table
maintained on each of the nodes R1-R7 of a flow-oriented network.
Both tables are used by the proposed loop prevention algorithm. . 15

2.2 The proposed algorithm designed to prevent persistent forwarding
loops in the considered type of flow-oriented network. 17

3.1 An example assignment of nodes to node/prefix groups of the
reference node. 27

3.2 The initial relation graph (a) and its final version after the con-
vergence of the routing protocol (b) for the reference node in
Figure 3.1. Letters in circles denote the corresponding node/prefix
groups, while the weights assigned to arcs represent distances com-
puted based on the number of hops. Note that distances may also
be determined based on the sum of generic link costs. 28

3.3 GroupAndReroute: the general packet forwarding scheme. 30
3.4 GroupAndReroute: selection of the preferred transit node/prefix

group based on the recursive examination of the relation graph. . . 32
3.5 Evaluation network containing eleven custom routers supporting

GroupAndReroute (the numbering of nodes is consistent with
Figure 3.6). All links in the network had the capacity of 1 Gbit/s. 35

3.6 Evaluation network containing four Cisco 2800 Series routers (filled
circles) and eleven custom routers supporting GroupAndReroute
(empty circles). All links connected to the Cisco routers had the
capacity of 100 Mbit/s, while the other links had the capacity of
1 Gbit/s. 35

xvi List of Figures

3.7 A high-level implementation diagram of GroupAndReroute in the
created network router prototype — integration of new compo-
nents (Main/Temporary RG instances, GroupAndReroute) with
the existing subsystems. LSDB: Link State Database, RIB: Routing
Information Base, FIB: Forwarding Information Base, RG: Relation
Graph. 36

3.8 Estimated Cumulative Distribution Function (CDF) of the total
number of lost packets in the network shown in Figure 3.5 in the
case of (a) one failed link (k = 1), (b) two failed links (k = 2), and
(c) three failed links (k = 3). 40

3.9 Estimated Cumulative Distribution Function (CDF) of the max-
imum observed path stretch corresponding to traffic flows in the
network shown in Figure 3.5 in the case of (a) one failed link (k = 1),
(b) two failed links (k = 2), and (c) three failed links (k = 3). . . . 42

3.10 Estimated Cumulative Distribution Function (CDF) of the total
number of lost packets in the network shown in Figure 3.6 in the
case of (a) one failed link (k = 1), (b) two failed links (k = 2), and
(c) three failed links (k = 3). 43

3.11 Estimated Cumulative Distribution Function (CDF) of the max-
imum observed path stretch corresponding to traffic flows in the
network shown in Figure 3.6 in the case of (a) one failed link (k = 1),
(b) two failed links (k = 2), and (c) three failed links (k = 3). . . . 44

4.1 Congestion control algorithm relying on information about the
estimated overload probability of a path and the maximum relative
load among all links belonging to the path. 50

4.2 The topology of the US backbone network containing 39 nodes and
122 unidirectional links (based on the data provided by the SNDlib
project [74]; name of the model: janos-us-ca). To maintain clarity,
the figure presents an undirected graph. 53

4.3 Estimated Cumulative Distribution Function (CDF) of (a) the aver-
age fraction of overloaded links, (b) the average capacity utilization
of overloaded links, and (c) the average fraction of fully-loaded
links between the 150th and 650th second of simulations. 54

4.4 The topology of the Viatel backbone network containing 88 nodes
and 184 unidirectional links (based on the data provided by The
Internet Topology Zoo project [57]; version from 2008, modified
layout). To maintain clarity, the figure presents an undirected graph. 56

List of Figures xvii

4.5 Estimated Cumulative Distribution Function (CDF) of (a) the aver-
age fraction of overloaded links, (b) the average capacity utilization
of overloaded links, and (c) the average fraction of fully-loaded
links in the Viatel network between the 150th and 650th second of
simulations. 57

4.6 Estimated Cumulative Distribution Function (CDF) of (a) the aver-
age fraction of overloaded links, (b) the average capacity utilization
of overloaded links, and (c) the average fraction of fully-loaded
links in the US backbone network between the 150th and 650th
second of simulations. 59

5.1 An overview of a Software-Defined Network with different types of
traffic flows. 66

5.2 An example showing the number of all traffic flows of a single
customer at time t, the number of correctly-handled flows of the
customer at time t, and the number of failed flows of that customer
at time t. 68

5.3 An example Cumulative Distribution Function (CDF) of the accu-
mulated service degradation D (τ). The corresponding maximum
allowed service degradation α was set to 0.01. 71

5.4 A modified US backbone network topology containing 39 nodes, two
SDN controllers (yellow nodes: C1 and C2), and 130 unidirectional
links. The topology of the original network was created based on
the data delivered by the SNDlib project [74] (name of the model:
janos-us-ca). To maintain clarity, the figure presents an undirected
graph. 73

5.5 Scenario I: An example CDF of the SLA violation risk with respect
to the service degradation requirement α. The results represent an
example simulation run and all 3900 standard SLAs (100 per each
network node). 75

5.6 Scenario I: The estimated CDF of (a) the maximum SLA violation
risk and (b) the arithmetic mean of the SLA violation risk with
respect to the service degradation requirement α. The results
represent all simulation runs (N = 10) and all 3900 standard SLAs
(100 per each network node). 76

5.7 Scenario II: The estimated CDF of (a) the maximum SLA violation
risk and (b) the arithmetic mean of the SLA violation risk with
respect to the service degradation requirement αs. The results
represent all simulation runs (N = 10) and all 2730 standard SLAs
(70 per each network node). 77

xviii List of Figures

5.8 Scenario II: The estimated CDF of (a) the maximum SLA violation
risk and (b) the arithmetic mean of the SLA violation risk with
respect to the service degradation requirement αb. The results
represent all simulation runs (N = 10) and all 1170 business SLAs
(30 per each network node). 78

6.1 A block diagram showing the main components and data sources
of the created flow-level, discrete-event network simulator. Arrows
describe the flow of information between particular blocks, input,
and output. ns-3 is an existing network simulator [3] that was used
solely for the purpose of random number generation according to
predefined distributions. 80

6.2 Data Management Module: an example definition of network nodes. 81
6.3 Data Management Module: an example definition of fiber links

and optical channels. 82
6.4 Data Management Module: an example definition of light paths. . 82
6.5 Data Management Module: an example visualization of a network

topology. 83
6.6 Data Management Module: an example definition of network events. 83

A.1 An example plot showing log2 sN as a function of log2 N , as well as
a reference function with the slope of −0.5. The plot corresponds
to the experiments discussed in Chapter 5 (Scenario I). 92

List of Tables

4.1 Simulation parameters in the case of the Viatel backbone network. 58
4.2 Simulation parameters in the case of the US backbone network and

flows of diverse demands (small and large). 60

5.1 Symbols used in the formulation of the presented risk assessment
method. 70

xx List of Tables

List of Symbols

α The maximum allowed service degradation defined in the SLA

β The constant determining the relative importance of parameters
considered in the proposed congestion control algorithms

τ The length of the observation period defined in the related SLA

c (t, i) The availability status of all connections to the logically-centralized
SDN controller along the entire path of the i-th flow at time t

D (τ) Service degradation in the observation period [0, τ]

d The number of node/prefix groups of the reference node

dst_g The destination node/prefix group

E The set of all network links

eov The overloaded link belonging to the set of all network links

F The flow table

G The network graph

GR The relation graph used in the proposed GroupAndReroute solution

k The number of simultaneous link failures in the network

l (POSPF) The length of the new shortest path configured by the OSPF
protocol after its reconvergence

xxii List of Symbols

l (PRG) The maximum observed length of alternative forwarding paths of
a traffic flow, resulting from the operation of GroupAndReroute
following one or more link failures in the network

lth The relative link overload threshold

N The number of nodes in the network

na (t) Number of all traffic flows of the selected customer at time t

nc (t) Number of successfully-delivered traffic flows of the customer at
time t

nn (t) Number of new traffic flows of the customer at time t

p (t, i) The availability status of the entire path of the i-th flow at time t

p An incoming packet that will be processed by a router

Pcurrent The currently used path of a traffic flow

Pnew The best alternative path that can be assigned to the considered
traffic flow

S (τ, α) The SLA success probability with respect to the dependability-
related requirements for traffic flows in SDNs

S The maximum estimated path stretch

src_g The source node/prefix group

T The routing table

V The set of all network nodes

Vg The set of visited node/prefix groups

W (τ, α) The SLA violation risk with respect to the dependability-related
requirements for traffic flows in SDNs

Abbreviations

AS Autonomous System

ASON Automatically Switched Optical Networks

BGP Border Gateway Protocol

CDF Cumulative Distribution Function

ESCAP Efficient SCan for Alternate Paths

FAMTAR Flow-Aware Multi-Topology Adaptive Routing

FFT Flow Forwarding Table

FIB Forwarding Information Base

FID Flow Identifier

FIR Failure Insensitive Routing

GMPLS Generalized Multiprotocol Label Switching

ISP Internet Service Provider

JSON JavaScript Object Notation

KF Keep Forwarding

LSA Link State Advertisement

LSDB Link State Database

MTTR Mean Time To Repair

xxiv Abbreviations

NTP Network Time Protocol

OSPF Open Shortest Path First

PDF Probability Density Function

QoS Quality of Service

RG Relation Graph

RIB Routing Information Base

SDN Software-Defined Networking

SLA Service Level Agreement

SLO Service Level Objectives

TCP Transmission Control Protocol

TTL Time to Live

UDP User Datagram Protocol

VaR Value-at-Risk

1 Introduction

Modern computer and communication networks consist of several intercon-
nected devices which are configured and maintained to forward traffic associated
with network services of different demands. Considering the critical role of the
Internet today, high dependability requirements are imposed on the main com-
munication infrastructure. However, the capability of the network to deliver the
transmitted messages to the respective destinations may be affected by forward-
ing loops, link congestions, and inevitable failures of network elements. Thus,
various recovery, loop avoidance, and congestion control measures are deployed to
avoid service disruption and reduce the related consequences for customers and
providers.

In flow-oriented networks, packets representing a single traffic flow are for-
warded in a consistent way. It is possible to handle particular flows differently,
according to the corresponding service requirements and importance, which is
a strong advantage. At the same time, due to the specific way some flow-oriented
networks operate, the existing methods used in classical packet networks may
not be able to protect traffic flows from forwarding loops, impact of failures, and
potential packet losses caused by congested links. Thus, in this dissertation, the
corresponding solutions are proposed and evaluated in the context of the selected
flow-oriented network types to improve their dependability from the user’s per-
spective. Further, in the case of Software-Defined Networks, an explicit definition
of the dependability requirements for traffic flows is provided, the corresponding
measure of decreased dependability is introduced, and a complete risk assessment
scheme is proposed to enable service providers to estimate the risk of violation
of Service Level Agreements with respect to the proposed metric. Based on the
estimated risk and the results reported in [37], service providers may differentiate
the recovery mechanisms used to protect particular traffic flows more effectively,
taking into account the related expenditures. One part of the evaluation of the

2 1. Introduction

presented solutions is based on experiments in two laboratory networks including
both the custom-built prototype routing devices and off-the-shelf network equip-
ment, while the other part relies on discrete-event flow-level simulation using the
specifically-designed and implemented tools.

The evaluation results have shown that the impact of failures, forwarding
loops, and link congestions on traffic flows in the selected flow-oriented networks
may be reduced with the aid of the proposed solutions, improving the overall
network dependability perceived by users. Two of the proposed solutions have
been implemented in prototype network devices and successfully evaluated in the
laboratory environment containing professional network equipment. In addition,
the presented service degradation measure and the risk assessment scheme for
Software-Defined Networks have the potential to enable service providers to select
the desired recovery mechanisms more effectively with respect to the related
expenditures and the estimated risk of violation of Service Level Agreements
signed with customers.

The dependability of computer and communication networks is discussed in
more detail in Section 1.1, while Section 1.2 familiarizes the reader with the general
concept of flow-oriented networks and specifies the corresponding dependability
objectives with respect to traffic flows. Finally, Sections 1.3-1.5 present the main
contributions of this dissertation, formalize the scope and thesis, and outline the
organization of the following chapters. Some parts of this dissertation have been
modified based on the comments received from the reviewers.

1.1 Dependability of Computer and Communica-
tion Networks

Computer and Communication Networks are usually large and complex systems
consisting of several different interconnected devices. Each of the devices may
fail due to various reasons and the corresponding system is expected to be able
to deal with such failures. To describe the ability of the system to maintain
correct operation, the concept of dependability is used. Dependability and its
attributes are discussed in Section 1.1.1, while Section 1.1.2 identifies the main
issues affecting the dependability of computer and communication networks.

1.1.1 Definitions and Attributes of Dependability
The understanding of dependability and the related concepts in the context of
computer and communication networks has been summarized in [10]. The authors
provide the following two alternative definitions of network dependability:

1.1 Dependability of Computer and Communication Networks 3

Fig. 1.1: Different attributes of dependabililty, based on [10].

1. “Dependability is the ability to deliver service that can justifiably be
trusted.” [10]

2. “Dependability of a system is the ability to avoid service failures that are
more frequent and more severe than is acceptable.” [10]

While the first definition is based on the justification of trust related to the
delivered network service and generalizes such concepts as availability, reliability,
and others, the second definition specifies the criterion that can be used to decide
whether the service can be perceived as dependable, even if some failures occurred.
Further, the authors also discuss other definitions that have been proposed in the
literature, including standards.

Dependability is closely related to its attributes which are summarized in
Figure 1.1 based on information provided in [10]. The first attribute, availability,
represents the readiness of the system for provisioning of correct service. Reliability
emphasizes the continuity of the correct service. Then, safety of the system implies
that there will be no catastrophic consequences on the environment and the users
as a result of the system’s operation. Integrity means that no improper alterations
have been introduced into the system. Finally, maintainability of the system
describes its ability to undergo repairs and modifications.

1.1.2 Different Factors Affecting the Dependability of Com-
puter and Communication Networks

According to the definitions provided in Section 1.1.1, as well as the related
attributes of dependability, all conditions and events having negative impact on
at least one attribute of dependability will also affect the dependability of the
entire system. In particular, the following factors may decrease the dependability
of computer and communication networks:

– failures of network elements (links, nodes, other devices, software mod-
ules) [34, 40, 69];

– maintenance activities [34, 69];
– human errors [69];
– routing loops [69];
– link congestions [43, 69];

4 1. Introduction

– network topology, structural complexity [49, 68];
– attacks on the communication infrastructure (e.g., the attribute of in-
tegrity [47]).

The solutions proposed in this dissertation address the dependability issues
related to the following three factors: failures of network elements, routing loops,
and link congestions.

1.2 The Concept of Flow-Oriented Networks
In the case of the basic Internet architecture, packets are handled with no guar-
antees related to the Quality of Service (QoS). At the same time, one of the
most important advantages of flow-oriented networks is their potential to provide
QoS differentiation for particular traffic flows. Considering the existing related
proposals, the definition of a traffic flow is not uniform, however. To illustrate
different possible approaches, the selected examples are discussed in Section 1.2.1.
For an extended discussion, the reader is referred to [26, 87].

The flow-oriented operation of a network may introduce additional requirements
with respect to the way the dependability is provisioned in the network. Thus,
Section 1.2.2 identifies the dependability objectives in the context of traffic flows.

1.2.1 Definition of a Traffic Flow
Before the transmitted packets can be handled by the network as a single traffic
flow, all relevant network devices should recognize flows in the same way. One of
the general definitions of a traffic flow is as follows [75]:

“By flow we mean a flight of datagrams, localized in time and space
and having the same unique identifier.”

It was proposed in the context of the Flow-Aware Networking architecture. The
authors explain that the packets of a single flow are spaced by no more than
a specific interval (usually a few seconds), and that they are observed at a specific
network interface — hence the localization in time and space, respectively. Further,
the authors emphasize that even though the unique identifier may be derived
from different IPv4 or IPv6 header fields, it is desired that users have as much
flexibility as possible with respect to how the network should recognize traffic
flows. An example classification scheme based on IPv4 header fields is the 5-tuple
which includes the following descriptors:

– source address;
– destination address;
– source port number;
– destination port number;

1.3 Scope and Thesis 5

– identifier of the transport protocol (e.g., TCP or UDP).
In the case of IPv6, the respective structure might include such header fields

as source address, destination address, and the Flow Label field [6]. Note that
according to the corresponding specification, a Flow Label of zero indicates packets
that have not been labeled. In addition, it needs to be emphasized that header
fields are not protected against unauthorized modifications en route.

The classification scheme based on the header fields of IP packets was also
proposed in the context of other flow-oriented architectures, such as those described
in [45, 60, 70, 84, 88]. It is worth noting that the DS (Differentiated Services)
field [73] may also be considered as one of the flow descriptors (for example,
see [84]). Further, in Software-Defined Networks (SDNs) and OpenFlow, the flow
classification scheme is flexible and allows for the use of different combinations of
header fields [60].

1.2.2 Dependability Objectives in Relation to Traffic Flows
The previously-discussed definitions of a traffic flow imply that packets of a single
flow are forwarded through the network in a consistent way. It means that to
ensure a reliable transmission, the entire path between the source and destination
nodes must be available during the time when the flow is active. Furthermore,
in the event of failure, the network should be able to move the flow to a backup
path between the same pair of nodes. Moreover, the routing of flows should take
into account possible forwarding loops and link congestions, to limit packet losses.
In addition, in the context of the customer-provider relationship, the formal
requirements specified in a Service Level Agreement (SLA) as the dependability
Service Level Objectives (SLOs) must also be satisfied by the service provider to
avoid the related SLA violation penalty. Thus, the dependability objectives with
respect to traffic flows can be summarized as follows:

– successful end-to-end transmission in the presence of failures of network
elements;

– avoiding forwarding loops;
– avoiding link congestions;
– meeting the dependability-related SLOs specified for individual flows or
predefined groups of flows.

1.3 Scope and Thesis
In this dissertation, four different solutions are proposed to enhance the de-
pendability of the selected flow-oriented network types with respect to possible
occurrences of persistent forwarding loops, link congestions (two solutions), and
failures of network elements. In addition, in the case of Software-Defined Net-

6 1. Introduction

works, an explicit definition of the dependability requirements for traffic flows is
provided, the corresponding measure of decreased dependability is introduced,
and a complete risk assessment scheme is proposed to enable service providers to
estimate the risk of violation of SLAs with respect to the proposed metric.

To support the evaluation of the congestion control algorithms and the risk
assessment scheme, a discrete-event flow-level network simulator has been designed
and implemented. The proposed solutions dealing with forwarding loops and
failures of network elements have been implemented in the custom-built prototype
routing devices and they were evaluated in two laboratory networks including
off-the-shelf network equipment.

The evaluation results have shown that the impact of failures, forwarding
loops, and link congestions on traffic flows in the selected types of flow-oriented
network may be reduced with the aid of the proposed solutions, improving the
overall network dependability perceived by users. In addition, the presented
service degradation measure and the risk assessment scheme for SDNs have the
potential to enable service providers to select the desired recovery mechanisms
more effectively with respect to the related expenditures and the estimated risk of
violation of the dependability requirements of SLAs signed with customers. Thus,
the following thesis of this dissertation has been proposed and proved:

It is possible to improve the dependability of the selected
flow-oriented network types using the proposed solutions to
deal with failures, forwarding loops, and link congestions,
and to estimate the risk of violation of the dependability
SLOs related to traffic flows in SDNs with the aid of the
proposed risk assessment scheme.

The related research objectives considered in the dissertation are as follows:
1. Design, implement, and evaluate a method to prevent persistent forwarding

loops from occurring in flow-oriented networks in which forwarding decisions
are made based on the typical routing table and an independent flow table;

2. Design, implement, and evaluate a method to protect traffic flows against
multiple link or node failures in flow-oriented networks in which forwarding
decisions are made based on the typical routing table and an independent
flow table;

3. Design, implement, and evaluate one or more methods to decrease the overall
number of fully-loaded links in centrally-managed flow-oriented networks,
such as SDNs, reducing the potential packet losses in the entire network;

4. Clarify the understanding of dependability in the context of traffic flows
in SDNs; propose the corresponding measure of decreased dependability
in SDNs; design, implement, and evaluate a method to estimate the risk

1.4 Previously Published Material 7

of violation of the dependability-related SLOs specified for traffic flows or
predefined groups of flows in SDNs.

1.4 Previously Published Material
Chapter 2 revises two earlier concepts of loop prevention strategies that have been
published in the following document:

[48] A. Kamisiński, A. Jajszczyk, J. Domżał, and R. Wójcik. Sposób usuwania
pętli w rutingu pakietów w sieci teleinformatycznej [A method for resolution
of routing loops in a telecommunication network], December 2014. Polish
patent application, no. P.410390.

Both concepts were designed to solve the problem of forwarding loops in specific
flow-oriented network types in which traffic flows are forwarded based on entries
stored in an independent flow table, instead of always using the current entries
stored in the typical routing table. The foundation of the improved algorithm
presented in this dissertation has been implemented in a router prototype together
with the solution introduced in Chapter 3 to provide an effective countermeasure
against persistent routing loops.

Chapter 4 is based on the following publication:

[52] A. Kamisiński, J. Domżał, R. Wójcik, and A. Jajszczyk. Two Rerouting-
Based Congestion Control Algorithms for Centrally Managed Flow-Oriented
Networks. IEEE Communications Letters, 20(10):1963–1966, Oct 2016. ISSN
1089-7798. doi: 10.1109/LCOMM.2016.2594774.

The main aim of the approach shown in this paper was to decrease the negative
impact of link congestions on traffic flows in SDNs. In this case, the considered
aspect of network dependability was related to the possibility of packet losses
within particular traffic flows due to fully-loaded links, which might be interpreted
by some customers as transient unavailability of the service. Two different
algorithms based on reallocation of flows were proposed to reduce the number of
fully-loaded links in the network, and thus improve network dependability from
the perspective of the customers.

Chapter 5 is based on the following research paper that will be presented at the
2017 IEEE Conference on Network Function Virtualization and Software-Defined
Networks (NFV-SDN) — Fourth Workshop on Network Function Virtualization
and Programmable Networks (NFV-SDN’17-NFVPN):

http://dx.doi.org/10.1109/LCOMM.2016.2594774

8 1. Introduction

[51] A. Kamisiński, B. E. Helvik, A. J. Gonzalez, and G. Nencioni. Assessing
the Risk of Violating SLA Dependability Requirements in Software-Defined
Networks. In IEEE NFV-SDN 2017 - Fourth Workshop on Network Function
Virtualization and Programmable Networks (NFV-SDN’17-NFVPN), Berlin,
Germany, Nov 2017. Accepted for publication.

The contributions presented in this paper include an explicit definition of the
dependability requirements for traffic flows in SDNs, the corresponding measure of
decreased dependability, and a complete risk assessment scheme to enable service
providers to estimate the risk of violation of SLAs with respect to the proposed
metric. The related research has been done in an international research team.

The following publications coauthored by A. Kamisiński are also related to
the issues studied in this dissertation:

[49] A. Kamisiński, P. Chołda, and A. Jajszczyk. Assessing the Structural
Complexity of Computer and Communication Networks. ACM Computing
Surveys, 47(4):66:1–66:36, May 2015. ISSN 0360-0300. doi: 10.1145/2755621.

[47] A. Kamisiński and C. Fung. FlowMon: Detecting Malicious Switches in
Software-Defined Networks. In Proceedings of the 2015 Workshop on Au-
tomated Decision Making for Active Cyber Defense, SafeConfig ’15, pages
39–45, Denver, Colorado, USA, 2015. ACM. ISBN 978-1-4503-3821-9. doi:
10.1145/2809826.2809833.

[33] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisiński. A Fault-
Tolerant and Consistent SDN Controller. In 2016 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6, Washington, DC, USA, Dec
2016. doi: 10.1109/GLOCOM.2016.7841496.

[71] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisiński.
Availability Modelling of Software-Defined Backbone Networks. In 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), pages 105–112, Toulouse, France, June 2016.
doi: 10.1109/DSN-W.2016.28.

[90] R. Wójcik, J. Domżał, Z. Duliński, G. Rzym, A. Kamisiński, P. Gawłowicz,
P. Jurkiewicz, J. Rząsa, R. Stankiewicz, and K. Wajda. A survey on methods
to provide interdomain multipath transmissions. Computer Networks, 108:
233–259, 2016. ISSN 1389-1286. doi: 10.1016/j.comnet.2016.08.028.

[27] J. Domżał, R. Wójcik, D. Kowalczyk, P. Gawłowicz, P. Jurkiewicz, and
A. Kamisiński. Admission control in Flow-Aware Multi-Topology Adaptive
Routing. In 2015 International Conference on Computing, Networking and

http://dx.doi.org/10.1145/2755621
http://dx.doi.org/10.1145/2809826.2809833
http://dx.doi.org/10.1145/2809826.2809833
http://dx.doi.org/10.1109/GLOCOM.2016.7841496
http://dx.doi.org/10.1109/DSN-W.2016.28
http://dx.doi.org/10.1016/j.comnet.2016.08.028

1.4 Previously Published Material 9

Communications (ICNC), pages 265–269, Garden Grove, CA, USA, Feb 2015.
doi: 10.1109/ICCNC.2015.7069352.

All the published research papers, except for the patent application [48], have
been subjected to a thorough review process before final publication. The work
presented in [51] has been accepted for publication and will be presented at the
2017 IEEE Conference on Network Function Virtualization and Software-Defined
Networks (NFV-SDN) — Fourth Workshop on Network Function Virtualization
and Programmable Networks (NFV-SDN’17-NFVPN).

In [49], the notion of structural complexity was defined and illustrated in the
context of computer and communication networks. Different metrics were assessed
with respect to their sensitivity to various topology complexifying factors, as
well as their potential applicability to dependability-aware planning of network
topologies. In addition, the considered indices were compared based on the
underlying mathematical concept.

The two solutions presented in [47] address an important issue of how to detect
compromised switches in SDNs. A new approach is proposed that is based on
the analysis of the statistics reported periodically by switches to the logically-
centralized controller. The analysis was focused on the following two types of
malicious behavior: packet dropping and packet swapping (i.e., forwarding packets
through network interfaces that have not been configured as output interfaces
for the affected traffic flows). The simulation results have confirmed that the
proposed methods are feasible and can be used to improve the security of SDNs,
and thus reduce the potential impact on network dependability. This research
has been done in an international research team.

The main contribution of [33] is a new method to design a fault-tolerant Master-
Slave SDN controller that is able to balance consistency and performance. As the
logically-centralized SDN controller is required to ensure the correct operation of
the network, it needs to be protected against failures. At the same time, different
recovery mechanisms may lead to inconsistencies in the network state recorded by
particular instances of the controller. The related proposals are discussed, and
a solution is proposed that takes into account such factors as the consistency of the
network state, the latency of the controller, and the number of flows handled by
the controller during one second. This research has been done in an international
research team.

The logically-centralized control plane of SDNs introduces new challenges
influencing the dependability of such networks. Thus, a two-level availability
model was proposed in [71] that allows to determine and compare the availability
of an SDN with the availability of the typical IP network having the same topology.
The structural part of the model is related to the network topology, while the
dynamic part deals with the state of particular network elements and is based

http://dx.doi.org/10.1109/ICCNC.2015.7069352

10 1. Introduction

on the corresponding Markov models. The evaluation is based on two real-world
backbone network topologies of different size. It is shown that operation- and
management-related failures may have more significant impact on the overall
availability of SDN backbone networks, compared to typical IP networks. This
research has been done in an international research team.

In [90], different existing methods for the interdomain multipath transmission
were surveyed. The selected approaches were described and compared based on
various criteria.

Finally, [27] presents two admission control mechanisms for Flow-Aware Multi-
Topology Adaptive Routing. Both approaches are based on a strategy that rejects
the incoming traffic flows if the preferred forwarding link or path is congested.
In addition, an extension to both methods is proposed to handle traffic flows of
significant importance, such as emergency calls.

1.5 Organization
The remaining part of this dissertation is divided into six chapters. Chapter 2
considers the importance of forwarding-loop avoidance strategies, discusses the
related work, and presents a solution for the selected type of flow-oriented network.
Chapter 3 reviews the selected existing IP Fast Reroute strategies and introduces
the corresponding solution for the selected type of flow-oriented network, allowing
for an effective protection against multiple failures. The proposed method was im-
plemented in a prototype router device together with the persistent-loop avoidance
strategy introduced in the previous chapter. The evaluation results have shown
that the total number of lost packets in the network can be reduced significantly
with the aid of the proposed method, compared to the basic flow-oriented network
operation mode and its enhanced variant including a Loop-Free Alternates-based
protection scheme [9]. Chapter 4 introduces two congestion control algorithms
designed for centrally-managed networks, such as SDNs. Both algorithms rely
on flow rerouting based on the obtained values of metrics differentiating the
candidate paths. Further, Chapter 5 deals with the dependability of traffic flows
in SDNs. First, the corresponding requirements are explicitly defined. Second,
the measure of decreased dependability is proposed, and based on this measure,
a risk assessment scheme is introduced that allows for the estimation of the SLA
violation risk with respect to the proposed measure. Chapter 6 presents the design
and the selected implementation details related to the discrete-event flow-level
network simulation tools created as an integral part of the research. Finally,
Chapter 7 summarizes the results and concludes the dissertation.

2 Combating Routing Loops

In dynamic computer and communication networks, the number of devices and
their interconnection scheme may change over time. The state of a network is
affected by planned maintenance activities and by unplanned events, such as
failures of network elements [69]. If a static routing scheme is used in the network,
the recovery options following link or node failures are limited to the use of
the preconfigured alternative routes, which may not always guarantee successful
transmission, even if the network graph remains connected1. Thus, to make
sure that all destination nodes are reachable from the selected source nodes in
a connected network graph, a dynamic routing protocol is deployed in the network.
Whenever a network element fails or becomes available after an inactivity period,
the dynamic routing protocol in use determines the new routing scheme based
on the selected information about the state of network elements. At the same
time, during or after the recomputation of the routing scheme in the selected
flow-oriented networks, it may happen that some packets are forwarded along
closed paths, which prevents them from reaching the corresponding destination
nodes. Such a phenomenon is highly undesirable, as it increases the overall
resource utilization in the network and may also cause traffic loss and increased
transmission delay. To deal with this issue, a suitable loop prevention mechanism
needs to be deployed in the network. The selected existing solutions are discussed
in Section 2.1, while the proposed algorithm designed to prevent persistent
forwarding loops in some flow-oriented networks is presented in Section 2.2. The
algorithm is used and evaluated as an integral part of the solution proposed in
Chapter 3. Finally, Section 2.3 summarizes the discussion, outlining the main
challenges and open issues.

1A graph is connected if and only if each of its nodes is reachable from the other nodes
belonging to the same graph.

12 2. Combating Routing Loops

2.1 Related Work
Transmission of packets between the source and destination nodes implies that the
packets will be forwarded along finite paths. Thus, a mechanism to limit the total
forwarding time of each packet has already been introduced in the IPv4 Internet
Protocol. According to the specification of the IPv4 protocol [77], each packet
contains the related header including the Time to Live (TTL) field. Originally,
the TTL denoted the maximum lifetime of a packet and was expressed in seconds.
However, such a definition required that additional measurements be done by
network routers and the practical use of this field shifted towards limiting the
maximum allowed number of hops (transit routers) along the forwarding path.
The initial value of TTL is selected by the sender of the packet, while each of
the following nodes on the path decreases the TTL by one. The packet can be
forwarded by network devices for as long as the corresponding TTL value stored
in the packet is greater than 0. Otherwise, if the TTL value equals 0 and the
packet has not reached its destination, the packet is dropped. It is worth noting
that although such a mechanism does not prevent routing loops from occurring
in the network, it guarantees that packets will not enter infinite routing loops,
provided that their TTL values are not increased enroute.

A similar approach is used in the IPv6 Internet Protocol [21]. In this case, the
corresponding field in the IPv6 header is called Hop Limit, which is an explicit
reference to the maximum allowed number of hops a packet can visit on its
fowarding path. At the same time, until recently, the specification of the protocol
remained ambiguous with respect to the case when a packet having the Hop
Limit value equal to 0 is received by a network node2 [20]. In particular, if the
8-bit unsigned Hop Limit value is decreased further, it will be interpreted as 255
(instead of −1) and the packet will be forwarded to the next node. Furthermore,
it was not clear whether the packet with the Hop Limit value equal to 0 should
be accepted or dropped if received by a non-forwarding node. Both issues have
been resolved in the newest specification of the IPv6 protocol published in July
2017 [21].

The strategy to deal with routing loops based on the TTL-like mechanism was
also employed in Flow-Aware Multi-Topology Adaptive Routing (FAMTAR) [88,
89]. Due to the way traffic flows are configured and routed in FAMTAR, an
effective solution was needed to eliminate possible infinite routing loops following
failures of network elements. In particular, whenever a new flow arrived during
the recomputation of the routing scheme in the network, the packets of this flow
could be forwarded along a path which contained a loop. Once the route for the
flow was configured, it would not be modified later by the routing protocol, which

2See further: RFC 2460 Errata, report from February 24, 2015 (Errata ID: 4279), downloaded
on: March 25, 2017.

2.1 Related Work 13

would inevitably result in a persistent routing loop. The solution proposed in [89]
stores the first observed TTL value for each new flow received by a node and
removes a flow from the internal Flow Forwarding Table (FFT) whenever the TTL
value of a received packet of this flow differs from the original one. In such a case,
the flow may be registered again with the new TTL value and a different output
interface. It is worth noting that the proposed solution is prone to unauthorized
modifications of the TTL value stored in forwarded packets, and thus should
only be relied on in trusted network environments. In Section 2.2, an alternative
strategy is proposed that does not suffer from this issue.

An effective loop prevention strategy in the inter-domain scenario was employed
in the fourth version of the Border Gateway Protocol (BGP 4) [79]. According to
the specification of the protocol, Autonomous System-level routing loop detection
is performed based on the AS_PATH attribute of BGP routes and assumes
that the identifier of a local Autonomous System (AS) cannot appear in the
analyzed AS paths. While this approach requires that an AS path be specified
for each advertised BGP route, it is a reasonable trade-off, considering that the
inter-domain routing scheme is expected to be stable for a long time. Compared
to the previously discussed solutions, this mechanism is an integral part of the
routing protocol itself. At the same time, it illustrates a valid approach that could
also be used in independent loop prevention modules.

Instead of dropping packets of a traffic flow that entered a routing loop, it is
possible to send the packets back towards the source node, so that the preceding
node on the active path will detect the routing loop and change the preferred output
interface for the related flow. This observation laid the foundation for different
solutions proposed for packet networks to mitigate the consequences of network
failures, including routing loops. One such solution, Failure Insensitive Routing
(FIR) [64], relies on the use of interface-specific forwarding and backwarding tables.
When a transient link failure occurs in the network and a link state routing protocol
is used, FIR prevents the dissemination of the related link state advertisement
and performs local rerouting based on a backwarding table. Nodes that have not
been notified of the failure can detect it by comparing the expected and actual
identifiers of network interfaces on which packets are received. This allows the
nodes to select an alternative next hop based on the precomputed interface-specific
forwarding tables. Further, it is shown in the paper that FIR can successfully
deal with all single link failures, provided that the appropriate alternative paths
exist in the network. The other related solution, U-turn Alternates for IP/LDP
Fast-Reroute [8], extends the IP Fast Reroute [9, 82] concept by proposing the
second type of an alternate next hop, together with the corresponding selection
method. The main difference from the original Loop-Free Alternates concept is
that if an adjacent node U of the local node S forwards packets to destination
D via S (S is its primary next hop), then it is possible to deliver packets from

14 2. Combating Routing Loops

S to D via U if only U has a loop-free node-protecting alternate corresponding
to destination D. Thus, in the event of failure of a local network interface or an
adjacent node, S uses the precomputed list of alternate next hop nodes for each
destination prefix to determine whether the incoming packets can be rerouted to
reach the respective destination nodes via suitable adjacent nodes. At the same
time, when using Loop-Free Alternates instead of U-turn Alternates, a similar
action could lead to a routing loop. U-turn Alternates is a mechanism that is
able to deal with single node or link failures, just as the third related solution:
Efficient SCan for Alternate Paths (ESCAP) [91]. In ESCAP, backup paths
between source and destination nodes are determined in advance. Consequently,
for each destination node, the identifier of one backup next hop together with the
identifier of the corresponding output port are stored in the routing table next to
the fields describing the destination, the primary next hop, and the output port.
The decision which of the two ports (i.e., the primary or backup port) to use
in the case of failure is made based on the known input port on which a packet
was received. In particular, it may happen that packets are forwarded back and
ESCAP is able to deal with this case without introducing routing loops in the
network, as long as there exists at least one active path to the selected destination
node. Another solution closely related to ESCAP was introduced in [7]. The
DisPath IP Fast Reroute scheme provides protection against all single link or node
failures with the aid of minimum-cost node-disjoint paths. Failures and routing
loops are detected whenever packets are received on the corresponding primary
output interfaces, which means that the downstream nodes have sent the packets
back towards the source nodes. Each node supporting DisPath maintains, in its
routing table, an additional pointer to a backup next hop for every destination.
The corresponding alternative paths are guaranteed to be loop-free, as long as the
original network graph is biconnected, all nodes support DisPath, and no more
than one network element has failed.

2.2 Dealing with Routing Loops in Specific Flow-
Oriented Network Types

In flow-oriented networks, packets belonging to the same connection are forwarded
in a consistent way. To introduce flow-level service differentiation or to respond
to the selected network events effectively, traffic flows may be routed according to
a scheme that is different from the default scheme based on a routing table. In such
a case, additional mechanisms may be required to deal with persistent forwarding
loops in the network. FAMTAR is an example flow-aware adaptive routing
technique which is known to suffer from persistent forwarding loops following
one or more network failures, unless an additional loop prevention mechanism

2.2 Dealing with Routing Loops in Specific Flow-Oriented . . . 15

Fig. 2.1: A Flow Forwarding Table (FFT) and the typical routing table maintained on each
of the nodes R1-R7 of a flow-oriented network. Both tables are used by the proposed loop
prevention algorithm.

is deployed in the network, such as the TTL-based solution presented in [89].
However, the solution recommended for FAMTAR is vulnerable to unauthorized
modifications of the TTL value stored in forwarded packets, and thus should
only be relied on in trusted network environments. Otherwise, the potential
attacker may either modify the TTL value within particular flows to extend the
duration of transient routing loops, or inject packets with invalid TTL values
into the network to disrupt the multipath transmission of flows and increase
routing instability. Both factors can degrade the overall network performance
severely, also impacting the dependability of network services. In this section,
a new algorithm to prevent persistent forwarding loops is proposed that may
be deployed in FAMTAR networks. The algorithm was designed based on the
previous experience from the early concepts introduced in [48]. It does not suffer
from the TTL modification issues identified above and can also be adapted to
meet the specific operation requirements of other flow-oriented networks.

The general concepts related to the considered network model are introduced
in Figure 2.1. As presented in the figure, the transmission of packets is organized
in traffic flows. Flows are distinguished from each other based on unique Flow
Identifiers (FIDs) which may be derived from such parameters as the corresponding

16 2. Combating Routing Loops

source and destination address, the source and destination port number, and the
identifier of the transport-layer protocol in use. Whenever a new flow arrives at
a router (e.g., router R2), its identifier is stored in the local Flow Forwarding
Table (FFT) together with additional flow descriptors. Routing decisions at each
node are made based on information stored in the FFT and in the local routing
table. Expired flows are removed from the FFT based on the observed inactivity
period. It is assumed that the capacity of FFTs and routing tables will not be
exceeded during normal network operation3. Further, without losing generality,
it is assumed that network interfaces of each router are assigned locally-unique
positive indices (i.e., 1, 2, 3, . . .). Whenever a failure is detected, then all nodes
adjacent to the failed network element remove entries corresponding to the affected
incoming flows from their FFTs. In addition, once the local routing process at each
node has finished the recomputation of the routing scheme following a change of
the network topology, all FFT entries explicitly marked as temporary are removed
from the table.

2.2.1 A New Algorithm to Prevent Persistent Routing Loops
The proposed algorithm is shown in Figure 2.2 and represents a strategy to avoid
persistent routing loops in flow-oriented networks in which forwarding decisions
are made based on the typical routing table and an independent Flow Forwarding
Table (FFT).

In the first step, once a packet of a new traffic flow is received on network
interface i ∈ N, the flow is classified and assigned a unique identifier FID. For
locally-originated flows, the input interface identifier i is set to 0. As the new flow
has not yet been registered in the FFT, its preferred output interface j ∈ N is
determined based on the routing table. Then, the set of related flow descriptors
is added as a new entry to the FFT. The set contains FID, i, j, and t, where t is
the timestamp of the last received packet of the related flow. In the next steps,
the value of t is updated and the packet is forwarded via interface j.

In the case of a previously established traffic flow for which the corresponding
FID key already exists in the FFT, the expected input and output interfaces (i′
and j, respectively) are determined based on the FFT, and then the algorithm
compares the values of i and i′. If they match each other, it means that the packet
was received on the expected input interface and it can be processed further
as discussed in the previous case. Otherwise, the following different cases are
considered:

– the packet represents a locally-originated flow, or the corresponding FFT
entry has been marked as temporary (in both cases: i′ = 0);

3Note that in real network environments, it is necessary to take into account different limits
of numerous hardware devices, as well as the expected load in particular deployments.

2.2 Dealing with Routing Loops in Specific Flow-Oriented . . . 17

Fig. 2.2: The proposed algorithm designed to prevent persistent forwarding loops in the
considered type of flow-oriented network.

– the packet has been received on the preferred output interface, which means
that i = j;

– the packet has been received on a different network interface i /∈ {i′, j}.
In the first situation, the corresponding FFT entry is marked as temporary

and the packet follows the typical processing scheme. In the second situation, the
received packet must have been diverted by one of the downstream nodes along

18 2. Combating Routing Loops

the original path, possibly due to failure. Thus, the algorithm will forward the
packet back towards the source node, so that the upstream nodes on the path
can mark the corresponding flow entries as temporary4. During this process, the
algorithm sets j to i′, then i′ to 0, and finally, it updates the corresponding FFT
entry using the new values and marks it as temporary to ensure that the original
route eventually becomes obsolete. In the third situation, the packet is forwarded
back via its actual input interface to initiate the backward propagation sequence.

The proposed algorithm is used and evaluated as an integral part of the
solution proposed in Chapter 3. The decision not to evaluate a stand-alone
implementation of the algorithm was made based on an observation that in real
computer networks, whenever the duration of the convergence process of the
routing protocol in use is longer than the time needed for the proposed mechanism
to redirect traffic flows to the corresponding source nodes, some packets may still
be forwarded along closed paths, leading to forwarding loops, because the source
nodes have not determined the alternative paths to the destination nodes yet.
At the same time, if the proposed solution is combined with a suitable IP fast
reroute mechanism and the source nodes can reach the intended destinations via
different network interfaces, the source nodes can redirect traffic flows immediately,
avoiding forwarding loops. For a detailed discussion of the related experiments,
the reader is referred to Sections 3.2.7-3.2.8. It is worth noting that the other
methods proposed in Chapters 4-5, focused on centrally-managed flow-oriented
networks, do not rely on the algorithm presented above, as it is assumed that the
logically-centralized network controller maintains a complete view of the network
state and it is able to reroute traffic flows when necessary.

2.2.2 Deployment Considerations and Limitations
The proposed solution is suitable for deployment in such networks in which routing
decisions are made based on the typical routing table and an independent flow
table. Thus, beyond the related modifications of the routing devices, it is required
that the flow table contain all specified fields for the corresponding traffic flow
descriptors, as described in Section 2.2.1. In addition, as the proposed algorithm
relies on backward propagation of packets to make the upstream nodes mark the
flow entries as temporary, it is recommended that nodes supporting the presented
algorithm be adjacent to each other, whenever possible.

The proposed loop prevention strategy has one important limitation. If it is
deployed only on a fraction of nodes in the network, it may lead to transient
forwarding loops, depending on the network topology and paths of particular

4Note that this mechanism will also work with asymmetric routing, as each flow entry contains
a reference to the input interface for the flow. At the same time, the involved routers that do
not support the proposed algorithm may cause transient forwarding loops until the routing
protocol reconverges.

2.3 Summary 19

flows. In some specific cases (e.g., when several incompatible routing devices
appear one after another on the flow’s path), more than one update cycle of the
routing table may be needed to interrupt all forwarding loops. One of the possible
solutions to this issue is to remove the temporary flow entries from the flow table
also during a fixed interval after the routing table is updated.

2.3 Summary
In this chapter, an algorithm was introduced that is able to prevent persistent
forwarding loops in networks in which routing decisions are made based on
the typical routing table and an independent flow table. The operation of the
algorithm is discussed in the context of its advantages and disadvantages, as
well as the related concepts. In addition, the possible deployment challenges are
identified, together with the potential solutions.

3 Responding to Failures of Network
Elements

Modern computer and communication networks consist of several interconnected
devices which are configured and maintained to forward traffic associated with
network services of different demands. Considering the critical role of the Internet
today, high dependability requirements are imposed on the main communication
infrastructure. However, failures are inevitable and various recovery measures
are deployed to reduce the consequences of service disruption for customers and
providers.

In flow-oriented networks, packets representing a single traffic flow are for-
warded in a consistent way. Depending on the specific way flows are configured
and handled in a network, the recovery process may either be started by the
forwarding node that has first detected a failure, or it may be managed centrally —
for example, in cooperation with a network controller. In the first case, the existing
recovery mechanisms designed for classical packet networks may still be able to
forward traffic flows along modified routes, so that they reach the corresponding
destinations. However, there are two related issues that need to be addressed.
Firstly, routing loops may take place due to an inconsistent routing scheme in
the network1. Secondly, it may happen that no alternative route for a given
source-destination pair is known prior to the failure, and such a route will have
to be determined before packets of the related flows can be sent further. As this
process may take significantly more time than switching traffic to a preconfigured
backup path, it may not be acceptable for certain types of network service due to
their strict quality requirements. As an example, it is assumed that the real-time
voice communication service should not be interrupted or delayed for longer than
50 ms, otherwise the users may start experiencing service degradation [83]. Thus,
the capability of the network to provide line-speed recovery to traffic flows is of

1For a detailed discussion and the proposed solution for a specific type of flow-oriented
network, the reader is referred to Chapter 2.

22 3. Responding to Failures of Network Elements

great importance. Since most of the existing solutions offering such a capability
either cannot deal with multiple simultaneous failures in the network in a flexible
way2, or they are incompatible with existing environments through the use of
non-standard signaling methods, such as those using additional bits stored in
forwarded packets, a new solution is presented in Section 3.2 that aims at solving
these issues, while remaining transparent to traffic flows. Due to its relatively
simple design, passive operation as an extension to the selected routing protocol
in use, low memory requirements, and interoperability with off-the-shelf network
equipment, the proposed solution may be deployed gradually in existing computer
and communication networks without sacrificing the benefits offered by the routing
protocol in use.

In the second case, when the recovery process is coordinated by a network
controller, the related delay will depend on the time that is needed to notify
the controller about the failure, as well as the time needed by the controller
to trigger the appropriate local or global recovery mechanisms [61]. At the
same time, if the desired recovery mechanisms can be dynamically configured in
forwarding devices in advance, the overall time required to switch traffic flows to
the corresponding backup paths will be shorter, because the decision to trigger
the appropriate mechanism will be made locally. It is worth noting that such
a strategy is closer to the first considered case, but it also has a major advantage:
the preconfigured backup paths may be modified automatically by the controller
based on the observed network operation conditions. In particular, it might be
desired in networks based on the Software-Defined Networking concept. Since the
logically-centralized SDN controller collects and maintains complete information
about the state of particular traffic flows and the network itself, it can tune the
recovery mechanisms frequently to protect the traffic flows better. Further, the
solution presented in Section 3.2 can also be employed in this scenario, provided
that the relation graphs are determined by the network controller, which then
sends the graphs to the corresponding forwarding nodes. On the other hand, an
important related issue is the dependability of the network controller itself. For
a detailed discussion in the case of SDN networks, the reader is referred to [33].

The general classification of recovery procedures in computer and communica-
tion networks is based on the following five principles [15, 16]:

– layer of operation (one or multiple involved network layers [18]);
– recovery path configuration technique (backup paths computed on demand
or in advance, before a failure occurs);

– use of network resources (dedicated resources, shared resources, or no
reservation of resources);

– scope of the recovery procedure (global, segment, or local);

2For example, some techniques are based on backup paths computed in advance that can
only protect traffic flows against failures of the selected primary paths [76].

3.1 Related Work 23

– domain of operation (single domain or multiple involved domains).
According to this scheme, the proposed solution can be classified as operating

within the bounds of a single layer (the network layer, as defined in the OSI/ISO
model [42]), making local decisions about the preferred backup routes on demand
based on some additional information determined in advance, making no resource
reservations in advance, and performing global, segment, or local recovery within
a single administrative domain. The discussion in this chapter is focused on fast
rerouting capabilities of network routers with the goal to reduce the negative
consequences (e.g., packet loss, increased length of an alternative path) of one or
more simultaneous link failures in wired computer and communication networks.
In Section 3.1, the selected related strategies are presented and classified. Their
advantages and disadvantages are identified and discussed in the context of the
proposed solution which is described end evaluated in Section 3.2. Finally, the
discussion is summarized in Section 3.3.

The author would like to acknowledge and thank the Department of Information
Security and Communication Technology, the Norwegian University of Science
and Technology (NTNU), for using its computing resources in some experiments
reported in this chapter.

3.1 Related Work
Whenever one or more links or nodes in a network become unavailable and
a dynamic routing protocol is in use, the routing protocol needs to compute a new
routing scheme and reach a consistent state across the entire routing domain to
ensure that there are no forwarding loops. During the period when computations
of the new routing scheme are still in progress, forwarding loops are possible due
to inconsistent state of forwarding rules on different devices in the network. In
addition, traffic flows are likely to suffer from packet losses and an increased delay,
as routers have to determine the preferred output network interfaces for particular
destinations before they are able to continue forwarding traffic [31]. To address
this issue, different IP Fast Reroute strategies have been proposed. Among the
related IP Fast Reroute proposals, there are solutions which are able to handle
only one failure at a time [7, 14, 29], whereas the other group of solutions can also
deal with multiple simultaneous failures in the network [28, 55, 56, 62, 66, 93].

One example approach belonging to the first group was presented in [14]. The
solution provides complete protection against single failures, as long as there are
no single points of failure or asymmetric link costs in the network. The idea of
tunnels involves redirecting a packet to a node, which in turn will forward the
packet further towards the destination. Another solution from the same group is
described in [29]. It is based on the precomputation of redundant routing trees
for each destination node. Packets are encapsulated to Not-Via addresses which

24 3. Responding to Failures of Network Elements

have to be advertised by the routing protocol. At the same time, the authors
provided a solution to the major performance- and management-related issues of
the original Not-Via concept. Further, one of the most recent proposals in the
first group include the DisPath IP Fast Reroute Scheme [7] which is based on
the concept of minimum-cost node-disjoint paths. It provides protection against
all single link or node failures and assumes a label-free approach. At the same
time, the alternative path determined by DisPath may not always be the shortest
possible.

The second group of solutions includes the concept of Failure-Carrying Pack-
ets [62] which is able to handle multiple simultaneous failures in the network. An
interesting and unique feature of this approach is that it removes the convergence
period. Instead, the list of unavailable links on the primary path is included in
the packet header, which is then used by consecutive routers to compute the pre-
ferred forwarding path avoiding the unavailable links. Consequently, the proposed
strategy is not compatible with existing network devices. While the solutions
presented in [55, 56] provide protection against dual link failures, the technique
called Packet Re-cycling [66] allows for handling multiple non-disconnecting link
failures at the cost of additional packet header overhead. Assuming that the
diameter of a graph is d, the number of required bits in the packet header is on
the order of log2 d. Packet Re-cycling relies on the cellular embedding of the net-
work graph, which provides necessary information to populate the cycle following
table used when forwarding packets along their backup paths. While the IP Fast
Reroute mechanism presented in [28] also introduces additional packet overhead,
it maintains k + 1 entries in the routing table per each destination node, where k
is the link connectivity of the network. The delivery of a packet is guaranteed for
up to k − 1 encountered link failures along its path to the destination. The other
recent solution, Keep Forwarding [93], provides an interesting approach based on
inport-aware forwarding, the new Partial Structural Network model, and a new
type of graph traversal. It offers protection against multiple link failures and it
does not rely on packet labeling. At the same time, it represents a design of an
independent routing strategy, which does not allow for its use together with any
other preferred routing protocol.

In the case of centrally-managed networks, such as networks based on the
Software-Defined Networking concept [70], the effectiveness of the recovery proce-
dures in use may depend on whether the control traffic is exchanged using the
same infrastructure that is also managed by the controller [40]. In particular,
failure of network components may interrupt the related control traffic, which
can lead to situations when no recovery action is taken in the network, unless the
control channels are protected by an additional mechanism [41]. If the network
model assumes that forwarding devices can be preconfigured by the controller to
perform some recovery actions following a failure, the impact of the failure on

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 25

the control and data traffic might be less severe. For example, an attempt to use
different variants of the Loop-Free Alternates method [9] combined with a new
loop detection mechanism in SDNs was discussed in [12].

The other category of network solutions that might be used to respond to
failures of network components includes intra- and interdomain routing techniques
considered in the context of the multipath transmission of traffic flows. For
a review of the selected existing solutions, the reader is referred to [25, 90].

The main limitations of different existing methods can be summarized as
follows:

– inability to deal with multiple simultaneous failures in the network in
a flexible way;

– reliance on an additional signaling scheme (e.g., passing signaling data in
the packet header);

– incompatibility with existing network devices (e.g., through the use of
a non-standard format of protocol messages);

– inability to cooperate with different dynamic routing protocols;
– no support for asymmetric link costs.

The new solution presented in this chapter was designed to solve the issues
identified above.

3.2 GroupAndReroute: An Effective IP Fast Re-
route Scheme for Traffic Flows

In the following sections, a new IP Fast Reroute strategy is introduced that can be
gradually deployed in existing computer and communication networks. It is not de-
signed as a replacement of existing routing protocols. Instead, GroupAndReroute
acts as an extension to the routing solution in use and requires only minimal
changes to the local routing and forwarding process, while keeping the resource
requirements on a low level. Further, GroupAndReroute is able to both handle
multiple simultaneous failures of network components and provide line-speed
recovery to traffic flows. The main contributions of the proposed solution are
summarized as follows:

– the design and the corresponding prototype implementation of GroupAnd-
Reroute are presented, and its performance is evaluated in a real testbed
including professional off-the-shelf communication equipment;

– the proposed solution deals with multiple link failures effectively, offering
line-speed recovery to traffic flows, maintaining the average path stretch
on a relatively low level, and significantly reducing the total number of
lost packets in the network, compared to the basic flow-oriented network

26 3. Responding to Failures of Network Elements

operation mode and its enhanced variant including a Loop-Free Alternates-
based protection scheme;

– the proposed approach represents a relatively simple design, it can cooperate
with different dynamic routing protocols, and it can be gradually deployed
in existing computer and communication networks.

Although the presented solution was designed for flow-oriented networks in
which routing decisions are made based on the typical routing table and an
independent flow table, successful initial attempts have been made to generalize
the approach towards operation in typical IP networks in which routing and
forwarding occur in the context of individual packets. The generalized approach
is part of the ongoing research.

3.2.1 GroupAndReroute Operation
GroupAndReroute is a transparent and passive mechanism, which means that it
does not modify packets forwarded through a local node, it does not send messages
to other nodes, and it does not rely on external signaling. It is launched on network
nodes next to a routing protocol, collecting and maintaining information about
connectivity of particular node/prefix groups3. The collected information is stored
in the so-called relation graph and used at a later time to facilitate the quick
recovery following one or more link/node failures, whenever it is possible.

Definition 1. In the context of computation of the routing scheme at a network
node, the root node of the routing tree is called the reference node.

Definition 2. A node/prefix group of a reference node is meant to be the set of
all other network nodes that are reachable via the shortest paths starting at the
reference node and leaving it through a common network interface.

As an example, node 1 in Figure 3.1 is the reference node and there are four
node/prefix groups: A, B, C, and D, each corresponding to a different network
interface of the reference node.

The node/prefix groups may either be directly connected (groups A-B, B-C in
Figure 3.1) or only indirectly connected (groups A-C, A-D, B-D, C-D), depending
on the physical network topology and current status of network devices. The
directly connected groups share at least one common link, such as link 11-15
between groups B-C, while the indirectly connected groups can exchange traffic
only via the reference node or via intermediate groups (e.g., A-B-C). Node/prefix
groups are determined separately for each node in the network whenever the
routing protocol reconverges. Link or node failures may significantly change the
number and size of node/prefix groups for particular nodes.

3See Definition 2.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 27

Fig. 3.1: An example assignment of nodes to node/prefix groups of the reference node.

3.2.2 The Initial State of the Relation Graph
As the relation graph maintained by each node reflects the connectivity between
different node/prefix groups corresponding to particular network interfaces of
the local node, it does not contain arcs in its initial state, i.e., before the first
convergence of the routing protocol. It means that the graph is initially discon-
nected and consists of vertices corresponding to different node/prefix groups, as
presented in Figure 3.2(a).

3.2.3 Computation of the Routing Scheme
During the computation of the routing scheme, whenever the involved algorithm
(e.g., the Dijkstra’s algorithm in the case of the OSPF protocol) examines an
alternative path from the local node to the previously considered destination node,
it normally selects the shorter path as active, ensuring loop-free routing in the
stable state, i.e., after the routing protocol converges. The active paths may also be
selected according to the user-assigned link cost values. GroupAndReroute closely
follows the steps of the considered routing tree generation algorithm, also called the
primary algorithm, and adapts an internal copy of the relation graph accordingly.
Note that the relation graph must be stable during the convergence time of the

28 3. Responding to Failures of Network Elements

Fig. 3.2: The initial relation graph (a) and its final version after the convergence of the routing
protocol (b) for the reference node in Figure 3.1. Letters in circles denote the corresponding
node/prefix groups, while the weights assigned to arcs represent distances computed based on
the number of hops. Note that distances may also be determined based on the sum of generic
link costs.

routing protocol to ensure reliable rerouting. For this reason, modifications are
first introduced into an internal copy of the relation graph maintained by the
routing process, such as an OSPF daemon, and once the computations have
finished, the main instance of the relation graph is updated. Apart from assigning
nodes to the appropriate node/prefix groups, GroupAndReroute also detects4

when an alternative path to a destination node is being examined by the primary
algorithm to verify whether it is shorter than the previously found path. In this
case, if the destination node belongs to a different node/prefix group than the
preceding node on the alternative path, which means that they belong to different
branches of the constructed routing tree (for example, consider the following
paths in Figure 3.1: 1-7-10-11 and 1-12-14-15-11), GroupAndReroute creates
two opposite arcs in the relation graph between the corresponding node/prefix
groups and assigns weights to them. The arcs are added to the graph if and
only if they have not already been included in the graph. The weight of an arc
represents the length of the shortest examined path leading from the reference
node through the first node/prefix group (the source vertex of the arc) up to the
first encountered node in the second node/prefix group (the destination vertex
of the arc). For instance, assuming that distances in the network are computed
based on the number of hops along the paths, the weight corresponding to path
1-7-10-11-15 in Figure 3.1 equals 4, which is reflected in Figure 3.2(b) as weight
of the arc B → C. If the weight of an arc is smaller than the previously-stored
value, the old value is updated. Figure 3.2(b) shows the complete relation graph
for the reference node in Figure 3.1, after all routing computations at this node
have finished. Note that in general, distances may also be determined based on
the sum of generic link costs.

4Several implementation strategies are possible here. For example, GroupAndReroute can
wait for an event triggered by the primary algorithm.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 29

3.2.4 Selection of an Alternative Output Interface
Whenever a failure occurs in a network and the routing protocol starts the process
of recomputing the routing scheme, new flows are still assigned the corresponding
output interfaces based on the routing table, while the existing flows are forwarded
based on the flow table. At the same time, when the preferred network interface
is inactive, meaning that either the link or the corresponding adjacent node is
unavailable, the routing decision is delegated to GroupAndReroute which selects
an alternative output network interface based on the relation graph as follows
(Algorithms 3.3-3.4).

In the first step of Algorithm 3.3, determine the flow identifier based on
the corresponding flow descriptors and check if the preferred output interface is
available. If not, then mark the flow as temporary and set a variable that marks
that a new output interface should be determined based on the relation graph.
In the second condition (Line 6), check whether the current system route entry
assigned to the flow is still valid. If not, try to assign a new active route to it,
such that leaves the local node via the same network interface. If no suitable
route is available, mark the flow as temporary and set a variable that marks
that a new output interface should be determined based on the relation graph.
Further, check whether packet p arrived on the network interface that is also
the preferred output interface assigned to the flow (Line 14). If this is the case,
it means that the downstream nodes were not able to deliver the packet to the
destination node via the previously selected node/prefix group. Thus, the flow is
marked as temporary and if it originates at the local router, it is assigned a new
route based on the routing table. External flows are forwarded via the expected
input interface towards the upstream nodes.

If the packet arrived on an interface that is different from the expected input
and output interfaces, and if the flow is local or the related input and output
interfaces are different (Line 23), it means that a forwarding loop has occurred.
In this case, mark the flow as temporary and send the packet via the interface
on which it has just been received, initiating the backward propagation process.
Note that the input and output interfaces assigned to the flow remain unchanged.

At this point, packets for which the route and the output interface are valid
are forwarded according to the flow table (Line 47). In the case that the output
interface has to be determined based on the relation graph (Line 28), the flow is
marked as temporary. Then, a recursive procedure is started (see Algorithm 3.4)
to determine the preferred transit node/prefix group on the way to the destination
node, assuming that the preferred group is connected with the destination or
another transit node/prefix group by an arc having the smallest assigned weight
among all the considered options in the relation graph5. If such a group is found

5Note that this method does not compute the exact distance along the alternative path

30 3. Responding to Failures of Network Elements

Input: the routing table T ; the flow table F ; the relation graph GR; incoming packet p
1: f ← FlowClassifier (F, T, p)
2: reroute_based_on_rg ← 0
3: if not IsAvailable (OutputInterface (f)) then
4: MarkAsTemporary (f)
5: reroute_based_on_rg ← 1
6: else if not IsRouteValid (f) then
7: if RouteViaInterface (OutputInterface (f)) = NULL then
8: MarkAsTemporary (f)
9: reroute_based_on_rg ← 1
10: else
11: SetRoute (f,RouteViaInterface (OutputInterface (f)))
12: end if
13: end if
14: if InputInterface (p) = OutputInterface (f) then
15: MarkAsTemporary (f)
16: if IsLocal (f) then
17: SetRoute (f, T [Destination (p)])
18: else
19: SetRoute (f,RouteViaInterface (InputInterface (f)))
20: Forward (p, InputInterface (f))
21: return
22: end if
23: else if InputInterface (p) 6= InputInterface (f) and [IsLocal (f) or InputInterface (f) 6=

OutputInterface (f)] then
24: MarkAsTemporary (f)
25: Forward (p, InputInterface (p))
26: return
27: end if
28: if reroute_based_on_rg = 1 then
29: MarkAsTemporary (f)
30: Vg ← ∅ {Set of visited node/prefix groups}
31: g ← GetPreferredTransitGroup (GR, InputInterface (p) ,OutputInterface (f) , Vg)
32: if g 6= NULL and IsAvailable (g) then
33: SetRoute (f,RouteViaInterface (g))
34: Forward (p, g)
35: return
36: else
37: if IsLocal (f) then
38: Drop (p)
39: return
40: else
41: SetRoute (f,RouteViaInterface (InputInterface (f)))
42: Forward (p, InputInterface (f))
43: return
44: end if
45: end if
46: else
47: Forward (p,OutputInterface (f))
48: end if

Fig. 3.3: GroupAndReroute: the general packet forwarding scheme.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 31

and the corresponding output interface is available, the packet is forwarded via
the new interface. In addition, the reference to the previous output interface
in the flow entry is replaced with the new reference to shorten the forwarding
time of subsequent packets sent within the same traffic flow. In the other case,
when no suitable transit node/prefix group could be found, packets of the locally-
generated flows are dropped until the system-wide Forwarding Information Base
(FIB) is updated, while the other packets are sent towards the upstream nodes,
initiating the backward propagation process. In the second case, the reference to
the corresponding output interface is modified accordingly.

The recursive procedure presented in Algorithm 3.4 begins with a set of primary
conditions (Lines 1, 33, 35) to determine whether the dst_g node/prefix group can
be an intermediate group in the chain, the preferred transit group, or if it should
not be taken into account as a transit group at all. The result depends on the
number of adjacent node/prefix groups, as well as availability of the corresponding
network interface of the reference node.

In the first case (lines 1-32), the adjacent node/prefix groups of dst_g are
taken into account, such that the corresponding output network interfaces of the
reference node are available. The preferred transit node/prefix group is selected
according to the smallest arc weight in the relation graph. If it is found, the
algorithm returns the identifier of the corresponding output network interface. In
the other case (the related network interfaces are inactive), the algorithm explores
further adjacent node/prefix groups in the relation graph recursively as follows:

– select the node/prefix group s other than the visited ones stored in Vg;
– start the recursive procedure for the destination group s to get the identifier
tg of the network interface associated with the preferred transit group;

– if such a group was found and the related arc weight is smaller than all
previously-considered values, update g and w.

Finally, the algorithm returns g (Line 32), which can also contain the NULL
value if no suitable node/prefix group was found. Note that if the network
graph is disconnected, GroupAndReroute drops packets sent to unreachable nodes
to reduce unnecessary traffic in the network. In addition, whenever the FIB
is updated by the routing process, the following actions are triggered by the
operating system kernel:

– the main instance of the relation graph is updated;
– all temporary or expired traffic flows are removed from the flow table.

Flow entries which are still needed due to packet processing at that time are

between the source and destination nodes. Instead, it considers the distance to reach the second
node/prefix group in the chain leading to the destination node/prefix group. If a suitable transit
node/prefix group is found in the first iteration of Algorithm 3.4, the algorithm will terminate
without entering the recursion, which is advantageous in terms of the overall computational
complexity. In this case, the second node/prefix group in the chain is simultaneously the
destination node/prefix group.

32 3. Responding to Failures of Network Elements

Input: the relation graph GR; source node/prefix group src_g; destination node/prefix group
dst_g; set of visited node/prefix groups Vg
GetPreferredTransitGroup (GR, src_g, dst_g, Vg)

1: if InboundArcsCount (GR, dst_g) > 0 then
2: g ← NULL {The selected transit node/prefix group}
3: w ← 0 {Weight assigned to the selected arc ending at dst_g}
4: Vg ← Vg ∪ {src_g, dst_g}
5: S ← GetAdjacentGroups (GR, dst_g)
6: S ← S \ Vg
7: for all s ∈ S do
8: if not IsAvailable (s) then
9: proceed to the next iteration
10: end if
11: a← GetArc (GR, s, dst_g)
12: if g = NULL or w > GetWeight (a) then
13: g ← s
14: w ← GetWeight (a)
15: end if
16: end for
17: if g 6= NULL then
18: return g
19: end if
20: for all s ∈ S do
21: tg ← GetPreferredTransitGroup (GR,NULL, s, Vg)
22: if tg = NULL then
23: proceed to the next iteration
24: end if
25: a← GetArc (GR, tg, s)
26: tw ← GetWeight (a)
27: if w = 0 or w > tw then
28: g ← tg
29: w ← tw
30: end if
31: end for
32: return g
33: else if IsAvailable (dst_g) then
34: return dst_g
35: else
36: return NULL
37: end if

Fig. 3.4: GroupAndReroute: selection of the preferred transit node/prefix group based on the
recursive examination of the relation graph.

explicitly marked as obsolete and will not be used for future decisions — they will
be removed during the next update of the FIB, or at any other time, depending
on the specific implementation.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 33

3.2.5 Impact of Failures on the Relation Graph
The relation graph maintained at each node in the network provides additional
information that in most cases should allow nodes to forward packets via alternative
paths to destination nodes following one or more failures. The main instance
of the relation graph, which is maintained by the operating system kernel, is
updated just after a successful convergence of the routing protocol to ensure the
consistent state of the graph during the transient phase. In the case of failure of
an adjacent node or incident link, it is recommended that the arcs going out of the
corresponding node/prefix group be preserved in the relation graph. Although the
node/prefix group may no longer be directly reachable from the reference node,
GroupAndReroute will still be able to use that node/prefix group as a transit
group if any other local element of the network fails before the routing protocol
updates the state of the main instance of the relation graph.

3.2.6 Memory Requirements
GroupAndReroute is designed to work alongside a routing protocol which updates
the content of the system-wide routing table. An entry of the typical routing
table usually contains at least two variables that specify the destination and the
reference to the corresponding output network interface. If the network graph
is connected, the number of entries in the routing table depends linearly on N ,
where N equals the number of nodes in the network. In such a case, the number
of variables used in the routing table is also on the order of O (N). However,
GroupAndReroute requires some additional memory to maintain the relation
graph. To estimate the maximum number of variables required by a single instance
of the relation graph, the following assumptions are made:

– the relation graph is represented as a list of weighted arcs;
– each arc is described using three variables: index of the source node/prefix
group, index of the destination node/prefix group, and weight;

– the considered reference node has d node/prefix groups;
– all node/prefix groups of the reference node are connected with each other.
Then, the number of variables describing the relation graph is on the order

of O
(
d2), while the total number of variables required by GroupAndReroute

(excluding the flow table) is on the order of O
(
d2 +N

)
. In the case of the

recently-proposed Keep Forwarding (KF) inport-aware routing scheme [93] that
can also deal with multiple simultaneous failures in the network, the number
of variables required to maintain all necessary routing tables, one per each of d
network interfaces, is on the order of O

(
d3N

)
. At the same time, in flow-oriented

networks in which routing decisions are made based on the routing table and
an independent flow table, the number of required variables is expected to be
higher and will depend on the set of descriptors used to identify particular traffic

34 3. Responding to Failures of Network Elements

flows, which may significantly affect the maximum estimated number of entries
in the flow table. In particular, if traffic flows are classified based on several
descriptors, numerous individual flow entries with unique identifiers may be added
to the flow table during network operation. As a result, the system may run out
of space in the flow table. One of the possible countermeasures is to aggregate
traffic flows based on a more general classification scheme involving a reduced
set of descriptors. The related trade-off is that the previously-independent traffic
flows are handled in larger groups, and thus the opportunities for precise traffic
engineering and service differentiation are limited.

3.2.7 Evaluation Environment
To verify and understand the real performance of GroupAndReroute in computer
and communication networks, a router prototype was built based on the PC
Engines APU2 system board, the OpenBSD 6.0 RELEASE operating system
with a modified kernel, and a modified OpenOSPFD routing daemon. Every
system board was equipped with three 1 Gbit/s Ethernet network interfaces,
1 GHz quad core CPU, and 4 GB of RAM. To investigate whether GroupAnd-
Reroute could be gradually deployed in existing computer and communication
networks, two different networks were considered: one containing eleven devices
supporting GroupAndReroute (Figure 3.5), and the other one containing eleven
GroupAndReroute routers and four professional Cisco 2800 Series routers with
two 100 Mbit/s Ethernet network interfaces each (Figure 3.6). The Cisco routers
were running the IOS operating system (IOS Software 2801, version 12.4) with
one active OSPF process and default protocol-related settings. All routers in both
networks relied on the manually-configured values of the Router ID parameter
to ensure its stability, and all routers were configured as members of one OSPF
area (0.0.0.0). In addition, to facilitate the verification of the proposed solution
in different environments, all OSPF network interfaces were configured to have
an equal OSPF metric of 16. It should be emphasized though that in general,
GroupAndReroute estimates the transit distances to particular node/prefix groups
based on the metric values determined by the routing process, such as an OSPF
daemon.

A high-level implementation diagram of GroupAndReroute in the created
network router prototype is presented in Figure 3.7. To ensure that packets are
forwarded via appropriate network interfaces, the operating system maintains
a Forwarding Information Base (FIB) which is updated by the OSPF routing
daemon. The routing daemon collects Link State Advertisement (LSA) messages

6Note that in the case of the considered Cisco routers, the default OSPF metric assigned
to Fast Ethernet network interfaces equals 1, while the default OSPF metric assigned by the
OpenOSPFD routing daemon is 10.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 35

Fig. 3.5: Evaluation network containing eleven custom routers supporting GroupAndReroute
(the numbering of nodes is consistent with Figure 3.6). All links in the network had the capacity
of 1 Gbit/s.

Fig. 3.6: Evaluation network containing four Cisco 2800 Series routers (filled circles) and eleven
custom routers supporting GroupAndReroute (empty circles). All links connected to the Cisco
routers had the capacity of 100 Mbit/s, while the other links had the capacity of 1 Gbit/s.

36 3. Responding to Failures of Network Elements

Fig. 3.7: A high-level implementation diagram of GroupAndReroute in the created network router
prototype — integration of new components (Main/Temporary RG instances, GroupAndReroute)
with the existing subsystems. LSDB: Link State Database, RIB: Routing Information Base,
FIB: Forwarding Information Base, RG: Relation Graph.

from other nodes and stores them in the Link State Database (LSDB). Based on
the received information, it executes the Dijkstra’s shortest path algorithm and
updates both the Routing Information Base (RIB) and the temporary instance of
the relation graph. Note that GroupAndReroute components are included both
in the routing daemon and in the kernel of the operating system. In the first case,
the key component is the internal copy of the relation graph which is reconstructed
during each execution of the Dijkstra’s algorithm. Once the new routing scheme
is established, the main instance of the relation graph in the operating system
kernel is updated to reflect the new situation. Based on this instance of the graph,
GroupAndReroute makes future decisions where to forward packets in the event
of failure.

In addition to considering two different network topologies with diverse sets of
network devices, the operation of GroupAndReroute was evaluated in different
scenarios with respect to the number of simultaneous link failures denoted by
k. During a single experiment, one, two, or three different links in the network
were selected at random according to the uniform distribution, and they were
made unavailable during transmission of user data. An assumption was made that
the network with failed links must remain connected, as otherwise, no routing
scheme would be able to reduce traffic losses related to the disconnected nodes.
Link failures were simulated by physically unplugging network cables from the
selected Ethernet ports of network devices. It is worth noting that the Ethernet
ports could also be disabled by changing their status in the operating system to
Administratively down (e.g., with the aid of the ifconfig tool), but in such a case,
the ports were still active in the physical layer and the adjacent nodes were not
aware of the simulated failures until they were discovered by network protocols.

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 37

Thus, the first method better reflects real failure scenarios in which links are
physically damaged.

To assess the gain GroupAndReroute offers when combined with the OSPF
routing protocol in the considered networks, the evaluation was based on the
following metrics:

– the total number of lost packets in the network during a single experiment;
– the maximum estimated path stretch defined as follows:

S = l (PRG)
l (POSPF) (3.1)

where l (PRG) denotes the maximum observed length of alternative forward-
ing paths of a traffic flow, resulting from the operation of GroupAndReroute
following one or more link failures in the network, and l (POSPF) is the
length of the new shortest path determined by the OSPF protocol after its
reconvergence.

Note that to reflect the impact of potential transient forwarding loops on the
actual length of the forwarding paths, l (PRG) and l (POSPF) are determined based
on the predefined initial TTL value and the final TTL values stored in the headers
of the forwarded packets once they reach the corresponding destination nodes.
For example, if the initial TTL value equals TTLI = 64 and the final TTL value
is TTLF = 61, then the actual length of the forwarding path P is computed as
follows:

l (P) = TTLI − TTLF + 1 = 4 (3.2)

To extend the evaluation and provide a valuable context for the results,
GroupAndReroute was compared against the following two reference network
operation modes:

– Basic Flow-Oriented Operation (the baseline mode);
– Basic Flow-Oriented Operation with Loop-Free Alternates.
The first mode is the baseline mode and it assumes that traffic flows can only

be rerouted when a failure of a directly connected link is detected by a network
node. In this case, the affected flow entries are removed from the flow table
and the new entries are created based on the current routing scheme reflected
by the system-wide routing table. The second mode introduces an independent
protection scheme based on the widely-known Loop-Free Alternates concept [9]
and it has also been implemented in the router prototype by the author of this
dissertation to provide a valuable comparison for the proposed GroupAndReroute
solution. The implemented method follows the assumption that a neighbor node
can provide a loop-free alternate if and only if the following condition specified
in [9] is satisfied:

Distance_opt (N,D) < Distance_opt (N,S) + Distance_opt (S,D) (3.3)

38 3. Responding to Failures of Network Elements

where Distance_opt (N,D) is the distance from the neighbor node to the destina-
tion, Distance_opt (N,S) is the distance from the neighbor node to the source,
and Distance_opt (S,D) is the distance from the source to the destination.

GroupAndReroute is a mechanism that works locally at a network device.
In the event of failure, it selects the preferred output interfaces based on the
previously collected information about the mutual connectivity of node/prefix
groups. Thus, the evaluation scenarios assumed that traffic flows were sent in
both directions between each pair of GroupAndReroute nodes in the network. In
the performed experiments, traffic flows were identified based on five descriptors
(the source and destination IP addresses, the source and destination port numbers,
and the identifier of the transport protocol) and they were UDP flows involving
8000 packets of size 1470 B each. The measured rate of a single transmitted flow
was approximately 380 kbit/s during its stable activity period7, which guaranteed
that no link was congested during network operation before and after failures.
The UDP protocol was used because it does not involve the retransmission of
packets if they cannot be delivered to the destination node. The initial value of
the IPv4 TTL header field was set to 64, which was the default value configured
in the operating system. Traffic flows were transmitted between the client and
server applications running on each GroupAndReroute node. In addition, the
flows were considered as expired after 60 s of inactivity. Each experiment included
the following steps:

1. Synchronize the time in the testbed with the aid of the NTP protocol;
2. Start the server application on every GroupAndReroute node in the network;
3. Schedule the transmission of flows on every GroupAndReroute node in the

network (flows are started at the same time);
4. Simulate k link failures during the transmission of traffic flows;
5. At each GroupAndReroute node, wait for 30 seconds after the transmission

of locally-generated flows has finished;
6. Stop the server applications and collect the results.
For each considered value of k and the investigated network operation mode

(Basic Flow-Oriented Operation, Basic Flow-Oriented Operation with Loop-Free
Alternates, Basic Flow-Oriented Operation with GroupAndReroute), the corre-
sponding experiment was repeated eight times with different sets of k randomly
selected failed links to get a better understanding of network performance and, in
particular, to avoid making conclusions based on arbitrarily selected cases. As the
number of trials in which two network interfaces of a single router become inactive
may influence the results considerably, making the comparison more difficult, it
was assumed for k ≥ 2 that exactly one out of eight trials involved failures of two
links connected to the same router.

7The rate was estimated with the aid of the iftop monitoring tool [2].

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 39

3.2.8 Evaluation Results

The experiments started with the case of a network containing only GroupAndReroute-
compatible devices, as shown in Figure 3.5. The evaluation results related to the
total number of lost packets in the network are presented in Figures 3.8(a)-(c).

If only one failure occurred in the network (k = 1), deployment of GroupAnd-
Reroute allowed for a noticeable reduction of the total number of lost packets
in the network, compared to the baseline mode. It also eliminated persistent
forwarding loops. The second reference mode (the protection scheme based on
the Loop-Free Alternates concept) was almost equally effective, but in some cases,
it caused persistent forwarding loops.

The highest gain was observed when two or three randomly-selected links were
disabled during the transmission of traffic flows (see Figures 3.8(b)-(c); note that
the horizontal axes have the logarithmic scale). In both cases, the two reference
network operation modes were not able to deal with all simultaneous failures
effectively, leading to increased packet losses and persistent forwarding loops.
Persistent forwarding loops occurred also in the case of single link failures (k = 1),
unless GroupAndReroute was used to deal with failed links. An interesting
observation is that although the Loop-Free Alternates-based protection scheme
has demonstrated reasonable performance when dealing with single link failures, it
increased packet losses in some cases involving multiple link failures, compared to
the baseline reference network operation mode (Basic Flow-Oriented Operation).
The potential cause may be related to the unawareness of other failures in the
network at the time when the first rerouting takes place, which may lead to
persistent forwarding loops experienced by the downstream nodes. On the other
hand, if the forwarding decision is made based on the updated routing scheme,
the new path is guaranteed to be loop-free, but the related disadvantage is the
time needed for the routing protocol to reconverge.

Theoretically, it might be expected that once a link failure occurs in a network,
the physically adjacent routers supporting GroupAndReroute will immediately
recognize the change of the link’s status and forward the following packets via
alternative network interfaces, according to the locally-maintained relation graphs.
In real networks, however, it may take some time before a network device actually
detects a link failure. It means that in most cases, the device may not be able to
take action exactly at the time of failure, which leads to a limited traffic loss. This
factor is hardware and software dependent, but in the considered testbed, it was
observed that up to 25− 30 packets per one forwarded flow could be lost before
network traffic was redirected by GroupAndReroute from one network interface
to another one. Note that on network devices running an operating system, the
detection time involves not only hardware detection (e.g., tracking changes of the
signal level), but also detection by the operating system itself (event queuing and

40 3. Responding to Failures of Network Elements

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 100 1000 10000 100000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 100 1000 10000 100000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 100 1000 10000 100000

Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(a)

Basic Flow-Oriented Operation
Basic Flow-Oriented Operation with Loop-Free Alternates

Basic Flow-Oriented Operation with GroupAndReroute
Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(b)

Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(c)

Fig. 3.8: Estimated Cumulative Distribution Function (CDF) of the total number of lost packets
in the network shown in Figure 3.5 in the case of (a) one failed link (k = 1), (b) two failed links
(k = 2), and (c) three failed links (k = 3).

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 41

handling). In addition, packets which are already in the output network buffer at
the time of failure may also be lost if the corresponding link becomes unavailable.

The evaluation results related to the maximum observed path stretch corre-
sponding to traffic flows in the network are presented in Figures 3.9(a)-(c). Note
that the maximum path stretch represents the worst observed case, i.e., it is
computed based on the longest alternative path of a traffic flow, provided that at
least one packet has been forwarded along this path. In all three cases related to
the value of k, GroupAndReroute was able to maintain the average path stretch
on a relatively low level during the recovery phase. Note that the values on the
vertical axes start from 0.8.

In the second scenario, the previously analyzed network was extended by
connecting four professional Cisco routers to the existing GroupAndReroute-
compatible nodes (see Figure 3.6). The related evaluation results are presented in
Figures 3.10(a)-(c). As expected, regardless of the selected recovery scheme (Loop-
Free Alternates or GroupAndReroute), the number of lost packets in the network
was higher than in the first scenario, because only a fraction of nodes in the network
were able to redirect traffic flows while the OSPF protocol was still recomputing the
routing scheme. At the same time, the observed gain resulting from the deployment
of GroupAndReroute was significant in all three cases with respect to the value
of k. While the two reference network operation modes often caused persistent
forwarding loops, GroupAndReroute allowed for a significant reduction of the
total number of lost packets in the network, especially with increasing value of k
in the considered range 1− 3. The experiments confirmed that GroupAndReroute
can be gradually deployed in existing computer and communication networks, as
it remains compatible with off-the-shelf communication equipment and is able
to improve the overall network recovery performance, depending on network
topology and the number of deployed nodes supporting GroupAndReroute. It
is worth noting that in most cases involving multiple failures (k ≥ 2), the Loop-
Free Alternates-based protection scheme slightly degraded network performance,
compared to the baseline mode. To improve the performance of the Loop-Free
Alternates-based protection scheme in the considered type of flow-oriented network,
an independent loop prevention strategy may be employed to reduce packet losses
resulting from persistent forwarding loops.

The evaluation results related to the maximum observed path stretch cor-
responding to traffic flows in the network are presented in Figures 3.11(a)-(c).
Again, in all three cases, GroupAndReroute was able to maintain the average
path stretch on a relatively low level during the recovery phase.

42 3. Responding to Failures of Network Elements

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8
0.85
0.9

0.95
1

1 1.5 2 2.5

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(a)

Basic Flow-Oriented Operation
Basic Flow-Oriented Operation with Loop-Free Alternates

Basic Flow-Oriented Operation with GroupAndReroute

0.8
0.85
0.9

0.95
1

1 1.5 2 2.5

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(b)

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(c)

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5

Fig. 3.9: Estimated Cumulative Distribution Function (CDF) of the maximum observed path
stretch corresponding to traffic flows in the network shown in Figure 3.5 in the case of (a) one
failed link (k = 1), (b) two failed links (k = 2), and (c) three failed links (k = 3).

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 43

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 1000 10000 100000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 1000 10000 100000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 1000 10000 100000

Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(a)

Basic Flow-Oriented Operation
Basic Flow-Oriented Operation with Loop-Free Alternates

Basic Flow-Oriented Operation with GroupAndReroute

Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(b)

Pr
{l
os
t_
p
a
ck
et
s
≤
x
}

x — the total number of lost packets in the network

(c)

Fig. 3.10: Estimated Cumulative Distribution Function (CDF) of the total number of lost
packets in the network shown in Figure 3.6 in the case of (a) one failed link (k = 1), (b) two
failed links (k = 2), and (c) three failed links (k = 3).

44 3. Responding to Failures of Network Elements

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.85

0.9

0.95

1

1 1.5 2

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.85

0.9

0.95

1

1 1.5 2

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(a)

Basic Flow-Oriented Operation
Basic Flow-Oriented Operation with Loop-Free Alternates

Basic Flow-Oriented Operation with GroupAndReroute

0.85

0.9

0.95

1

1 1.5 2

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(b)

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.85

0.9

0.95

1

1 1.5 2

Pr
{m

a
x
_
p
a
th
_
st
re
tc
h
≤
x
}

x — the maximum observed path stretch corresponding to a traffic flow

(c)

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.8

0.85

0.9

0.95

1

1 1.5 2

Fig. 3.11: Estimated Cumulative Distribution Function (CDF) of the maximum observed path
stretch corresponding to traffic flows in the network shown in Figure 3.6 in the case of (a) one
failed link (k = 1), (b) two failed links (k = 2), and (c) three failed links (k = 3).

3.2 GroupAndReroute: An Effective IP Fast Reroute . . . 45

3.2.9 Dealing with Forwarding Loops
It may happen that one or more failures are followed by transient forwarding
loops when using GroupAndReroute in a network, especially such that contains
generic communication equipment. Traffic flows entering a forwarding loop will
not benefit from line-speed recovery capabilities offered by GroupAndReroute. In
particular, forwarding loops can occur after one of the following events:

– one GroupAndReroute device forwards a flow to another GroupAndReroute
device, but due to subsequent failures, traffic needs to be sent back to the
upstream node;

– a GroupAndReroute device sends a redirected flow to a generic IP router
that has not yet finished the recomputation of the routing scheme, and
the flow is received on an interface being the preferred output interface for
a given destination.

In most cases, transient forwarding loops should be interrupted when the
routing table is updated by the routing protocol. Such an event triggers the
removal of all temporary or expired flow entries from the flow table and the new
entries will contain references to valid routes. Otherwise, if only a fraction of
nodes in the network support GroupAndReroute, more than one update cycle of
the routing table may be required, depending on the interconnection scheme of
GroupAndReroute nodes. However, note that it is possible to deal with this issue
by verifying at each GroupAndReroute node that the output interface of every
registered flow matches the current routing scheme8. If there is a mismatch, the
flow entry is removed and the new one will contain a reference to a valid route
which is guaranteed by the routing protocol to be loop-free. On the other hand,
the related disadvantage is that too many flows may change their paths following
a failure. The potential solution might be to enable the proposed mechanism
selectively — either on specific nodes or for selected groups of flows. It is worth
to note that such a strategy might be advantageous for service providers, as it
creates new opportunities in terms of service differentiation.

3.2.10 Deployment Considerations and Limitations
GroupAndReroute is designed to operate as a module which is complementary to
the primary routing protocol, such as OSPF. If no failures occur in a network, it
does not change (or influence the computation of) the original routing scheme.
Furthermore, its operation is passive, which means that no control messages are
exchanged with other nodes in addition to what the primary protocol sends. Thus,
GroupAndReroute is completely transparent to other network devices and can

8It is worth to emphasize that a more general routing policy may be considered instead, such
that includes additional factors influencing the decisions about the preferred paths assigned to
particular traffic flows.

46 3. Responding to Failures of Network Elements

be deployed gradually in existing network environments. In addition, it has the
potential to offer new methods for service differentiation on the level of traffic
flows.

At the same time, if generic communication devices that do not support
GroupAndReroute are also present in the network, it is recommended that the
GroupAndReroute nodes be adjacent to each other whenever it is possible. In
this way, the risk of occurrence of forwarding loops is limited, which may further
improve network performance in the presence of one or more failures. To enable
support for GroupAndReroute in the existing network devices, it is required to
modify the implementation of the routing and forwarding engines.

3.3 Summary
In this chapter, the new IP Fast Reroute strategy was presented that is able to
handle multiple simultaneous failures of network components in flow-oriented
networks, while being suitable for a gradual deployment in existing computer and
communication networks. A prototype of the design was built that demonstrated
its performance in a real testbed including off-the-shelf network equipment. The
evaluation results have shown that the proposed solution allows for a significant
reduction of the total number of lost packets in the network, compared to the basic
flow-oriented network operation mode and its enhanced variant including a Loop-
Free Alternates-based protection scheme, while also maintaining the average path
stretch on a relatively low level. Due to its design, GroupAndReroute can also
be used as an extension to other routing solutions. Moreover, it can easily be
adapted towards service differentiation with respect to separate traffic flows.

4 Dealing with Network Congestions

With the rapid growth of telecommunication networks in recent years, the daily
volume of traffic forwarded through backbone networks has risen to an enormous
level. Due to high costs of service disruption, especially in the case of services
of strategic importance, strong reliability requirements are imposed on the core
infrastructure. As limited network resources need to be shared across many users,
it may happen that certain network links become overloaded, either blocking the
subsequent traffic flows routed via these links or causing packet losses affecting
the overall performance.

To reduce the probability of a link overload in the backbone network, Internet
service providers have a few options to choose from. For example, the following
general strategies may be considered:

– assign more resources to particular network segments than actually needed [22],
taking as a reference the results of regularly performed load assessments;

– some new or existing traffic flows may be denied access to the network either
for a predefined time or until the congestion is mitigated [24, 58];

– accept new flows and send them via one or more alternative paths [72, 88],
thus limiting or reducing the load on the primary path (there are also related
proposals for data center networks, such as [23, 46, 53, 54]);

– avoid congestions through the use of Explicit Congestion Notification and
Active Queue Management mechanisms (including specific rate control
algorithms) [11, 38, 78].

In the third case, the existing flows may stay on their original paths, but it is
also possible to use a more flexible approach and reallocate the selected existing
flows if necessary.

In this chapter, the opportunities for effective congestion control mechanisms
in the third category (i.e., accepting new flows and sending them via one or more
alternative paths) are explored with an assumption that the existing traffic flows

48 4. Dealing with Network Congestions

may be reallocated if needed. The related solutions are discussed in Section 4.1.
It is shown that while the new algorithms proposed in Section 4.2 have limi-
tations, they can significantly improve network performance in the presence of
link congestions in centrally-managed flow-oriented networks, compared to the
strategies discussed in [53, 54] and the case when routing is only managed by the
OSPF protocol configured in such a way that it relies on a single path to each
destination. In particular, it is demonstrated that in the case of one considered
evaluation scenario in which only a few links in the network were fully loaded, the
presented algorithms were able to reduce that number down to 0 (or to a close
value), provided that enough network resources were available.

The content of this chapter has originally been included in a journal paper [52]
and the related online companion [50]. The research was carried out with the
support of the project “High quality, reliable transmission in multilayer optical
networks based on the Flow-Aware Networking concept” funded by the Polish
National Science Centre under project no. DEC-2011/01/D/ST7/03131.

4.1 Related Work
An example of a solution representing the third strategy in the case of centrally-
managed networks was presented in [54]. It assumes that new traffic flows are
transmitted along the shortest (in terms of the number of hops) paths (candidate
paths) that also have the minimum cumulative utilization of links belonging to
them. This approach has one major limitation: as it was designed for data center
networks which usually offer multiple shortest paths to the selected destination
node, it does not consider longer alternative paths.

A similar solution that reroutes traffic flows one-by-one in the case of link
congestion is discussed in [53]. In this proposal, rerouting may take place at
the point of congestion or one hop before and it is restricted to elephant flows
(i.e., flows for which the observed size is at least 100 kB). The alternative path
is selected based on the following criteria: minimum length (determines the set
of candidate paths), the maximum load among links belonging to the path, and
whether the new path will be overloaded once the selected flow is moved. While
the idea to consider the maximum load among all links of a path is reasonable1,
the proposed solution suffers from the same limitation as the previous approach
with respect to the set of candidate paths.

Another related solution relies on counting flows of the same type (e.g., http
or ftp flows) for each link individually [72]. Each flow type has the corresponding
predefined weight, which may also be determined based on the estimated bit rate.

1It is worth noting that the mechanism proposed in [53] compares absolute load values, which
may lead to wrong decisions if network links have significantly different capacities.

4.2 New Reallocation-Based Congestion Control Algorithms 49

The main idea is that the more flows of significant types are observed on a link,
the more likely the link is to enter the congestion state, which should be avoided.
At the same time, the weighted scheme may not reflect the actual situation in
the network if the size of flows varies considerably within each category, not to
mention the unknown, yet potentially strong influence of unclassified flows.

4.2 New Reallocation-Based Congestion Control
Algorithms

In this section, two alternative solutions are proposed to respond to network
congestions in centrally-managed flow-oriented networks through the reallocation
of traffic flows. Both algorithms do not suffer from the limitations identified
and discussed in Section 4.1. The evaluation environment and the simulation
results are presented and discussed in Sections 4.2.3-4.2.4, while the deployment
considerations and limitations of the proposed strategies are summarized in
Section 4.2.5.

4.2.1 Algorithm I: Max Path Load and Path Overload Prob-
ability

The first algorithm relies on information about the estimated overload probabil-
ity of a path and the maximum relative load among all links belonging to the path.
As presented in Figure 4.1, the algorithm requires access to the network graph G
and must be invoked in the context of an overloaded link eov. lth represents the
global value of the link overload threshold2. Before entering the main loop, the
algorithm prepares the list of flows forwarded via the overloaded link and selects
the one with the highest demand as the most significant flow. Then, it enters the
loop (lines 3-44) which is executed for as long as link eov remains congested, or
alternatively, until one of the following conditions is satisfied:

– the most significant flow could not be reallocated,
– all flows on link eov have already been considered.
Distances assigned to particular destination nodes during the execution of the

modified Dijkstra’s shortest path algorithm on graph G (lines 7-37) depend on
the maximum expected relative load among all links belonging to a path and the
estimated overload probability of the entire path from the source node to the

2The lowest value of the relative link load (link capacity utilization) for which the link is
perceived as congested.

50 4. Dealing with Network Congestions

Input: network topology modeled as a weighted graph G = (V,E); relative link overload
threshold lth ∈ [0, 1]; overloaded link eov ∈ E; weight parameter β

1: F ← GetFlows (eov)
2: f ← GetTheMostSignificantFlow (F)
3: repeat
4: fprevious ← f
5: Pcurrent ← GetCurrentPath (f)
6: Rf ← GetDemand (f)
7: Q← ∅
8: for all v ∈ V do
9: D [v]← MAX_COST {distance/cost vector relative to the source node of flow f}
10: B [v]← NULL {predecessor nodes according to the computed routing scheme}
11: Q← Q ∪ {v} {set of nodes to be considered in the while loop (line 14)}
12: end for
13: D [GetSource (f)]← 0
14: while Q 6= ∅ do
15: u← GetVertexWithMinDistance (Q,D)
16: Q← Q \ {u}
17: for all v ∈ GetNeighbors (u) ∩Q do
18: if (u, v) = eov then
19: Proceed to the next iteration
20: end if
21: Pt ← GetShortestPath (D,B,GetSource (f) , u)
22: Pt ← Pt ∪ {(u, v)}
23: l← 0 {the initial value of the maximum expected relative load among all links of

path Pt}
24: p ← 1 {the initial value of the estimated probability that path Pt will not be

overloaded}
25: for all e ∈ E ∩ Pt do
26: p← p · (1−GetEstimatedOverloadProb (e, lth))
27: if GetExpectedRelativeLoad

(
e,Rf

)
> l then

28: l← GetExpectedRelativeLoad
(
e,Rf

)
29: end if
30: end for
31: d = βl + (1− β) (1− p)
32: if d < D [v] then
33: D [v] = d
34: B [v] = u
35: end if
36: end for
37: end while
38: Pnew ← GetShortestPath (D,B, f)
39: if GetCost (Pnew) < GetCost (Pcurrent) then
40: ReallocateFlow (f, Pnew)
41: F ← F \ {f}
42: end if
43: f ← GetTheMostSignificantFlow (F)
44: until IsCongested (eov) = FALSE or f = fprevious or f = NULL

Fig. 4.1: Congestion control algorithm relying on information about the estimated overload
probability of a path and the maximum relative load among all links belonging to the path.

4.2 New Reallocation-Based Congestion Control Algorithms 51

currently considered node (line 31)3, based on the previously computed values4.
The β parameter defines the importance of each of the two mentioned factors.
In particular, it is possible to consider only one factor by setting β to either 0
or 1 (see line 31). Once the distances are computed, it is possible to determine
the best alternative path Pnew for flow f , such that does not include link eov. If
its cost is smaller than the cost of the currently used path Pcurrent, the flow is
reallocated. In all other cases, the flow remains on the original path5.

4.2.2 Algorithm II: Max Path Load and Path Length
The second algorithm is very similar to the first one, but instead of the estimated
overload probability of a path it considers its length in terms of the number of
links. For this reason, only three lines in Figure 4.1 need to be changed as follows:

– line 24: m← 0,
– line 26: m← m+ 1,
– line 31: d = βl + (1− β) m

|E| ,
where m is the number of links belonging to the constructed path.

The motivation for the second algorithm is that less congested alternative paths
in a network do not necessarily have to be close to the corresponding primary
paths in terms of their lengths. Thus, it is now possible to explicitly assign the
importance to the length factor through setting the β parameter to a desired
value.

4.2.3 Evaluation Environment
The evaluation of the proposed algorithms was based on a simulation study
carried out with the aid of a discrete-event, flow-level network simulator written
in the C++ programming language6. For the purpose of random data generation
(e.g., flow inter-arrival time, flow duration and demand, source and destination
nodes), the random number generation engine of the widely-used ns-3 v3.24.1
network simulator [3] was used. The underlying random number generator was the
MRG32k3a generator, for which the period length is approximately 3.1 · 1057 [63].

3Note that the overload probability of a path is computed as 1 minus the probability that all
links belonging to this path are not overloaded. In other words, the path is overloaded if at least
one of its links is. The expected relative load of a link is computed as the capacity utilization
(value in the range of [0, 1]) involving the cumulative demand of all current flows forwarded via
this link and the demand of flow f , as if it was assigned to this link.

4Different implementation strategies are possible here, for example, a fixed number of samples
may be kept in a circular buffer.

5One potentially interesting modification of the algorithm is to try to reallocate the subsequent
significant flows if the most significant flow could not be moved. It is expected that this may
improve the effectiveness of the algorithm at the cost of an increased runtime.

6For a detailed description of the simulator, the reader is referred to Chapter 6.

52 4. Dealing with Network Congestions

Following the recommendations provided by the ns-3 project [4], independent
simulation replications were obtained by setting the seed to a fixed value, while
the simulation run number was different for each replication.

The following three general evaluation scenarios were considered:
– evaluation in a US backbone network topology (similar flow demands),
– evaluation in a Viatel backbone network topology (similar flow demands),
– dealing with network congestions in the presence of large traffic flows.
In each of the considered scenarios, the proposed algorithms were compared

with two existing solutions introduced in [53, 54], as well as with the third reference
case (OSPF) in which traffic flows were forwarded along the shortest paths and
there were no active congestion mitigation mechanisms in the network. Each
simulation was repeated 10 times to get credible results. The average values were
computed over the period from the 150th to the 650th second of each simulation
to avoid the impact of the warm-up and termination phases on the final results.

The objective of the study was to evaluate the effectiveness of the considered
flow-level congestion mitigation strategies. Note that the study was focused on
different flow allocation strategies and does not extend to congestion control
mechanisms introduced on other levels (e.g., in the TCP protocol).

4.2.4 Evaluation Results
In this section, the evaluation results of the proposed algorithms are presented.
The first two considered cases are related to traffic flows of similar demands and
they also illustrate how different network topologies influence the ability of the
algorithms to find alternative paths. Finally, in the third case, the performance of
both solutions is evaluated in the presence of some additional traffic flows having
relatively high demands.

Evaluation in the case of the US backbone network topology and sim-
ilar flow demands

In the first simulation scenario, each link of the network shown in Figure 4.2 had
the capacity of 1 Gbit/s. The corresponding relative overload threshold was set
to 0.7, which means that a link was perceived as congested whenever its capacity
utilization equaled 70% or more. Further, a network link was perceived as fully
loaded whenever its capacity utilization reached 100%. The congestion state of
links was monitored every 1 s, as this interval was a reasonable trade-off between
accuracy and the amount of data to be processed for the considered simulation
scenario. In real networks, however, the interval might be set to a greater value
(e.g., 5− 10 s), as the data from several forwarding devices needs to be transferred
to (and processed by) the logically-centralized management unit. The congestion
probability of each link was estimated based on 100 most recent samples stored in

4.2 New Reallocation-Based Congestion Control Algorithms 53

Fig. 4.2: The topology of the US backbone network containing 39 nodes and 122 unidirectional
links (based on the data provided by the SNDlib project [74]; name of the model: janos-us-ca).
To maintain clarity, the figure presents an undirected graph.

a circular buffer. 10000 traffic flows were scheduled in each of the 10 simulation
trials to make sure that numerous combinations of flows on each link were possible.
The flows were generated in such a way that the fraction of overloaded links in the
network oscillated around an average value for at least 500 s (the measurement
period) during network operation. The source and destination nodes were selected
at random according to the uniform distribution. The flow inter-arrival time was
selected according to the exponential distribution with the mean value of 0.1 s
and the maximum value (bound) of 0.2 s, while the duration of each flow followed
the Pareto distribution with the mean value of 120 s, the maximum value (bound)
of 240 s, and the shape parameter equal to 1.5. The average flow demand was
set to 10 Mbit/s, whereas the actual values were selected at random from range
[7.5; 12.5] Mbit/s according to the uniform distribution. The additional bounds on
some random variables were used to avoid extreme cases of very large values. The
numerical values were selected in such a way that the generated traffic triggered
network congestion events for multiple links simultaneously, also ensuring that
a fraction of links were fully loaded — about 4− 5% of all links on average in the
case of the OSPF-like routing with no additional congestion avoidance measures.

The evaluation results are presented in Figures 4.3(a)-(c). In terms of the aver-
age fraction of overloaded links, the main point was to observe how the proposed
solutions influence the number of congested links in the network, compared to
the other considered strategies. According to Figure 4.3(a), only the algorithm
presented in [53] rearranged traffic flows in such a way that the total number of
overloaded links decreased, while the other methods (except for the algorithm in-
troduced in [54] and the OSPF protocol which was not responding to congestions)
often transferred the excessive load to previously uncongested links. However, by

54 4. Dealing with Network Congestions

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.7 0.75 0.8 0.85 0.9 0.95 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06

C
D

F
(x

)

x — the average fraction of overloaded links

(a)

OSPF
Cumulative Path Load (Kanagavelu13)

Max Path Load (Kanagavelu15)
Max Path Load and Path Overload Probability (β = 0.25)
Max Path Load and Path Overload Probability (β = 0.50)
Max Path Load and Path Overload Probability (β = 0.75)

Max Path Load and Path Length (β = 0.25)
Max Path Load and Path Length (β = 0.50)
Max Path Load and Path Length (β = 0.75)

C
D

F
(x

)

x — the average capacity utilization of overloaded links

(b)

C
D

F
(x

)

x — the average fraction of fully loaded links

(c)

Fig. 4.3: Estimated Cumulative Distribution Function (CDF) of (a) the average fraction of
overloaded links, (b) the average capacity utilization of overloaded links, and (c) the average
fraction of fully-loaded links between the 150th and 650th second of simulations.

4.2 New Reallocation-Based Congestion Control Algorithms 55

increasing the load of such links, it was possible to reduce the average capacity
utilization of the overloaded links in the entire network, thus avoiding traffic losses
on the most congested links. This observation corresponds to Figure 4.3(b) in
which the proposed algorithms performed better than all three reference solutions
in terms of the average capacity utilization of all overloaded links in the network.
In particular, the largest difference was observed for OSPF and the algorithm
introduced in [54], both of which have demonstrated comparable performance.
The results shown in Figure 4.3(c) also confirm the previous statement. While
the observed number of fully-loaded links in the case of the algorithm presented
in [53] was considerably smaller (on average) than the respective value for OSPF
and the third reference solution [54], it needs to be emphasized that the two
proposed strategies reduced the number of fully-loaded links down to 0 almost
for all of the considered values of β, effectively ensuring that the congested links
were not causing traffic losses in the network. It means that except for the
case of Algorithm I when β was equal to 0.25, the following relation was true:
∀x∈[0;1] CDF (x) = 1, as presented in Figure 4.3(c). At the same time, it should
be emphasized that the number of fully-loaded links was relatively small during
the entire simulation7.

Until now, we have discussed the performance of the proposed solutions without
considering the value of the β parameter. In the case of the second algorithm, the
smallest value of β resulted in a considerably larger average fraction of overloaded
links in the network, compared to the two other considered values for which
the corresponding difference was not significant. This was an expected outcome,
as the small weight assigned to the maximum relative path load increased the
priority of the load-independent factor (relative path length). In terms of the
average capacity utilization of the overloaded links, the smallest gain in relation to
the OSPF case was observed for β = 0.50, while the highest gain was associated
with β = 0.25. One possible explanation of this observation is that, as the
algorithm generally preferred shorter alternative paths, fewer links were carrying
the offloaded traffic flows.

In the first algorithm, both factors are load-dependent and their mutual
importance is also determined by the value of the β parameter. Based on the
results shown in Figures 4.3(a)-(c), it was noticed that setting β to different values
had impact mainly on the average fraction of overloaded links (the smallest values
were observed for β = 0.25) and the average fraction of fully-loaded links. At the
same time, the influence of β is almost not visible in Figure 4.3(c), as the proposed
algorithms were effectively preventing all links from entering the fully-loaded state,

7In fact, backbone network operators usually prevent even such a small number of links from
being fully loaded, as they start to activate additional network resources in advance when the
capacity utilization of a link reaches a predefined level, which is typically around 70%.

56 4. Dealing with Network Congestions

Fig. 4.4: The topology of the Viatel backbone network containing 88 nodes and 184 unidirectional
links (based on the data provided by The Internet Topology Zoo project [57]; version from 2008,
modified layout). To maintain clarity, the figure presents an undirected graph.

except for a very small fraction that was observed only for β = 0.25 when using
Algorithm I.

Evaluation in the case of the Viatel backbone network topology and
similar flow demands

The main goal of this scenario was to verify the performance of the proposed
algorithms in the case of a different network topology. Figure 4.4 shows the Viatel
backbone network topology. Note that compared to the US backbone network
considered in the previous section, the Viatel network contains significantly less
cycles and the majority of its nodes have degree equal to 2. This means that
in the event of network congestion, the number of alternative paths that may
be selected to reduce the number of congested links in the network is also much
smaller. Thus, it is more difficult to mitigate the congestion.

The simulation strategy was similar to the previously discussed case, with
the exception for the link congestion monitoring interval which was increased to
10 s due to the significantly higher frequency of the necessary flow reallocations
triggered by the congested links. The corresponding simulation parameters are
summarized in Table 4.1.

Figures 4.5(a)-(c) present the corresponding evaluation results. It was observed
that the fraction of congested links was higher (for all the considered solutions) than
in the case of the US backbone network. In addition, both proposed algorithms
maintained more links in the overloaded state than the reference strategies. At the
same time, in terms of the average capacity utilization of the congested links and
the average fraction of the fully-loaded links, it may be observed that Algorithm I

4.2 New Reallocation-Based Congestion Control Algorithms 57

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.86 0.87 0.88 0.89 0.9 0.91 0.92

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.12 0.14 0.16 0.18 0.2 0.22

C
D

F
(x

)

x — the average fraction of overloaded links

(a)

OSPF
Cumulative Path Load (Kanagavelu13)

Max Path Load (Kanagavelu15)
Max Path Load and Path Overload Probability (β = 0.25)
Max Path Load and Path Overload Probability (β = 0.50)
Max Path Load and Path Overload Probability (β = 0.75)

Max Path Load and Path Length (β = 0.25)
Max Path Load and Path Length (β = 0.50)
Max Path Load and Path Length (β = 0.75)

C
D

F
(x

)

x — the average capacity utilization of overloaded links

(b)

C
D

F
(x

)

x — the average fraction of fully loaded links

(c)

Fig. 4.5: Estimated Cumulative Distribution Function (CDF) of (a) the average fraction of
overloaded links, (b) the average capacity utilization of overloaded links, and (c) the average
fraction of fully-loaded links in the Viatel network between the 150th and 650th second of
simulations.

58 4. Dealing with Network Congestions

Table 4.1: Simulation parameters in the case of the Viatel backbone network.

Parameter Value
Network topology Viatel backbone (version from 2008 containing 88

nodes and 184 unidirectional links)
Link capacity 1 Gbit/s
Relative overload
threshold

0.7

Link congestion
monitoring interval

10 s

Link overload prob-
ability

Estimated based on 100 most recent samples stored
in a circular buffer

Number of traffic
flows

10000 (source and destination nodes selected at ran-
dom according to the uniform distribution)

Demand of flows Selected at random from range [7.5; 12.5] Mbit/s (uni-
form distribution), 10 Mbit/s on average

Duration of flows 120 s on average, Pareto distribution, upper bound
240 s, shape 1.5

Flow inter-arrival
time

0.1 s on average, exponential distribution, upper
bound 0.2 s

(Max Path Load and Path Overload Probability) performed significantly better
than Algorithm II (Max Path Load and Path Length) and the considered reference
mechanisms. This observation is related to the fact that with increasing number
of congested links, the probability that the candidate path is overloaded becomes
an important factor when selecting an alternative path. Thus, in highly congested
networks, it is recommended in this work that Algorithm I be used to reallocate
traffic flows.

Dealing with network congestions in the presence of large traffic flows

To provide more information about the performance of the proposed solutions,
an additional case has been analyzed in which some traffic flows in the network
had significantly higher average throughput than the other flows. The simulation
parameters are summarized in Table 4.2.

The corresponding evaluation results are presented in Figures 4.6(a)-(c). Again,
the two proposed flow reallocation strategies caused relatively more links to enter
the state in which they were perceived as congested, compared to the other
algorithms and the OSPF-like routing with no additional congestion avoidance
measures. However, the average capacity utilization of such links in the case of
Algorithm I was considerably smaller than for the considered reference strate-

4.2 New Reallocation-Based Congestion Control Algorithms 59

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.89 0.9 0.91 0.92 0.93 0.94 0.95

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

C
D

F
(x

)

x — the average fraction of overloaded links

(a)

OSPF
Cumulative Path Load (Kanagavelu13)

Max Path Load (Kanagavelu15)
Max Path Load and Path Overload Probability (β = 0.25)
Max Path Load and Path Overload Probability (β = 0.50)
Max Path Load and Path Overload Probability (β = 0.75)

Max Path Load and Path Length (β = 0.25)
Max Path Load and Path Length (β = 0.50)
Max Path Load and Path Length (β = 0.75)

C
D

F
(x

)

x — the average capacity utilization of overloaded links

(b)

C
D

F
(x

)

x — the average fraction of fully loaded links

(c)

Fig. 4.6: Estimated Cumulative Distribution Function (CDF) of (a) the average fraction of
overloaded links, (b) the average capacity utilization of overloaded links, and (c) the average
fraction of fully-loaded links in the US backbone network between the 150th and 650th second
of simulations.

60 4. Dealing with Network Congestions

Table 4.2: Simulation parameters in the case of the US backbone network and flows of diverse
demands (small and large).

Parameter Value
Network topology US backbone (39 nodes and 122 unidirectional

links)
Link capacity 1 Gbit/s
Relative overload thresh-
old

0.7

Link congestion monitor-
ing interval

10 s

Link overload probability Estimated based on 100 most recent samples
stored in a circular buffer

Number of traffic flows 10000 (source and destination nodes selected at
random according to the uniform distribution)

Probability that a new flow
is a large flow

0.05

Demand of large flows Selected at random from range [75; 125] Mbit/s
(uniform distribution), 100 Mbit/s on average

Demand of other flows Selected at random from range
[7.5; 12.5] Mbit/s (uniform distribution),
10 Mbit/s on average

Duration of large flows 300 s on average, Pareto distribution, upper
bound 600 s, shape 1.5

Duration of other flows 120 s on average, Pareto distribution, upper
bound 240 s, shape 1.5

Flow inter-arrival time 0.1 s on average, exponential distribution, up-
per bound 0.2 s

gies, which is a strong advantage. The results related to the average fraction of
fully-loaded links are even more important (Figure 4.6(c)) — it was possible to
reduce the number of fully-loaded links noticeably by using Algorithm I, while
Algorithm II demonstrated slightly worse performance than the best considered
reference solution. It was an expected behavior, as Algorithm I had been identi-
fied to perform better in more congested networks (see the previous simulation
scenario).

4.2.5 Deployment Considerations and Limitations
The proposed solutions have some limitations. First, they require a complete
view of a network in terms of the load of particular links, including the ability to

4.3 Summary 61

reallocate traffic flows and make decisions based on the previously collected data
(Algorithm I, Section 4.2.1). Considering the number of monitored links and flows
in the network, this requirement may lead to scalability issues. Second, none of
them is perfect in all scenarios — while Algorithm I performed well in heavily
congested networks, it was not the case for Algorithm II. At the same time, both
algorithms are compatible with the concept of Software-Defined Networking [70]
which is becoming increasingly popular among researchers and network engineers.
In particular, the algorithms might be deployed in a logically-centralized network
controller that makes routing decisions, configures traffic flows, and monitors the
state of flows and network switches.

The related scalability issues may be addressed in the following two ways.
The first strategy might be to divide the entire network into several independent
domains and use the proposed algorithms within each domain to reduce the
number of fully-loaded internal links. The related trade-off involves such factors as
the amount of collected data, the processing capacity and speed, and the quality
of the result in the context of the entire network. In particular, it should be
noted that significant traffic flows traversing multiple domains may not always
be reallocated in a way that is advantageous with respect to the total number
of fully-loaded links in the network. The second strategy might be to adjust the
processing capacity and speed of the logically-centralized network controller on
demand, possibly taking full advantage of the available virtualization technology.
In this case, the proper synchronization of the controller instances with respect to
the current traffic and network state becomes an important challenge.

4.3 Summary
In this chapter, the problem of network congestions and their impact on network
dependability was discussed and addressed specifically in the case of centrally-
managed flow-oriented networks. The importance of being able to respond to
network congestions effectively was emphasized, and the related congestion control
strategies were classified and briefly summarized. To deal with the identified
shortcomings of the existing solutions, two new algorithms were proposed that
are based on the flow reallocation strategy. Both algorithms were evaluated with
the aid of a discrete-event flow-level network simulator described in Chapter 6.
The evaluation included two recent reference approaches, as well as the case when
no congestion control is provided in the network. Based on the results, it was
concluded that the proposed algorithms have the potential to reduce the number
of fully-loaded links in centrally-managed flow-oriented networks, such as networks
based on the Software-Defined Networking concept.

Since the proposed algorithms deal with one overloaded link at a time, they
will be triggered separately for each congested link. However, it is also possible

62 4. Dealing with Network Congestions

that the traffic flows forwarded via the currently-analyzed congested link are
reallocated by the considered algorithms in such a way that the congestions on
other links are mitigated as well, removing at least some of the future triggers.
Thus, determining the best sequence in which the overloaded links should be
analyzed by similar algorithms at a certain time during network operation is an
interesting research problem for future studies. The selected strategy might also
be extended towards parallel analysis of congested links.

5 Risk Analysis and its Role in the
Provisioning of Network Services

An increasing demand for diverse network services with different dependability
requirements has prompted Internet Service Providers (ISPs) to modernize and
expand their national and global infrastructure. To ensure that the services are
delivered at the required levels with respect to dependability, ISPs constantly
monitor their networks and respond to all events affecting the performance of their
services [34, 69]. As part of this task, they also try to estimate the risk of violation
of the dependability requirements specified in Service Level Agreements (SLAs)
signed with their customers to prepare and deploy adequate protection measures
on time, thus avoiding major service disruption and the related penalty [30, 35, 92].
Each violation of the dependability-related Service Level Objectives (SLOs) defined
in the corresponding SLA may lead to significant monetary consequences, affecting
the ISP’s reputation.

With the introduction of Software-Defined Networks (SDNs) [60, 70], in which
the control plane is decoupled from the data plane, the research community and
telecommunication industry became interested in the flexibility they offer, and in
the expected simplification of network management tasks. However, researchers
soon realized that it is necessary to identify the potential sources of failures in
such networks, as well as their impact on the overall dependability of a system [39–
41, 59, 65, 80]. Further, it is not clear how to construct dependability-related
SLOs in the case of SDNs, and how to estimate the related SLA violation risk.
No previous work has addressed this issue, while it needs to be solved before
ISPs start using SDN in their network infrastructure. The currently used metrics
in SLAs mainly refer to service downtime which has not been explicitly defined
in the case of SDNs. The existing proposals cover non-SDN networks in which
an ICT service is either available or not [30, 35, 37, 92]. At the same time, in
SDNs, traffic flows established before a failure may still be successfully forwarded
through a network, while the new flows between the same pair of nodes may be

64 5. Risk Analysis and its Role in the Provisioning of . . .

rejected due to the unavailability of the logically-centralized controller. Thus, the
existing solutions that cannot handle this case are not directly applicable to SDNs
and should be revisited in this context.

The objective of the research presented in this chapter was to provide ISPs
and their customers with a valid, flexible, and easy-to-use solution that allows
them to i.) define the dependability-related SLOs for traffic flows in SDNs, and
ii.) assess the respective risk of violation of the SLA dependability requirements
and take appropriate measures in advance to ensure that this risk remains within
an acceptable range. Thus, the main contributions can be summarized as follows:

– the main factors affecting the dependability of SDN networks from the
perspective of customers and their ability to utilize their offered services are
identified;

– service degradation is defined as the key measure of decreased dependability
in SDN environments;

– a method for the assessment of the SLA violation risk with respect to
the dependability requirements for traffic flows in SDNs is proposed and
evaluated by simulation.

The definitions of dependability, availability, and reliability of systems used in
this chapter are based on [10].

The remainder of this chapter is structured as follows: in Section 5.1, the
related work is discussed, while the general architecture of SDN and the challenges
of the SLA-based business relationship model with respect to the ability to assess
the dependability of traffic flows in SDNs is discussed in Section 5.2. Section 5.3
introduces the service degradation metric used in the assessment of risk of violation
of the SLA dependability requirements for traffic flows in SDN. In particular,
Sections 5.3.1-5.3.2 describe the evaluation strategy and summarize the results,
while the limitations of the proposed solution are discussed together with the
related deployment considerations in Section 5.3.3. Finally, Section 5.4 summarizes
the research presented in this chapter.

The content of this chapter has originally been included in the research
paper that will be presented at the 2017 IEEE Conference on Network Function
Virtualization and Software-Defined Networks (NFV-SDN) — Fourth Workshop
on Network Function Virtualization and Programmable Networks (NFV-SDN’17-
NFVPN) [51]. The research was supported by the collaboration project between
Telenor Research and NTNU QUAM Research Lab.

5.1 Related Work
One of the most representative application areas of risk assessment-based tech-
niques is related to safety systems and critical infrastructures needed for the
operation of a society, such as power provisioning systems [32, 67, 86]. While

5.1 Related Work 65

the relevant contributions related to computer and communication networks have
been limited for a long time, some papers encouraged the use of risk analysis
in the assessment of network reliability [13]. With the increasing importance
of telecommunication networks over time, service providers started to look at
effective tools to estimate the potential impact of failures on their networks, ser-
vices, and business relationships. The related research evolved towards supporting
risk-aware provisioning of network services [17, 19, 30, 35–37, 92].

The use of risk analysis in the context of telecommunication networks was
strongly advocated in [19]. The authors analyze the possible approaches, focusing
their discussion on the following key aspects: risk framing (including the risk
management cycle), risk assessment and modeling techniques, different strategies
for an effective response to the risk, and risk monitoring.

The solution presented in [92] allows for the minimization of the SLA violation
risk with respect to the availability target in optical WDM networks. The authors
analyze single paths and failure arrival rates of the involved links to show that it is
possible to achieve lower SLA violation risk by routing according to the adjusted
failure arrival rate of the path, compared to a routing scheme in which the routing
metric is based on availability. In addition, the authors also propose an extended
version of the algorithm that is applicable to shared-path protection scenarios.

In [35], the interval availability and its impact on the SLA violation risk
was considered. In particular, different lengths of the observation period were
analyzed with respect to the resulting distribution of the interval availability.
Furthermore, while the numerical methods used in the previous studies often
relied on Markovian models, the authors proposed a new method that enables
the analysis of non-Markovian systems.

In the following paper [36], the authors present a method to model the prob-
ability distribution of the accumulated downtime. The method is then used in
the proposed hybrid management strategy which assumes that multiple resilience
provisioning techniques of different effectiveness and cost may be used in a coor-
dinated way to control the SLA violation risk and satisfy the SLOs, while also
minimizing the expenditures. Moreover, the authors recommend that the more
reliable recovery technology be used near the end of the SLA observation period,
because it leads to a smaller variance of the distribution of accumulated downtime,
thus allowing for a more accurate control of the SLA violation risk. The presented
model is evaluated in the context of a real backbone network in [37].

An interesting approach to the estimation of risk in the context of computer
and communication networks is based on the use of widely accepted business
risk measures, such as Value-at-Risk (VaR). In [17, 81], the authors discuss the
applicability of VaR to telecommunication networks, and they propose a method
that allows to determine the upper bound of the total penalty which must be paid

66 5. Risk Analysis and its Role in the Provisioning of . . .

Fig. 5.1: An overview of a Software-Defined Network with different types of traffic flows.

by a service provider in a given period in the case of violation of the terms of one
or more SLAs.

From the service provider’s perspective, meeting the requirements of all SLAs
may not always be the optimal choice. In fact, there may be a trade-off between
the cost of constant improvement of the quality of services, and the probability of
violation of one or more SLAs. Both aspects are discussed in detail in [30].

Risk analysis is usually based on information received from network monitoring
systems. Characterization of failures in real networks was presented in [34, 69].

5.2 SDN Architecture and SLAs
The concept of SDN relies on the assumption that the control plane is decoupled
from the data plane. This is a significant design approach that not only simplifies
the management of network devices, but it also brings in new challenges in terms
of the overall dependability of the network. For example, the survivability of
the control plane has been discussed in [44] in the context of the Generalized
Multiprotocol Label Switching (GMPLS) or Automatically Switched Optical
Networks (ASON) model. To make a clear connection between the considered
type of network and the proposed solution described in Section 5.3, the general
architecture of SDN is presented in Figure 5.1.

5.2 SDN Architecture and SLAs 67

As presented in the figure, customers are located in the access networks. The
customers sign SLAs with their service providers for specific contract periods.
The contract period formally defines the agreed time for which the SLA is legally
binding [30]. Every customer may sign one or more SLAs with a provider,
depending on the type and importance of the services it would like to use (e.g.,
delay-sensitive voice communication, financial transactions, or best effort web
traffic), as well as the respective quality and dependability-related requirements,
i.e., the SLOs. The service provider is expected to provide the service in such
a way that the corresponding SLOs are satisfied. In the opposite case, the provider
has to compensate the customer according to the agreed scheme. Typical business
relationships that fit this model, and which are considered in this chapter, are
established between service providers and either individual or corporate customers.

Customers send traffic flows between pairs of network nodes. At any point in
time, the paths for some flows may already have been established in the network,
while the other flows might have just arrived at the first SDN switch on their
paths and have to be configured by the logically-centralized SDN controller. Note
that in SDNs, some flows which have been inactive for a specified time may be
marked as expired.

In the considered SDN network model, switches mainly forward customers’
traffic. At the same time, it is important to note that control traffic can also be
transmitted using the same infrastructure (In-Band control)1, instead of using
dedicated links (Out-of-Band control). In such a case, the reliability of operation of
the control plane within an SDN depends on the operation of the same data plane
that is to be controlled, which significantly extends the consequences of failures in
the data plane and is undesirable with respect to the overall dependability of the
system. Switches are connected to one or more logically-centralized controllers
and communicate with them using a control protocol, such as OpenFlow [70]. The
controllers provide an open interface for custom applications, for example, traffic
engineering or network measurement applications. All components in the data
plane, the controller plane, and the application plane are managed by network
engineers, possibly with the aid of automated tools (note the presence of the
respective connections with the management plane in Figure 5.1).

Currently, it is not clear how to construct dependability-related SLOs in the
case of SDN networks. One of the main differences between the existing computer
and communication networks and SDNs is that for each new flow in an SDN,
a working connection from each switch that will belong to the configured flow’s

1Actually, this is a likely scenario, especially in the case when control messages have to be
transmitted over long distances, which means that reserving some links or transmission channels
exclusively for control traffic would be much more expensive than sharing the resources with
customers’ traffic. On the other hand, whenever the reliability of such communication channels is
critical to network operation, it might be reasonable to use dedicated channels on short-distance
links at the cost of increased capital and operational expenditures.

68 5. Risk Analysis and its Role in the Provisioning of . . .

0
10
20
30
40
50
60
70
80
90

100
110
120

0 5 10 15 20 25 30 35 40 45 50 55 60

N
um

be
r
of

tr
affi

c
flo

w
s

Time t [s]

Number of all customer’s flows: na (t)
Number of correctly-handled customer’s flows: nc (t)

Number of failed customer’s flows: na (t)− nc (t)

Fig. 5.2: An example showing the number of all traffic flows of a single customer at time t, the
number of correctly-handled flows of the customer at time t, and the number of failed flows of
that customer at time t.

path to at least one controller is needed. An immediate conclusion is that if
no controller is reachable from a switch when a new flow arrives, the customer
observes (partial) service downtime, even while the previously-established traffic
flows are still transmitted successfully (service uptime). Unlike the existing
proposals, the concept presented in Section 5.3 provides a solution to this issue.

5.3 Assessment of the SLA Violation Risk in SDN
In this section, a method is proposed that enables ISPs to estimate the risk of
violating an SLA as a result of exceeding the maximum agreed service degradation.
The term service degradation is an important part of the presented concept and
it is defined as the fraction of the total number of traffic flows of a customer that
were not successfully delivered to the intended destinations during the observation
period. Note that by observation period, a predefined time interval is meant
over which the service degradation metric is computed. In particular, several
observation periods may exist within the SLA contract period [30].

To better illustrate the proposed idea, let us consider the example scenario
shown in Figure 5.2. The figure captures an arbitrarily-selected period of 60
seconds during which a single customer sends several traffic flows through an
SDN backbone network. The black curve with circular points, na (t), reflects

5.3 Assessment of the SLA Violation Risk in SDN 69

the number of flows of that customer at time t. Among these flows are both
the new (i.e., unregistered or expired) and the previously-configured flows. The
number of correctly-transmitted flows is represented by nc (t) and the blue curve
with square points. Once a failure occurs in the network, some flows may not
be delivered to the intended destinations, which is reflected by the red curve
with triangular points, na (t)− nc (t). The area below this curve divided by the
length of the observation period provides information about the average number
of the customer’s flows that were not delivered to the intended destinations in
the period [0, t]. Once this value is computed, the service degradation can be
determined for the entire observation period, and then the new estimation of the
SLA violation risk with respect to the dependability-related SLOs for traffic flows
can be obtained.

While working on the solution, the following general assumptions have been
made:

– service degradation must be measurable by both service providers and
customers;

– failures affecting the already established flows have the same impact on
the estimated service degradation as failures related to new flows (i.e., the
service degradation is estimated based on an assumption that all flows are
equally important for the customer2);

– there is enough network resources to respond to failures through flow rerout-
ing; at the same time, the recovery does not have to be successful.

In addition, the volume of traffic flows is not considered as an indicator of their
importance. Note that one flow of very small volume can be far more important
than several high-volume flows.

The symbols used in the formulation are presented in Table 5.1. To simplify
the explanation (without losing generality), it is assumed that at each time t, new
traffic flows receive unique indices in the range of 1 to nn (t), while the existing
flows are assigned higher indices between nn (t) + 1 and na (t). In addition, it is
assumed that the customer has signed a single SLA with the service provider3.
In the first step, the customer’s flows are counted that can be delivered to the
intended destinations at time t, which is reflected by the nc (t) function as follows:

nc (t) =
nn(t)∑
i=1

p (t, i) c (t, i) +
na(t)∑

i=nn(t)+1

p (t, i) (5.1)

Based on Equation (5.1), the overall service degradation D (τ) corresponding
2Note that the proposed solution may be extended to support different prioritization schemes.
3The analysis would follow the same steps individually for each SLA signed with the given

customer. Such an approach provides greater flexibility with respect to groups of flows that
have different requirements.

70 5. Risk Analysis and its Role in the Provisioning of . . .

Table 5.1: Symbols used in the formulation of the presented risk assessment method.

Symbol Description
τ The length of the observation period defined in the related

Service Level Agreement (SLA); τ ∈ R+

α The maximum allowed service degradation defined in the
SLA; α ∈ [0; 1]

na (t) Number of all traffic flows of the selected customer at
time t; ∀t∈R na (t) ∈ N

nn (t) Number of new traffic flows of the customer at time t;
∀t∈R nn (t) ∈ N

nc (t) Number of successfully-delivered traffic flows of the customer
at time t; ∀t∈R nc (t) ∈ N

c (t, i) The availability status of all connections to the logically-
centralized SDN controller along the entire path of the i-th
flow at time t; c (t, i) = 1 if and only if all SDN switches
belonging to the path can communicate with at least one
active SDN controller, otherwise c (t, i) = 0

p (t, i) The availability status of the entire path of the i-th flow at
time t; p (t, i) = 1 if and only if all network devices
(nodes, links, optical amplifiers, ...) belonging to the path
are working properly, otherwise p (t, i) = 0

D (τ) Service degradation in the observation period [0, τ]
S (τ, α) SLA success probability; S (τ, α) ∈ [0, 1]
W (τ, α) SLA violation risk; W (τ, α) ∈ [0, 1]

to the signed SLA and the related observation period τ is computed as follows:

D (τ) =

1−
∫ τ

0
nc(t) dt∫ τ

0
na(t) dt

if ∃t∈[0;τ] na (t) > 0

0 otherwise.
(5.2)

Note that
∫ τ

0 nc (t) dt is the number of flows of the selected customer that were
delivered to the intended destinations during the observation period τ , while

5.3 Assessment of the SLA Violation Risk in SDN 71

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

Pr
{D

(τ
)≤

x
}

x

Max allowed service degradation: α
SLA success probability: S (τ, α)

D (τ) ≤ α D (τ) > α

S (τ, α) ≈ 0.725

α = 0.01

Fig. 5.3: An example Cumulative Distribution Function (CDF) of the accumulated service
degradation D (τ). The corresponding maximum allowed service degradation α was set to 0.01.

∫ τ
0 na (t) dt is the number of all flows offered by the customer during the same
period.

Once the service degradation D (τ) is computed for each of the consecutive
observation periods, it is possible to determine the related Cumulative Distribution
Function (CDF). The SLA success probability S (τ, α) and the SLA violation risk
W (τ, α) with respect to the agreed service degradation threshold α and length of
an observation period τ are then:

S (τ, α) = Pr {D (τ) ≤ α} (5.3)

W (τ, α) = 1− S (τ, α) (5.4)

See Figure 5.3 for an illustration. Every SLA, for which the risk of violating the
service degradation requirement is estimated using the proposed method, should
be extended with at least the α and τ parameters agreed on with the customer.

Based on the recent work applicable to typical computer and communication
networks [37], it is possible to make risk-aware decisions on the preferred use of
different dependability provisioning techniques in the case of SDNs. Although
the implementation of specific solutions in real networks is usually complex, the
possible directions provided in this chapter may be perceived as the first step,
while the simulation study is used to illustrate the potential use cases.

72 5. Risk Analysis and its Role in the Provisioning of . . .

5.3.1 Evaluation Environment
The evaluation of the proposed solution was carried out with the aid of a discrete-
event, flow-level network simulator written in the C++ programming language4.
For the purpose of generation of random data (e.g., flow inter-arrival time, flow
duration and demand, source and destination nodes) needed to prepare the input
data sets for each simulation, the random number generation engine of the ns-3
v3.24.1 network simulator [3] was used5. The main objective of the simulation
study was to confirm the capability of the proposed method to estimate the
SLA violation risk with respect to the dependability SLOs in Software-Defined
Networks in different scenarios. It is shown that based on the collected results,
suggestions can be made about the additional protection measures that should be
deployed in the network to reduce the risk of violation of the dependability-related
SLOs of each individual SLA to an acceptable level.

To illustrate the possible use cases for the proposed solution, the following two
evaluation scenarios were considered:

– Scenario I: homogeneous service degradation threshold α across all SLAs
(standard SLAs);

– Scenario II: differentiated service degradation threshold (standard SLAs: αs,
business SLAs: αb).

Standard SLAs were only signed by customers who were sending traffic between
nodes selected at random according to the uniform distribution. However, to
reflect the fact that companies often have remote premises in different cities,
business SLAs have been introduced in Scenario II. Business SLAs assumed that
traffic flows are transmitted within the predefined business groups, with higher
SLA dependability requirements than traffic associated with standard SLAs. Each
business group was defined as a set of 4 different nodes selected at random and
representing the corresponding company’s premises in different cities. In this case,
the source and destination nodes were selected at random from the same business
group according to the uniform distribution. Further, it was assumed that there
are 100 SLAs per backbone node in the network. In the case of Scenario II,
each backbone node represented the home location for 70 standard SLAs and 30
business SLAs signed with local customers.

The evaluation was based on the modified version of the real-world backbone
network topology shown in Figure 5.4. The considered network included two
logically-centralized SDN controllers (C1 and C2). Each link of the network had
the capacity of 1 Gbit/s. The flow inter-arrival time was selected according to the
exponential distribution with the mean value of 0.1 s, while the duration of each
flow followed the Pareto distribution with the mean value of 60 s and the shape

4For a detailed description of the simulator, the reader is referred to Chapter 6.
5See the related discussion in Section 4.2.3.

5.3 Assessment of the SLA Violation Risk in SDN 73

Fig. 5.4: A modified US backbone network topology containing 39 nodes, two SDN controllers
(yellow nodes: C1 and C2), and 130 unidirectional links. The topology of the original network was
created based on the data delivered by the SNDlib project [74] (name of the model: janos-us-ca).
To maintain clarity, the figure presents an undirected graph.

parameter equal to 1.5. The average flow demand was set to 1 Mbit/s, whereas
the actual values were selected at random from range [0.75; 1.25] Mbit/s according
to the uniform distribution. The numerical values were selected in such a way
that the generated traffic did not cause link congestions during fault-free network
operation. Moreover, it was assumed that the service provider maintains sufficient
capacity on links to deal with failures in the network, so that at least a small
fraction of each affected flow could still be transmitted, if only the respective
reachability requirements were satisfied. During the steady-state period of each
simulation run, the total number of traffic flows in the network oscillated around
an average value. Further, it was assumed that every 10000 s on average, a node
in the network would fail. The time between consecutive failures was selected at
random according to the exponential distribution. In the case of links, failures
occurred every 1000 s on average. The Mean Time To Repair (MTTR) for nodes
and links was set to 1000 s and 100 s, respectively. The actual values were selected
at random according to the Pareto distribution with the shape parameter equal
to 1.5.

In each simulation run, the service degradation metric was computed every
month (τ = 1 month), while the risk of violation of the dependability-related SLOs
for each SLA was computed after 5 consecutive months, based on Equation (5.4).
For error control, 10 independent simulation runs were executed. Each simulation
run consisted of the following phases:

– the transient period of 512 s (estimated using the method described in
Appendix A) — to make sure that samples were collected during the steady-
state period of the simulation;

74 5. Risk Analysis and its Role in the Provisioning of . . .

– 5 consecutive observation periods, each of length τ ;
– the termination phase of at least 40 s.
In each of the considered scenarios, different values of the service degradation

threshold α were considered. All traffic flows were forwarded along the shortest
paths and it was assumed that the only available resilience provisioning mechanism
was flow rerouting.

In real computer and communication networks, rerouting traffic flows may
take different amounts of time — usually from tens of milliseconds to several
seconds. The duration of this process depends on several factors, such as: the
selected rerouting strategy (e.g., convergence of a specific routing protocol, IP
Fast Reroute-based schemes), layer of operation, network technology, network
topology, and available resources. As the proposed solution is not related to
a specific routing protocol or recovery mechanism, it was assumed that rerouting
a flow after node or link failure imposes the related service downtime of 1 s.

5.3.2 Evaluation Results
The evaluation results corresponding to Scenario I are shown in Figures 5.5
and 5.6. The first figure represents an example simulation run and shows the
Cumulative Distribution Function (CDF) of the SLA violation risk with respect to
the service degradation requirement α (further referred to as SLA violation risk;
see Equation (5.4)). It may be noticed that lower values of α resulted in higher
SLA violation risk. Thus, if service providers decide to guarantee low service
degradation in their agreements with customers, they should already be prepared
to activate enough redundant network resources immediately when such demand
occurs. The second figure presents the estimated CDFs of the maximum SLA
violation risk and the arithmetic mean of the SLA violation risk computed for all
SLAs in each simulation run. Note that the curves in Figure 5.6(a) overlap and
have a steep slope for x equal to 1 for all considered values of α, which reflects the
fact that the maximum SLA violation risk was always equal to 1. Furthermore, it
is clearly visible that the maximum computed SLA violation risk among all SLAs
may deviate significantly from the arithmetic mean of the risk values determined
for the same set of SLAs. Thus, it is a critical factor that should be monitored.

The impact of the maximum computed SLA violation risk on the decision
making process may even be stronger when some SLAs assume different service
degradation thresholds than the other SLAs, which was the main focus of Sce-
nario II. In this case, three different combinations of service degradation thresholds
for standard and business SLAs were considered. As business communication
is usually associated with higher dependability guarantees, it was assumed that
the corresponding service degradation threshold αb should always be lower than
the corresponding threshold for standard SLAs, αs. The simulation results have

5.3 Assessment of the SLA Violation Risk in SDN 75

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
{W

(τ
,α

)≤
x
}

x

α = 0.002 α = 0.003 α = 0.004 α = 0.005

Fig. 5.5: Scenario I: An example CDF of the SLA violation risk with respect to the service
degradation requirement α. The results represent an example simulation run and all 3900
standard SLAs (100 per each network node).

shown that in the considered evaluation scenario, the maximum SLA violation
risk and the arithmetic mean of the SLA violation risk computed with respect to
the exceeded service degradation threshold were much higher for business SLAs,
as they had stronger dependability guarantees than standard SLAs (see Figures
5.7 and 5.8; note that there are two overlapping curves in Figure 5.8(a)). Thus, to
avoid penalties due to violated dependability-related SLOs of business SLAs, the
service provider should either deploy more effective recovery mechanisms for the
related traffic flows, or negotiate higher service degradation thresholds with its
business customers. However, different recovery mechanisms may have different
cost. An idea of how to select the optimal recovery strategy based on the related
cost and the estimated SLA violation risk has been presented in [37]. Now, being
able to estimate the risk of violation of the dependability-related SLOs for each
SLA in SDNs, service providers may plan future expenditures more effectively.

5.3.3 Deployment Considerations and Limitations
Deployment of the proposed solution requires a fully operational SDN network.
In addition, due to the way service degradation is estimated, service providers
must be able to register both successful and unsuccessful flow configuration and
transmission attempts for each of their customers. Thus, in the case of failure of
all communication channels between an SDN switch and the logically-centralized
controller, the monitoring systems must still be able to record incoming traffic
flows reliably. Such information should then be transmitted to the centralized unit
which is responsible for the periodic estimation of the service degradation metric.
The related algorithm may be implemented within an independent application
which communicates with the logically-centralized controller to get additional
information (see Figure 5.1). It is desired that the application be able to trigger
alarms or predefined actions whenever the estimated SLA violation risk with

76 5. Risk Analysis and its Role in the Provisioning of . . .

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
{ m

ax
{W

i
(τ
,α

)}
i=

1,
..
.,
N
≤
x
}

x

(a)
α = 0.002 α = 0.003 α = 0.004 α = 0.005

Pr
{ av

g{
W
i
(τ
,α

)}
i=

1,
..
.,
N
≤
x
}

x

(b)

Fig. 5.6: Scenario I: The estimated CDF of (a) the maximum SLA violation risk and (b) the
arithmetic mean of the SLA violation risk with respect to the service degradation requirement
α. The results represent all simulation runs (N = 10) and all 3900 standard SLAs (100 per each
network node).

respect to the exceeded service degradation threshold is higher than the maximum
allowed value. To avoid possible alarm storms, a mechanism based on different
triggering conditions may be applied.

The proposed solution has some limitations. In particular, it assumes that
each customer transmits several traffic flows through the network during each
observation period. While this condition should generally be satisfied in backbone
networks, it may not be the case in some specific scenarios. Further, it is assumed
that if a customer is disconnected from the provider’s infrastructure (e.g., following
a link failure), then both sides will be able to measure the related downtime and
decide if a financial compensation is needed according to the SLA. The proposed
solution is not directly applicable to such scenarios, as the customer will not

5.4 Summary 77

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
{ m

ax
{W

i
(τ
,α

s)
} i

=
1,
..
.,
N
≤
x
}

x

(a)

αb = 0.002, αs = 0.005
αb = 0.004, αs = 0.007

αb = 0.006, αs = 0.009
Pr
{ av

g{
W
i
(τ
,α

s)
} i

=
1,
..
.,
N
≤
x
}

x

(b)

Fig. 5.7: Scenario II: The estimated CDF of (a) the maximum SLA violation risk and (b) the
arithmetic mean of the SLA violation risk with respect to the service degradation requirement
αs. The results represent all simulation runs (N = 10) and all 2730 standard SLAs (70 per each
network node).

be able to send its flows through the provider’s network. At the same time,
service providers should be able to deal with this issue using the already-deployed
monitoring tools.

5.4 Summary
In this chapter, a method was presented that allows for the assessment of the SLA
violation risk with respect to the dependability-related SLOs defined for traffic
flows in SDNs. To clarify the understanding of dependability in the context of
traffic flows in SDNs, the main related factors were identified, and then service
degradation was defined as the key measure of decreased dependability in SDN

78 5. Risk Analysis and its Role in the Provisioning of . . .

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
{ m

ax
{W

i
(τ
,α

b
)}
i=

1,
..
.,
N
≤
x
}

x

(a)

αb = 0.002, αs = 0.005
αb = 0.004, αs = 0.007

αb = 0.006, αs = 0.009

Pr
{ av

g{
W
i
(τ
,α

b
)}
i=

1,
..
.,
N
≤
x
}

x

(b)

Fig. 5.8: Scenario II: The estimated CDF of (a) the maximum SLA violation risk and (b) the
arithmetic mean of the SLA violation risk with respect to the service degradation requirement
αb. The results represent all simulation runs (N = 10) and all 1170 business SLAs (30 per each
network node).

environments, allowing for the computation of the corresponding SLA violation
risk. The simulation results have shown that the proposed solution is feasible and
may help service providers to select the preferred recovery technique based on
the estimated SLA violation risk related to the known dependability SLOs. The
presented work is the first step to understand how to define and assess the SLA
dependability parameters in SDNs — a problem that to date was still unsolved.

6 A Flow-Level Discrete-Event Net-
work Simulator for Dependability
Research

Some parts of the research presented in this dissertation involved simulation
experiments to evaluate the proposed solutions. As the considered solutions
addressed specific high-level issues in flow-oriented networks, network operation
was analyzed on the level of traffic flows, whereas performance of the verified
mechanisms was assessed based on the selected metrics. Thus, a set of simulation
tools was designed and implemented to support the evaluation of the selected
aspects of network dependability in flow-oriented computer and communication
networks. The overall design of the simulator is presented in Section 6.1.

6.1 Design
The proposed simulator is a flow-level, discrete-event simulator implemented in
the C++ programming language. It models traffic flows and network elements,
such as nodes and links, as objects with different properties (e.g., node name, link
capacity, source and destination nodes, flow demand). Its structure is very simple
and modular, as presented in Figure 6.1. The simulator is based on the following
three independent components:

– Data Generation Module,
– Data Management Module,
– Simulation Module.

The key functionality of the components is briefly discussed in Sections 6.1.1-6.1.3.

6.1.1 Data Generation Module
The Data Generation Module facilitates the preparation of input data related to
the simulated network events, such as arrivals of new traffic flows and failures
of network elements. By default, for the purpose of random data generation

80 6. A Flow-Level Discrete-Event Network Simulator for . . .

Fig. 6.1: A block diagram showing the main components and data sources of the created
flow-level, discrete-event network simulator. Arrows describe the flow of information between
particular blocks, input, and output. ns-3 is an existing network simulator [3] that was used
solely for the purpose of random number generation according to predefined distributions.

(e.g., flow inter-arrival time, flow duration and demand, source and destination
nodes for particular flows), the pseudorandom data generation engine of the
widely-used ns-3 [3] network simulator is used. At the same time, it needs to
be emphasized that the modular design of the simulator allows researchers to
employ other external random generators for this purpose, according to their
preferences or specific requirements. The random values are assigned to the
selected properties and stored in a text file prepared by a C++ application in the
JSON1 data-interchange format. Multiple data sets, one for each simulation trial,
are generated with the aid of a UNIX shell script. The data sets can be directly
imported into the Data Management Module.

6.1.2 Data Management Module
The Data Management Module organizes all available information about network
topology, simulation scenario, and simulation results. It was developed as a stand-
alone C++ application with a graphical user interface based on the cross-platform
Qt library [5]. The definition of a network topology or a simulation scenario
can either be prepared within the application (see Figures 6.2-6.6), or it can be
imported from a text file containing the previously exported data stored in the
JSON data-interchange format. While the definition of the network topology
includes information about nodes, physical links, light paths, the selected technical
parameters, and the physical location of nodes, the simulation scenario defines
some general simulation parameters, such as the relative link congestion threshold,
network monitoring interval, and network events for each simulation trial with
the corresponding occurrence times. Note that although the simulator is designed

1JavaScript Object Notation

6.1 Design 81

Fig. 6.2: Data Management Module: an example definition of network nodes.

to be able to model the selected elements of optical networks, such as fiber optic
links and light paths, it is also possible to model non-optical wired networks
which contain generic links. The modeling of network elements is focused on their
high-level properties (e.g., link capacity and endpoints), which is sufficient for
the purpose of network analyses considering connectivity, reachability, and link
congestions.

The post-processing of the simulation results is focused mainly on the capability
to estimate the empirical Probability Density Function (PDF) or Cumulative
Distribution Function (CDF) of a given performance metric, for the considered
type of value (minimum, average, maximum). It is also possible to extract the
results acquired for each simulation trial and performance metric without further
processing. In both cases, the resulting data set can be exported to a file and
visualized with the aid of the Gnuplot graphing utility [1].

6.1.3 Simulation Module
The Simulation Module is the part of the simulator that actually executes the
events, maintains the network state, and recomputes the performance metrics
periodically.

To avoid the complexity involved in the generation of random data reflecting

82 6. A Flow-Level Discrete-Event Network Simulator for . . .

Fig. 6.3: Data Management Module: an example definition of fiber links and optical channels.

Fig. 6.4: Data Management Module: an example definition of light paths.

6.1 Design 83

Fig. 6.5: Data Management Module: an example visualization of a network topology.

Fig. 6.6: Data Management Module: an example definition of network events.

84 6. A Flow-Level Discrete-Event Network Simulator for . . .

the desired distribution, as well as to allow researchers to use different external
sources of randomness, the Simulation Module of the simulator by design expects
the user to provide a complete simulation scenario on input.

When started, the simulator enters the main loop in which it loads the list of
events for the currently considered simulation trial, and then executes the events
in the appropriate order, collecting the required data (such as the number of
overloaded links) and storing it in the output file. The type of the employed
event list is the Henriksen’s event list, as described in [85]. Alternatively, in the
case of very long simulations with large number of events, a modified version of
the simulator has been developed that allows to execute blocks of events loaded
sequentially from a predefined text file, thus avoiding the necessity of loading
all the events into memory before starting the simulation. For each simulation
trial, the simulator saves the results in the predefined output file. The Simulation
Module is designed to be portable and can be managed via the command-line
interface.

6.2 Summary
In this chapter, the design and the selected implementation details of the proposed
simulation tools were presented. The simulation tools have been developed as
an integral part of the conducted research on the dependability of flow-oriented
computer and communication networks. Using the proposed simulator, it is
possible to analyze network operation on the level of traffic flows, avoiding the
complexity of different low-level phenomena, which allows to asses the network
performance with respect to connectivity, reachability, presence of link congestions,
and different custom metrics.

7 Conclusion and Future Work

Considering the increasing reliance of the global society on the communication
infrastructure, it is required that modern computer and communication networks
be able to deal with forwarding loops, multiple simultaneous failures of network
elements, and link congestions effectively. Further, to enable service providers
to plan the expenditures related to the development and maintainance of their
networks, while meeting the agreed goals with respect to the Service Level
Agreements signed with customers, risk estimation-based methods are often
used. In this dissertation, the related solutions are proposed for specific types of
flow-oriented communication networks. The main contributions are outlined in
Section 7.1, while the open issues and future work are discussed in Section 7.2.
Finally, Section 7.3 concludes the dissertation.

7.1 Contributions
In this dissertation, four different solutions have been proposed to enhance the
dependability of the selected flow-oriented network types with respect to possible
occurrences of persistent forwarding loops, link congestions (two solutions), and
multiple simultaneous failures of network elements. To support the evaluation
of the congestion control algorithms, a set of discrete-event flow-level network
simulation tools have been designed and implemented as an integral part of the
research presented in this dissertation. The proposed solutions dealing with
forwarding loops and failures of network elements have been implemented in the
custom-built prototype routing devices and they were evaluated in two laboratory
networks including off-the-shelf network equipment. The experimental evaluation
demonstrated the potential of the presented methods to be gradually deployed in
existing computer and communication networks. To extend the evaluation and
provide a valuable context for the results, the proposed methods were compared

86 7. Conclusion and Future Work

against two reference network operation modes which have also been implemented
in the prototype router devices. The evaluation results have shown that the impact
of failures, forwarding loops, and link congestions on traffic flows in the selected
types of flow-oriented network may be reduced with the aid of the proposed
solutions, improving the overall network dependability perceived by users.

Further, in the case of Software-Defined Networks, an explicit definition of
the dependability requirements for traffic flows was provided, the corresponding
measure of decreased dependability was introduced, and a complete risk assessment
scheme was proposed to enable service providers to estimate the risk of violation
of SLAs with respect to the proposed metric. The corresponding evaluation was
performed with the aid of the discrete-event flow-level network simulation tools
designed and implemented by the author. Based on the evaluation results, it was
observed that the presented service degradation measure and the risk assessment
scheme for SDNs have the potential to enable service providers to select the desired
recovery mechanisms more effectively with respect to the related expenditures
and the estimated risk of violation of the dependability requirements of SLAs
signed with customers.

Based on the research conducted for this dissertation, it can be stated that
the following thesis defined in Section 1.3 has been proved:

It is possible to improve the dependability of the selected
flow-oriented network types using the proposed solutions to
deal with failures, forwarding loops, and link congestions,
and to estimate the risk of violation of the dependability
SLOs related to traffic flows in SDNs with the aid of the
proposed risk assessment scheme.

7.2 Open Issues and Future Work

Although the proposed solutions have the potential to improve the dependability
of the selected types of flow-oriented network, they also have some limitations
which are discussed in detail in the corresponding sections. In particular, one open
issue related to the GroupAndReroute algorithm is that if generic communication
devices that do not support GroupAndReroute are also present in the network,
GroupAndReroute may cause forwarding loops. However, a strategy is also
proposed to avoid such events. Further, the proposed methods may be extended
to support various service differentiation strategies. This area has not been
discussed in this dissertation, yet it is an interesting problem for future research.

7.3 Final Remarks 87

7.3 Final Remarks
The solutions presented in this dissertation have been designed to address im-
portant issues influencing the dependability of the selected types of flow-oriented
computer and communication network. The corresponding limitations are dis-
cussed in detail in the respective sections. The solutions have the potential to be
deployed in real networks.

Appendices

A Estimating the Length of the Tran-
sient Period of a Simulation

Simulation experiments are conducted to study the behavior of a system under
specific conditions. If the evaluation is based on the assumption that the system is
observed during the steady-state operation period, it is necessary to either verify
whether the observations during the transient period actually reflect the steady-
state distribution, or to estimate the length of the transient period occurring
at the beginning of each simulation run and ignore all observations during this
period [85]. One of the possible strategies to estimate the length of the transient
period is to observe the current estimate and wait until it starts to oscillate around
an average value. Although not perfect, this method was used to get the first
approximation that could be verified using the following strategy based on the
central limit theorem and described in [85]. The strategy assumes that in the case
of a stationary distribution, the sample mean of the distribution follows a normal
distribution characterized by mean value µ and standard deviation s:

s = σ√
n

(A.1)

where n represents the number of samples, while µ and σ denote the true mean
and standard deviation of the sampled distribution, respectively. Based on
Formula (A.1), the following linear relationship can be obtained:

log2 s = −0.5 log2 n+ log2 σ (A.2)

As Formula (A.2) represents log2 s as a function of log2 n, the corresponding
plot may be analyzed with respect to the point at which the slope of the curve
clearly changes sign to negative and remains close to −0.5. Such a point can be
selected as the beginning of the equilibrium.

Further, when consecutive observations are made during a simulation run, the
corresponding samples may correlate with each other. Thus, it is recommended

92 A. Estimating the Length of the Transient Period of . . .

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lo
g 2
s N

log2 N

The investigated function
The reference function: f (x) = −0.5x+ 12.204853

Fig. A.1: An example plot showing log2 sN as a function of log2 N , as well as a reference
function with the slope of −0.5. The plot corresponds to the experiments discussed in Chapter 5
(Scenario I).

that several independent simulation runs be made [85]. Assuming that M denotes
the number of simulation runs, each with N observations, the corresponding
samples may be represented as Xnm, where n = 1, . . . , N and m = 1, . . . ,M . In
addition, for each observation n, the mean of the samples across all M simulation
runs is as follows:

µ̂n = 1
M

M∑
m=1

Xnm (A.3)

The sequence of µ̂n values determined based on Formula (A.3) contains N
independent normally-distributed random variables [85] and it is possible to
compute the corresponding standard deviation sN as follows:

sN =

√√√√ 1
N − 1

N∑
n=1

(µ̂n − ωN)2 (A.4)

where:

ωN = 1
N

N∑
n=1

µ̂n

93

Finally, based on Equation (A.4), it is possible to create a plot showing log2 sN
as a function of log2 N . An example plot corresponding to the experiments
discussed in Chapter 5 is presented in Figure A.1. Note that although the overall
slope of the investigated function for arguments greater than or equal 9 does not
match exactly the expected value of −0.5, it is relatively close to that value, which
agrees with a similar example provided in [85]. In addition, the overall slope has
clearly changed sign to negative and it remains stable with increasing value of
log2 N in the considered range. In this case, it was assumed that the equilibrium
started at the point corresponding to log2 N = 9.

Bibliography

[1] The Gnuplot Project. URL http://www.gnuplot.info. Accessed on May
9, 2017.

[2] The iftop monitoring tool. URL http://www.ex-parrot.com/~pdw/iftop.
Accessed on May 9, 2017.

[3] The ns-3 Discrete-Event Network Simulator, . URL https://www.nsnam.org.
Accessed on May 9, 2017.

[4] The ns-3.24 Manual, . URL https://www.nsnam.org/docs/release/3.24/
manual/singlehtml/index.html. Downloaded on May 9, 2017.

[5] The Qt Project. URL https://www.qt.io. Accessed on May 9, 2017.

[6] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme. IPv6 Flow Label
Specification. RFC 6437, RFC Editor, November 2011. URL http://www.
rfc-editor.org/rfc/rfc6437.txt. Downloaded on May 9, 2017.

[7] S. Antonakopoulos, Y. Bejerano, and P. Koppol. Full Protection Made
Easy: The DisPath IP Fast Reroute Scheme. IEEE/ACM Transac-
tions on Networking, 23(4):1229–1242, Aug 2015. ISSN 1063-6692. doi:
10.1109/TNET.2014.2369855.

[8] A. Atlas. U-turn Alternates for IP/LDP Fast-Reroute. Internet-
Draft draft-atlas-ip-local-protect-uturn-03.txt, IETF Secre-
tariat, February 2006. URL https://tools.ietf.org/html/
draft-atlas-ip-local-protect-uturn-03. Downloaded on May 9,
2017.

http://www.gnuplot.info
http://www.ex-parrot.com/~pdw/iftop
https://www.nsnam.org
https://www.nsnam.org/docs/release/3.24/manual/singlehtml/index.html
https://www.nsnam.org/docs/release/3.24/manual/singlehtml/index.html
https://www.qt.io
http://www.rfc-editor.org/rfc/rfc6437.txt
http://www.rfc-editor.org/rfc/rfc6437.txt
http://dx.doi.org/10.1109/TNET.2014.2369855
http://dx.doi.org/10.1109/TNET.2014.2369855
https://tools.ietf.org/html/draft-atlas-ip-local-protect-uturn-03
https://tools.ietf.org/html/draft-atlas-ip-local-protect-uturn-03

96 Bibliography

[9] A. Atlas and A. Zinin. Basic Specification for IP Fast Reroute: Loop-
Free Alternates. RFC 5286, RFC Editor, September 2008. URL http:
//www.rfc-editor.org/rfc/rfc5286.txt. Downloaded on May 9, 2017.

[10] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1:11–33, 2004.

[11] F. Baker and G. Fairhurst. IETF Recommendations Regarding Active
Queue Management. RFC 7567, RFC Editor, July 2015. URL http://www.
rfc-editor.org/info/rfc7567. Downloaded on May 9, 2017.

[12] W. Braun and M. Menth. Scalable Resilience for Software-Defined Networking
using Loop-Free Alternates with Loop Detection. In Proceedings of the 2015
1st IEEE Conference on Network Softwarization (NetSoft), pages 1–6, April
2015. doi: 10.1109/NETSOFT.2015.7116180.

[13] G. Brush and N. Marlow. Assuring the Dependability of Telecommunications
Networks and Services. IEEE Network, 4(1):29–34, Jan 1990. ISSN 0890-8044.
doi: 10.1109/65.47002.

[14] S. Bryant, C. Filsfils, S. Previdi, and M. Shand. IP Fast Reroute using
tunnels. Internet-Draft, IETF, November 2007. URL https://tools.ietf.
org/pdf/draft-bryant-ipfrr-tunnels-03.txt. Downloaded on May 9,
2017.

[15] P. Cholda, A. Mykkeltveit, B.E. Helvik, O.J. Wittner, and A. Jajszczyk. A
survey of resilience differentiation frameworks in communication networks.
IEEE Communications Surveys & Tutorials, 9(4):32–55, Fourth 2007. ISSN
1553-877X. doi: 10.1109/COMST.2007.4444749.

[16] P. Cholda, J. Tapolcai, T. Cinkler, K. Wajda, and A. Jajszczyk. Quality of
Resilience as a Network Reliability Characterization Tool. IEEE Network, 23
(2):11–19, March 2009. ISSN 0890-8044. doi: 10.1109/MNET.2009.4804331.

[17] P. Chołda, K. Rusek, and P. Guzik. Upper bound for failure risk in networks.
Electronic Notes in Discrete Mathematics, 51:31 – 38, 2016. ISSN 1571-0653.
doi: 10.1016/j.endm.2016.01.005.

[18] P. Chołda and A. Jajszczyk. Recovery and Its Quality in Multilayer Networks.
Journal of Lightwave Technology, 28(4):372–389, Feb 2010. ISSN 0733-8724.
doi: 10.1109/JLT.2009.2031821.

http://www.rfc-editor.org/rfc/rfc5286.txt
http://www.rfc-editor.org/rfc/rfc5286.txt
http://www.rfc-editor.org/info/rfc7567
http://www.rfc-editor.org/info/rfc7567
http://dx.doi.org/10.1109/NETSOFT.2015.7116180
http://dx.doi.org/10.1109/65.47002
https://tools.ietf.org/pdf/draft-bryant-ipfrr-tunnels-03.txt
https://tools.ietf.org/pdf/draft-bryant-ipfrr-tunnels-03.txt
http://dx.doi.org/10.1109/COMST.2007.4444749
http://dx.doi.org/10.1109/MNET.2009.4804331
http://dx.doi.org/10.1016/j.endm.2016.01.005
http://dx.doi.org/10.1109/JLT.2009.2031821

Bibliography 97

[19] P. Chołda, E.L. Følstad, B.E. Helvik, P. Kuusela, M. Naldi, and I. Nor-
ros. Towards risk-aware communications networking. Reliability Engi-
neering & System Safety, 109:160 – 174, 2013. ISSN 0951-8320. doi:
http://dx.doi.org/10.1016/j.ress.2012.08.009.

[20] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460, RFC Editor, December 1998. URL http://www.rfc-editor.
org/rfc/rfc2460.txt. Downloaded on May 9, 2017.

[21] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 8200, RFC Editor, July 2017. URL http://www.rfc-editor.org/
rfc/rfc8200.txt. Downloaded on Aug 5, 2017.

[22] F. Dikbiyik, M. Tornatore, and B. Mukherjee. Exploiting Excess Capacity
for Survivable Traffic Grooming in Optical Backbone Networks. IEEE/OSA
Journal of Optical Communications and Networking, 6(2):127–137, Feb 2014.
ISSN 1943-0620. doi: 10.1364/JOCN.6.000127.

[23] J. Domżał. Intelligent routing in congested Approximate Flow-Aware Net-
works. In 2012 IEEE Global Communications Conference (GLOBECOM),
pages 1751–1756, Dec 2012. doi: 10.1109/GLOCOM.2012.6503368.

[24] J. Domżał and A. Jajszczyk. New Congestion Control Mechanisms for Flow-
Aware Networks. In IEEE International Conference on Communications
(ICC ’08), pages 12–16, May 2008. doi: 10.1109/ICC.2008.11.

[25] J. Domżał, Z. Duliński, M. Kantor, J. Rząsa, R. Stankiewicz, K. Wajda, and
R. Wójcik. A survey on methods to provide multipath transmission in wired
packet networks. Computer Networks, 77:18–41, 2015. ISSN 1389-1286. doi:
http://dx.doi.org/10.1016/j.comnet.2014.12.001.

[26] J. Domżał, R. Wójcik, and A. Jajszczyk. Guide to Flow-Aware Network-
ing. Springer International Publishing, 2015. ISBN 978-3-319-24973-5. doi:
10.1007/978-3-319-24975-9.

[27] J. Domżał, R. Wójcik, D. Kowalczyk, P. Gawłowicz, P. Jurkiewicz, and
A. Kamisiński. Admission control in Flow-Aware Multi-Topology Adap-
tive Routing. In 2015 International Conference on Computing, Networking
and Communications (ICNC), pages 265–269, Feb 2015. doi: 10.1109/IC-
CNC.2015.7069352.

[28] T. Elhourani, A. Gopalan, and S. Ramasubramanian. IP Fast Rerouting
for Multi-Link Failures. In 2014 IEEE Conference on Computer Commu-
nications (INFOCOM), pages 2148–2156, April 2014. doi: 10.1109/INFO-
COM.2014.6848157.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2012.08.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2012.08.009
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc8200.txt
http://dx.doi.org/10.1364/JOCN.6.000127
http://dx.doi.org/10.1109/GLOCOM.2012.6503368
http://dx.doi.org/10.1109/ICC.2008.11
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.12.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.12.001
http://dx.doi.org/10.1007/978-3-319-24975-9
http://dx.doi.org/10.1007/978-3-319-24975-9
http://dx.doi.org/10.1109/ICCNC.2015.7069352
http://dx.doi.org/10.1109/ICCNC.2015.7069352
http://dx.doi.org/10.1109/INFOCOM.2014.6848157
http://dx.doi.org/10.1109/INFOCOM.2014.6848157

98 Bibliography

[29] G. Enyedi, P. Szilagyi, G. Retvari, and A. Csaszar. IP Fast ReRoute:
Lightweight Not-Via without Additional Addresses. In 2009 IEEE Conference
on Computer Communications (INFOCOM), pages 2771–2775, April 2009.
doi: 10.1109/INFCOM.2009.5062229.

[30] E.L. Følstad and B.E. Helvik. The cost for meeting SLA dependabil-
ity requirements; implications for customers and providers. Reliability
Engineering & System Safety, 145:136–146, 2016. ISSN 0951-8320. doi:
http://dx.doi.org/10.1016/j.ress.2015.09.011.

[31] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure. Achieving Sub-
second IGP Convergence in Large IP Networks. ACM SIGCOMM Com-
puter Communication Review, 35(3):35–44, July 2005. ISSN 0146-4833. doi:
10.1145/1070873.1070877.

[32] A.V. Gheorghe, M. Masera, M. Weijnen, and L. De Vries. Critical Infras-
tructures at Risk: Securing the European Electric Power System, volume 9 of
Topics in Safety, Risk, Reliability, and Quality. Springer Netherlands, 2006.
ISBN 978-1-4020-4306-2. doi: 10.1007/1-4020-4364-3.

[33] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisiński. A Fault-
Tolerant and Consistent SDN Controller. In 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pages 1–6, Dec 2016. doi: 10.1109/GLO-
COM.2016.7841496.

[34] A.J. González and B.E. Helvik. Analysis of Failures Characteristics in the
UNINETT IP Backbone Network. In 2011 IEEE Workshops of International
Conference on Advanced Information Networking and Applications (WAINA),
pages 198–203, March 2011. doi: 10.1109/WAINA.2011.55.

[35] A.J. Gonzalez and B.E. Helvik. Advances in Computer Science, Engineering
& Applications: Proceedings of the Second International Conference on Com-
puter Science, Engineering and Applications (ICCSEA 2012), May 25-27,
2012, New Delhi, India, Volume 1, chapter A Study of the Interval Availabil-
ity and Its Impact on SLAs Risk, pages 879–890. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-30157-5. doi: 10.1007/978-3-642-
30157-5_87.

[36] A.J. Gonzalez and B.E. Helvik. Hybrid Cloud Management to Comply
Efficiently with SLA Availability Guarantees. In 2013 12th IEEE International
Symposium on Network Computing and Applications (NCA), pages 127–134,
Aug 2013. doi: 10.1109/NCA.2013.32.

http://dx.doi.org/10.1109/INFCOM.2009.5062229
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2015.09.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2015.09.011
http://dx.doi.org/10.1145/1070873.1070877
http://dx.doi.org/10.1145/1070873.1070877
http://dx.doi.org/10.1007/1-4020-4364-3
http://dx.doi.org/10.1109/GLOCOM.2016.7841496
http://dx.doi.org/10.1109/GLOCOM.2016.7841496
http://dx.doi.org/10.1109/WAINA.2011.55
http://dx.doi.org/10.1007/978-3-642-30157-5_87
http://dx.doi.org/10.1007/978-3-642-30157-5_87
http://dx.doi.org/10.1109/NCA.2013.32

Bibliography 99

[37] A.J. Gonzalez, B.E. Helvik, P. Tiwari, D.M. Becker, and O.J. Wittner.
GEARSHIFT: Guaranteeing availability requirements in SLAs using hy-
brid fault tolerance. In 2015 IEEE Conference on Computer Communi-
cations (INFOCOM), pages 1373–1381, April 2015. doi: 10.1109/INFO-
COM.2015.7218514.

[38] J. Gruen, M. Karl, and T. Herfet. Network Supported Congestion Avoidance
in Software-Defined Networks. In 2013 19th IEEE International Conference
on Networks (ICON), pages 1–6, Dec 2013. doi: 10.1109/ICON.2013.6781970.

[39] M. Guo and P. Bhattacharya. Controller Placement for Improving Resilience
of Software-Defined Networks. In 2013 Fourth International Conference on
Networking and Distributed Computing (ICNDC), pages 23–27, Dec 2013.
doi: 10.1109/ICNDC.2013.15.

[40] P.E. Heegaard, B.E. Helvik, and V.B. Mendiratta. Achieving Dependability
in Software-Defined Networking - A Perspective. In 2015 7th International
Workshop on Reliable Networks Design and Modeling (RNDM), pages 63–70,
Oct 2015. doi: 10.1109/RNDM.2015.7324310.

[41] Y. Hu, W. Wendong, G. Xiangyang, C.H. Liu, X. Que, and S. Cheng.
Control Traffic Protection in Software-Defined Networks. In 2014 IEEE
Global Communications Conference (GLOBECOM), pages 1878–1883, Dec
2014. doi: 10.1109/GLOCOM.2014.7037082.

[42] ISO/IEC 7498-1:1994(E). Information technology – Open Systems Intercon-
nection – Basic Reference Model: The Basic Model. Standard, International
Organization for Standardization, International Electrotechnical Commission,
CH-1211 Genève 20, Switzerland, November 1994.

[43] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An Approach to Alleviate Link
Overload as Observed on an IP Backbone. In IEEE INFOCOM 2003. Twenty-
second Annual Joint Conference of the IEEE Computer and Communications
Societies (IEEE Cat. No.03CH37428), volume 1, pages 406–416 vol.1, March
2003. doi: 10.1109/INFCOM.2003.1208692.

[44] A. Jajszczyk and P. Rozycki. Recovery of the Control Plane after Failures
in ASON/GMPLS Networks. IEEE Network, 20(1):4–10, Jan 2006. ISSN
0890-8044. doi: 10.1109/MNET.2006.1580913.

[45] J. Joung, J. Song, and S. Lee. Flow-Based QoS Management Architectures
for the Next Generation Network. ETRI Journal, 30(2):238–248, April 2008.
doi: 10.4218/etrij.08.1107.0006.

http://dx.doi.org/10.1109/INFOCOM.2015.7218514
http://dx.doi.org/10.1109/INFOCOM.2015.7218514
http://dx.doi.org/10.1109/ICON.2013.6781970
http://dx.doi.org/10.1109/ICNDC.2013.15
http://dx.doi.org/10.1109/RNDM.2015.7324310
http://dx.doi.org/10.1109/GLOCOM.2014.7037082
http://dx.doi.org/10.1109/INFCOM.2003.1208692
http://dx.doi.org/10.1109/MNET.2006.1580913
http://dx.doi.org/10.4218/etrij.08.1107.0006

100 Bibliography

[46] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene. FlowBender: Flow-
level Adaptive Routing for Improved Latency and Throughput in Datacenter
Networks. In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’14, pages
149–160, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3279-8. doi:
10.1145/2674005.2674985.

[47] A. Kamisiński and C. Fung. FlowMon: Detecting Malicious Switches in
Software-Defined Networks. In Proceedings of the 2015 Workshop on Au-
tomated Decision Making for Active Cyber Defense, SafeConfig ’15, pages
39–45, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3821-9. doi:
10.1145/2809826.2809833.

[48] A. Kamisiński, A. Jajszczyk, J. Domżał, and R. Wójcik. Sposób usuwania
pętli w rutingu pakietów w sieci teleinformatycznej [A method for resolution
of routing loops in a telecommunication network], December 2014. Polish
patent application, no. P.410390.

[49] A. Kamisiński, P. Chołda, and A. Jajszczyk. Assessing the Structural
Complexity of Computer and Communication Networks. ACM Computing
Surveys, 47(4):66:1–66:36, May 2015. ISSN 0360-0300. doi: 10.1145/2755621.

[50] A. Kamisiński, J. Domżał, R. Wójcik, and A. Jajszczyk. Online Appendix,
Jul 2016. URL http://kt.agh.edu.pl/~kamisinski/pub/2016_commltr_
congestion_control/. Downloaded on May 9, 2017.

[51] A. Kamisiński, B. E. Helvik, A. J. Gonzalez, and G. Nencioni. Assessing
the Risk of Violating SLA Dependability Requirements in Software-Defined
Networks. In IEEE NFV-SDN 2017 - Fourth Workshop on Network Function
Virtualization and Programmable Networks (NFV-SDN’17-NFVPN), Berlin,
Germany, Nov 2017. Accepted for publication.

[52] A. Kamisiński, J. Domżał, R. Wójcik, and A. Jajszczyk. Two Rerouting-
Based Congestion Control Algorithms for Centrally Managed Flow-Oriented
Networks. IEEE Communications Letters, 20(10):1963–1966, Oct 2016. ISSN
1089-7798. doi: 10.1109/LCOMM.2016.2594774.

[53] R. Kanagavelu and K. M. M. Aung. SDN Controlled Local Re-routing to
Reduce Congestion in Cloud Data Centers. In 2015 International Conference
on Cloud Computing Research and Innovation (ICCCRI), pages 80–88, Oct
2015. doi: 10.1109/ICCCRI.2015.27.

[54] R. Kanagavelu, Bu Sung Lee, R. Felipe Miguel, Le Nguyen The Dat, and
L. N. Mingjie. Software Defined Network based Adaptive Routing for Data

http://dx.doi.org/10.1145/2674005.2674985
http://dx.doi.org/10.1145/2674005.2674985
http://dx.doi.org/10.1145/2809826.2809833
http://dx.doi.org/10.1145/2809826.2809833
http://dx.doi.org/10.1145/2755621
http://kt.agh.edu.pl/~kamisinski/pub/2016_commltr_congestion_control/
http://kt.agh.edu.pl/~kamisinski/pub/2016_commltr_congestion_control/
http://dx.doi.org/10.1109/LCOMM.2016.2594774
http://dx.doi.org/10.1109/ICCCRI.2015.27

Bibliography 101

Replication in Data Centers. In 2013 19th IEEE International Conference on
Networks (ICON), pages 1–6, Dec 2013. doi: 10.1109/ICON.2013.6781967.

[55] S. Kini, S. Ramasubramanian, A. Kvalbein, and A.F. Hansen. Fast Recovery
from Dual Link Failures in IP Networks. In 2009 IEEE Conference on
Computer Communications (INFOCOM), pages 1368–1376, April 2009. doi:
10.1109/INFCOM.2009.5062052.

[56] S. Kini, S. Ramasubramanian, A. Kvalbein, and A.F. Hansen. Fast Recovery
From Dual-Link or Single-Node Failures in IP Networks Using Tunneling.
IEEE/ACM Transactions on Networking, 18(6):1988–1999, Dec 2010. ISSN
1063-6692. doi: 10.1109/TNET.2010.2055887.

[57] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The Inter-
net Topology Zoo. IEEE Journal on Selected Areas in Communications, 29(9):
1765–1775, October 2011. ISSN 0733-8716. doi: 10.1109/JSAC.2011.111002.

[58] A. Kortebi, S. Oueslati, and J. W. Roberts. Cross-Protect: Implicit Service
Differentiation and Admission Control. In 2004 Workshop on High Per-
formance Switching and Routing (HPSR), pages 56–60, April 2004. doi:
10.1109/HPSR.2004.1303427.

[59] D. Kreutz, F.M.V. Ramos, and P. Verissimo. Towards Secure and Dependable
Software-defined Networks. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
55–60, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2178-5. doi:
10.1145/2491185.2491199.

[60] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-Defined Networking: A Compre-
hensive Survey. Proceedings of the IEEE, 103(1):14–76, Jan 2015. ISSN
0018-9219. doi: 10.1109/JPROC.2014.2371999.

[61] K.W. Kwong, L. Gao, R. Guerin, and Z.L. Zhang. On the Feasibility
and Efficacy of Protection Routing in IP Networks. IEEE/ACM Trans-
actions on Networking, 19(5):1543–1556, Oct 2011. ISSN 1063-6692. doi:
10.1109/TNET.2011.2123916.

[62] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica. Achieving Convergence-free Routing Using Failure-carrying
Packets. In Proceedings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’07,
pages 241–252, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-713-1.
doi: 10.1145/1282380.1282408.

http://dx.doi.org/10.1109/ICON.2013.6781967
http://dx.doi.org/10.1109/INFCOM.2009.5062052
http://dx.doi.org/10.1109/INFCOM.2009.5062052
http://dx.doi.org/10.1109/TNET.2010.2055887
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1109/HPSR.2004.1303427
http://dx.doi.org/10.1109/HPSR.2004.1303427
http://dx.doi.org/10.1145/2491185.2491199
http://dx.doi.org/10.1145/2491185.2491199
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/TNET.2011.2123916
http://dx.doi.org/10.1109/TNET.2011.2123916
http://dx.doi.org/10.1145/1282380.1282408

102 Bibliography

[63] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An Object-Oriented
Random-Number Package with Many Long Streams and Substreams. Opera-
tions Research, 50(6):1073–1075, 2002. doi: 10.1287/opre.50.6.1073.358.

[64] S. Lee, Y. Yu, S. Nelakuditi, Zhi-Li Zhang, and Chen-Nee Chuah. Proactive vs
Reactive Approaches to Failure Resilient Routing. In 2004 IEEE Conference
on Computer Communications (INFOCOM), volume 1, page 186, March
2004. doi: 10.1109/INFCOM.2004.1354492.

[65] F. Longo, S. Distefano, D. Bruneo, and M. Scarpa. Dependability modeling of
Software Defined Networking. Computer Networks, 83:280–296, 2015. ISSN
1389-1286. doi: 10.1016/j.comnet.2015.03.018.

[66] S.S. Lor, R. Landa, and M. Rio. Packet Re-cycling: Eliminating Packet Losses
Due to Network Failures. In Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks, Hotnets-IX, pages 2:1–2:6, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0409-2. doi: 10.1145/1868447.1868449.

[67] W.W. Lowrance. Of Acceptable Risk: Science and the Determination of
Safety. Kaufmann, William, Incorporated, Los Altos, Calif., 1976. ISBN
9780913232309.

[68] M. Manzano, E. Calle, V. Torres-Padrosa, J. Segovia, and D. Harle. En-
durance: A new robustness measure for complex networks under multiple
failure scenarios. Computer Networks, 57(17):3641–3653, 2013. ISSN 1389-
1286. doi: http://dx.doi.org/10.1016/j.comnet.2013.08.011.

[69] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, Chen-Nee Chuah, Y. Gan-
jali, and C. Diot. Characterization of Failures in an Operational IP Backbone
Network. IEEE/ACM Transactions on Networking, 16(4):749–762, August
2008. ISSN 1063-6692. doi: 10.1109/TNET.2007.902727.

[70] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. ACM SIGCOMM Computer Communication Review, 38
(2):69–74, March 2008. ISSN 0146-4833. doi: 10.1145/1355734.1355746.

[71] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisiński.
Availability Modelling of Software-Defined Backbone Networks. In 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), pages 105–112, June 2016. doi: 10.1109/DSN-
W.2016.28.

http://dx.doi.org/10.1287/opre.50.6.1073.358
http://dx.doi.org/10.1109/INFCOM.2004.1354492
http://dx.doi.org/10.1016/j.comnet.2015.03.018
http://dx.doi.org/10.1145/1868447.1868449
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2013.08.011
http://dx.doi.org/10.1109/TNET.2007.902727
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/DSN-W.2016.28
http://dx.doi.org/10.1109/DSN-W.2016.28

Bibliography 103

[72] T. T. Nguyen and D. S. Kim. Accumulative-Load Aware Routing in Software-
Defined Networks. In 2015 IEEE 13th International Conference on In-
dustrial Informatics (INDIN), pages 516–520, July 2015. doi: 10.1109/IN-
DIN.2015.7281787.

[73] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, RFC
Editor, December 1998. URL http://www.rfc-editor.org/rfc/rfc2474.
txt. Downloaded on May 9, 2017.

[74] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. SNDlib 1.0—
Survivable Network Design Library. NET, 55(3):276–286, May 2010.

[75] S. Oueslati and J. Roberts. A New Direction for Quality of Service: Flow-
Aware Networking. In Next Generation Internet Networks, 2005, pages
226–232, April 2005. doi: 10.1109/NGI.2005.1431670.

[76] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-
TE for LSP Tunnels. RFC 4090, RFC Editor, May 2005. URL http:
//www.rfc-editor.org/rfc/rfc4090.txt. Downloaded on May 9, 2017.

[77] J. Postel. Internet Protocol. RFC 791, RFC Editor, September 1981.
URL http://www.rfc-editor.org/rfc/rfc791.txt. Downloaded on May
9, 2017.

[78] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Con-
gestion Notification (ECN) to IP. RFC 3168, RFC Editor, September 2001.
URL http://www.rfc-editor.org/rfc/rfc3168.txt. Downloaded on May
9, 2017.

[79] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, RFC Editor, January 2006. URL http://www.rfc-editor.org/
rfc/rfc4271.txt. Downloaded on May 9, 2017.

[80] F.J. Ros and P.M. Ruiz. Five Nines of Southbound Reliability in Software-
defined Networks. In Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, pages 31–36, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2989-7. doi: 10.1145/2620728.2620752.

[81] K. Rusek, P. Guzik, and P. Chołda. Effective risk assessment in resilient
communication networks. Journal of Network and Systems Management, 24
(3):491–515, 2016. ISSN 1573-7705. doi: 10.1007/s10922-016-9370-3.

[82] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714, RFC
Editor, Jan 2010. URL http://www.rfc-editor.org/rfc/rfc5714.txt.
Downloaded on May 9, 2017.

http://dx.doi.org/10.1109/INDIN.2015.7281787
http://dx.doi.org/10.1109/INDIN.2015.7281787
http://www.rfc-editor.org/rfc/rfc2474.txt
http://www.rfc-editor.org/rfc/rfc2474.txt
http://dx.doi.org/10.1109/NGI.2005.1431670
http://www.rfc-editor.org/rfc/rfc4090.txt
http://www.rfc-editor.org/rfc/rfc4090.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://dx.doi.org/10.1145/2620728.2620752
http://dx.doi.org/10.1007/s10922-016-9370-3
http://www.rfc-editor.org/rfc/rfc5714.txt

104 Bibliography

[83] R. Stankiewicz, P. Cholda, and A. Jajszczyk. QoX: What is it really? IEEE
Communications Magazine, 49(4):148–158, April 2011. ISSN 0163-6804. doi:
10.1109/MCOM.2011.5741159.

[84] The International Telecommunication Union - Telecommunication Standard-
ization Sector. Requirements for the support of flow-state-aware transport
technology in an NGN. Recommendation Y.2121, ITU-T, January 2008.

[85] J. Tyszer. Object-Oriented Computer Simulation of Discrete-Event Systems.
Kluwer Academic Publishers, Norwell, MA, USA, 1999. ISBN 0792385063.

[86] I.B. Utne, P. Hokstad, and J. Vatn. A method for risk modeling
of interdependencies in critical infrastructures. Reliability Engineer-
ing & System Safety, 96(6):671 – 678, 2011. ISSN 0951-8320. doi:
http://dx.doi.org/10.1016/j.ress.2010.12.006. ESREL 2009 Special Issue.

[87] R. Wójcik and A. Jajszczyk. Flow Oriented Approaches to QoS Assurance.
ACM Computing Surveys, 44(1):5:1–5:37, January 2012. ISSN 0360-0300.
doi: 10.1145/2071389.2071394.

[88] R. Wójcik, J. Domżał, and Z. Duliński. Flow-Aware Multi-Topology Adaptive
Routing. IEEE Communications Letters, 18(9):1539–1542, Sept 2014. ISSN
1089-7798. doi: 10.1109/LCOMM.2014.2334314.

[89] R. Wójcik, J. Domżał, Z. Duliński, P. Gawłowicz, and P. Jurkiewicz. Loop
Resolution Mechanism for Flow-Aware Multi-Topology Adaptive Routing.
IEEE Communications Letters, 19(8):1339–1342, Aug 2015. ISSN 1089-7798.
doi: 10.1109/LCOMM.2015.2439679.

[90] R. Wójcik, J. Domżał, Z. Duliński, G. Rzym, A. Kamisiński, P. Gawłowicz,
P. Jurkiewicz, J. Rząsa, R. Stankiewicz, and K. Wajda. A survey on methods
to provide interdomain multipath transmissions. Computer Networks, 108:
233–259, 2016. ISSN 1389-1286. doi: 10.1016/j.comnet.2016.08.028.

[91] K. Xi and H.J. Chao. IP Fast Rerouting for Single-Link/Node Failure
Recovery. In Fourth International Conference on Broadband Communications,
Networks and Systems, 2007. BROADNETS 2007, pages 142–151, Sept 2007.
doi: 10.1109/BROADNETS.2007.4550418.

[92] M. Xia, M. Tornatore, C.U. Martel, and B. Mukherjee. Risk-aware
Provisioning for Optical WDM Mesh Networks. IEEE/ACM Transac-
tions on Networking, 19(3):921–931, June 2011. ISSN 1063-6692. doi:
10.1109/TNET.2010.2095037.

http://dx.doi.org/10.1109/MCOM.2011.5741159
http://dx.doi.org/10.1109/MCOM.2011.5741159
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2010.12.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2010.12.006
http://dx.doi.org/10.1145/2071389.2071394
http://dx.doi.org/10.1109/LCOMM.2014.2334314
http://dx.doi.org/10.1109/LCOMM.2015.2439679
http://dx.doi.org/10.1016/j.comnet.2016.08.028
http://dx.doi.org/10.1109/BROADNETS.2007.4550418
http://dx.doi.org/10.1109/TNET.2010.2095037
http://dx.doi.org/10.1109/TNET.2010.2095037

Bibliography 105

[93] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng. Keep Forwarding: To-
wards k-link failure resilient routing. In 2014 IEEE Conference on Computer
Communications (INFOCOM), pages 1617–1625, April 2014. doi: 10.1109/IN-
FOCOM.2014.6848098.

http://dx.doi.org/10.1109/INFOCOM.2014.6848098
http://dx.doi.org/10.1109/INFOCOM.2014.6848098

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Abbreviations
	1 Introduction
	1.1 Dependability of Computer and Communication Networks
	1.1.1 Definitions and Attributes of Dependability
	1.1.2 Different Factors Affecting the Dependability of Computer and Communication Networks

	1.2 The Concept of Flow-Oriented Networks
	1.2.1 Definition of a Traffic Flow
	1.2.2 Dependability Objectives in Relation to Traffic Flows

	1.3 Scope and Thesis
	1.4 Previously Published Material
	1.5 Organization

	2 Combating Routing Loops
	2.1 Related Work
	2.2 Dealing with Routing Loops in Specific Flow-Oriented Network Types
	2.2.1 A New Algorithm to Prevent Persistent Routing Loops
	2.2.2 Deployment Considerations and Limitations

	2.3 Summary

	3 Responding to Failures of Network Elements
	3.1 Related Work
	3.2 GroupAndReroute: An Effective IP Fast Reroute Scheme for Traffic Flows
	3.2.1 GroupAndReroute Operation
	3.2.2 The Initial State of the Relation Graph
	3.2.3 Computation of the Routing Scheme
	3.2.4 Selection of an Alternative Output Interface
	3.2.5 Impact of Failures on the Relation Graph
	3.2.6 Memory Requirements
	3.2.7 Evaluation Environment
	3.2.8 Evaluation Results
	3.2.9 Dealing with Forwarding Loops
	3.2.10 Deployment Considerations and Limitations

	3.3 Summary

	4 Dealing with Network Congestions
	4.1 Related Work
	4.2 New Reallocation-Based Congestion Control Algorithms
	4.2.1 Algorithm I: Max Path Load and Path Overload Probability
	4.2.2 Algorithm II: Max Path Load and Path Length
	4.2.3 Evaluation Environment
	4.2.4 Evaluation Results
	4.2.5 Deployment Considerations and Limitations

	4.3 Summary

	5 Risk Analysis and its Role in the Provisioning of Network Services
	5.1 Related Work
	5.2 SDN Architecture and SLAs
	5.3 Assessment of the SLA Violation Risk in SDN
	5.3.1 Evaluation Environment
	5.3.2 Evaluation Results
	5.3.3 Deployment Considerations and Limitations

	5.4 Summary

	6 A Flow-Level Discrete-Event Network Simulator for Dependability Research
	6.1 Design
	6.1.1 Data Generation Module
	6.1.2 Data Management Module
	6.1.3 Simulation Module

	6.2 Summary

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Open Issues and Future Work
	7.3 Final Remarks
	Appendices
	A Estimating the Length of the Transient Period of a Simulation
	Bibliography

