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Abstract—To provide a high availability and to be able to
quickly react to link failures, most communication networks fea-
ture fast rerouting (FRR) mechanisms in the data plane. However,
configuring these mechanisms to provide a high resilience against
multiple failures is algorithmically challenging, as rerouting rules
can only depend on local failure information and need to be pre-
defined. This paper is motivated by the observation that the
common approach to design fast rerouting algorithms, based on
spanning trees and covering arborescences, comes at a cost of
reduced resilience as it does not fully exploit the available links in
heterogeneous topologies. We present several novel fast rerouting
algorithms which are not limited by spanning trees, but rather
extend and combine (“graft”) multiple spanning arborescences
to improve resilience. We compare our algorithms analytically
and empirically, and show that they can significantly improve
not only the resilience, but also accelerate the preprocessing to
generate the local fast failover rules.

I. INTRODUCTION

Communication networks have become a critical backbone

of our digital society, as highlighted during the ongoing

COVID-19 pandemic. As link failures become more likely with

increasing network scale [1] and as even short disruptions of

connectivity can cause severe degradation in service quality [2]–

[4], it is important that networks detect such events quickly

and reroute flows accordingly. This is hard to achieve using

control plane mechanisms: reaction times in the control plane

are known to be high [1]–[5], not only due to global state

advertisements and re-computations performed by widely de-

ployed distributed control plane schemes such as OSPF [6] and

IS-IS [7], but also in emerging centralized schemes [8]–[10].

To meet their stringent availability requirements, most

modern communication networks hence feature local fast

rerouting algorithms in the data plane which typically operates

at timescales several orders of magnitude shorter than the

control plane [11], [12]: since rerouting decisions are local,

failure recovery can in principle occur at the speed of

packet forwarding. At the heart of such fast-reroute (FRR)

mechanisms [13] lies the idea of pre-computing alternative

paths at any node towards any destination. When a node locally

detects a failed link or port, it can autonomously remove the

corresponding entries from the forwarding table and continue

using the remaining next hops for forwarding packets: a fast

local reaction [14]. In FRR, the control plane is hence just

responsible for pre-computing the failover paths; when a failure

occurs, the data plane utilizes this additional state to forward

packets. For example, many data centers use ECMP [15] (a data

plane algorithm that provides automatic failover to another

shortest path), WAN networks leverage IP Fast Reroute [16]–

[18] or MPLS Fast Reroute [19] to deal with failures on the data

plane, SDNs provide FRR functionality in terms of OpenFlow

fast-failover groups [20], and BGP relies on BGP-PIC [21] for

quickly rerouting flows, to just name a few.

However, while the local decision used by FRR enables

fast reactions, it also introduces an algorithmic challenge: the

failover behavior needs to be pre-defined, before the actual

failures are known. Configuring FRR is hence particularly

challenging under multiple and correlated failures [22]–[26]

since rerouting decisions need to be taken without knowledge

of the failures downstream. Indeed, and while there has been

much research on the topic over the last years [13], some of

the most basic algorithmic problems are still open [27].

This paper revisits the design of fast rerouting algorithms,

aiming to provide a high resilience while using minimal

assumptions on the required network functionality. In particular,

we are interested in algorithms which do not require packet

header rewriting during failover. Our work is specifically

motivated by the observation that state-of-the-art solutions

relying on spanning trees and arborescences, may result

in a suboptimal resilience: in general, tree-based network

decompositions can fail to exploit certain links which are vital

for connectivity. We hence present several novel fast rerouting

algorithms which are not limited by spanning trees, but rather

extend and combine trees to improve resilience, a technique

called grafting in botany.1 We compare these algorithms

analytically and empirically. In particular, we show that our

approaches can significantly improve the resilience under

different failure scenarios in comparison to the state of the art.

Contributions. We present three new fast-failover routing

schemes that retain worst-case guarantees but also leverage

network heterogeneity for non-adversarial failure scenarios:

• §III: DAG-FRR utilizes the insight that disjoint routing

trees can be extended to multiple directed acyclic graphs,

greedily selecting the next hop closest to the destination.

• §IV: Cluster-FRR is motivated by the observation that

routing trees need not be rooted at the destination, but can

also be formed in dense clusters, handing the packets over

via exchange points (local roots) positioned at sparse cuts.

• §V: Augment-FRR benefits from the fact that disjoint

routing trees work well on homogeneous topologies

(e.g., regular topologies), in turn augmenting the net-

work in this direction with virtual links. When routing,

Augment-FRR treats these virtual links like link failures.
1 Grafting is a technique to join two trees (and plants in general) into one.
For example, many fruit trees today are grafted onto rootstock.



Our extensive evaluations in §VI showcase the resilience

gains over prior work, for various failure models (see §VI-A).

In this context, to guarantee reproducibility and to allow

other researchers to build upon our work, we have made the

source code of our implementation of the algorithms publicly

available at https://gitlab.cs.univie.ac.at/ct-papers/fast-failover.

Additionally, it is worth noting that our algorithms also perform

well while dealing with a small number of failed links.

Moreover, we prove in §II that some state-of-the-art schemes

already fail for a single link failure, even though the network

remains highly connected, see §VII for further related work.

Model. We will use the following terminology and model.

Network structure. We model the communication network as

a graph G = (V,E), connecting |V | = n nodes (routers,

switches, hosts) with E links. While bidirected (respectively

full-duplex symmetric) links are common in networks, our

algorithms also extend to strongly connected directed graphs.

In the latter case, we might also use the term arc to emphasize

the directed nature of a link. In this paper, we often distinguish

between homogeneous and heterogeneous networks: the terms

refer to the connectivity, that is, whether the connectivity

between every node pair is the same or whether it can differ.

Routing and failover. We consider the common scenario

where the static forwarding rules have to be precomputed and

deployed at the nodes before the (unknown) link failures occur.

In particular, we do not allow any packet modification, dynamic

forwarding entry changes, convergence, or randomization: the

forwarding rules may only match on the incoming port2, the

destination t ∈ V , and the failure status of incident links. As

such, FRR is purely local and comes into effect immediately.

II. MOTIVATION: LIMITATIONS OF THE STATE OF THE ART

In order to motivate our perspective and approach, we first

revisit the state-of-the-art approaches for implementing FRR

in our setting. We first consider arborescence-based FRR in

§II-A, which performs well under worst-case failure scenarios

and in homogeneous topologies. We then discuss the approach

by Yang et al. [28] in §II-B, which utilizes adapted greedy

forwarding in heterogeneous network structures. Afterwards,

we draw conclusions for new and improved strategies in §II-C.

A. Homogeneous Networks: Arborescence-Based FRR

The fundamental idea of arborescence-based FRR is to lever-

age arc-disjoint spanning trees (arborescences) for forwarding:

should a link fail, another arborescence can be selected, where

the current arborescence is identified from the incoming port

due to arc-disjointness. In more detail, given a k-link-connected

graph, k arc-disjoint spanning arborescences rooted at a desti-

nation t can be found efficiently [29]. By using, e.g., a global

circular permutation of the arborescences [30], k−1 arc failures

can be tolerated. An exemplary implementation is shown in

Algorithm 1, using a given arborescence decomposition.

2 Without using the incoming port, already very simple link failure scenarios
lead to permanent routing loops, as sending a packet back is impossible.

Algorithm 1: Circular Routing for Arborescences

Upon receiving a packet destined for t at node v:

1: current arborescence Tl (determined by in-port, else T1)

2: if destination not reached yet, t 6= v then

3: if next hop on Tl available then

4: forward packet along Tl

5: else

6: update Tl to be the next arborescence from the

circular arborescence list

From a worst-case perspective, resilience to k − 1 arc

failures is optimal, as k failures can disconnect a graph of

connectivity k. Prior work utilized these worst-case guarantees

to show benefits in highly homogeneous networks, such as

for k − 1 failures under k-connectivity [27], but also multiple

random failures in k-regular k-connected graphs and well-

connected cores of autonomous systems [31], [32]. On the

other hand, the arborescence approach gives no guarantees

beyond the network’s connectivity, and as such scales poorly

for heterogeneous networks, e.g., if the network is 1-connected.

B. Heterogeneous Networks: Keep Forwarding FRR

Yang et al. [28] identified an approach to leverage topol-

ogy heterogeneity, summarized as “Keep Forwarding” (KF):

essentially, when the packet cannot be brought closer (down)

to the destination in a greedy fashion, it tours the nodes of

identical distance, until a not-failed down-link appears. In the

absence of down-links and neighbors of identical distance, the

packet takes a hop away from the destination, in order to find

alternate routes. To avoid small loops, and as the only implicit

memory of the forwarding function, the incoming port is only

picked as the last resort, when all other incident links failed.

Yang et al. [28] show in their evaluations for 1, 2, and 3 link

failures that KF retains over 99% reachability for heterogeneous

autonomous systems and data center networks. Notwithstanding,

no formal guarantee is claimed, not even for a single failure.

In the following, we show that KF already fails after a single

failure, even if the remaining network remains highly connected.

Consider the graph in Fig. 1, where the packet starts at node

v1 and has to be routed to the destination t. The next hop will

be via the only down-link to v, but the link (v, t) has failed,

resulting the packet to be forwarded up to some other node

from v2, . . . , vk. While KF retains the knowledge not to route

back via the inport to v, even though that is the only down-link,

the next hop will be to another node from v1, . . . , vk. However,

then the knowledge not to send the packet to v is lost (as

the only memory is via the incoming port), and the packet is

again forwarded to v, inducing a permanent forwarding loop.

Moreover, observe that the network’s connectivity remains at

k ∈ Ω(|V |), i.e., arborescence-based FRR easily reaches the

destination.

C. Reaping the Benefits of Both Approaches for New FRR

As we discussed above, arborescences have shortcomings

when applied in heterogeneous networks, as they only utilize
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Fig. 1. Example where Keep Forwarding (KF) provides no resilience even
though only one link failed. When starting on v1, KF will forward down
(closer) to v, where however the link (v, t) has failed. In turn, KF forwards
up (away) from v, to, e.g., vk . As the incoming port is the last choice, KF
now forwards to a node of identical distance, e.g., v1 (or any other node from
v1, . . . , vk−1), again forwarding down. Hence, KF loops as it forwards down
to v, up, within v1, . . . , vk , down to v, up again etc. Note that the remaining
connectivity is k ∈ Ω(|V |) and that only one link failed.

the (worst-case) global connectivity. While Keep Forwarding

leverages heterogeneity, by traversing the current cluster

until progress can be made, it does not provide any formal

resilience guarantees.

We would like to combine the benefits of both approaches:

survivability w.r.t. worst-case failures, but also retain survivabil-

ity against more failures in dense heterogeneous clusters. To

this end, in the remainder of this paper, we extend the known

arborescence-based approaches by incorporating non-spanning

(partial) arborescences and local greedy routing, using them

when classic arborescences fail. In this fashion, we retain the

worst-case guarantees, but also utilize the path diversity in

heterogeneous settings. We start in Section §III with a first

approach that combines partial arborescences with directed

acyclic graphs, followed by a more intricate arborescence

construction in the following section.

III. DAG-FRR: LEVERAGING HETEROGENEITY VIA DAGS

The idea of using directed acylic graphs (DAGs), instead of a

forwarding tree (or arborescences), has already been proposed

in [33], [34] (note however that these proposals do not fit into a

purely local model, as they use message exchanges [34] or link

reversals [33]): when the link to the next hop fails, the current

node might have alternate next-hops, globally organized in a

way such that no routing loops occur.

However, when only a single DAG is chosen, at least half of

the available arcs (directed links) may not be used for routing:

choosing both directions of a link for routing is a contradiction

to the DAG property. For a simple example, consider routing on

a ring topology: routing on a DAG already stops working after

a single link failure, whereas arborescences can survive the

same link failing. On the other hand, spanning arborescences

perform poorly when the underlying connectivity is one. Here

a DAG can contain a quadratic number of more links in the

extreme case, which the arborescence leaves unused.

In this section we hence focus on combining DAGs and

arborescences, to provide the best of both worlds. Instead

of generating DAGs from scratch, we propose to extend

arborescences to DAGs, meaning that our method can be

understood as an extension of any arborescence structure,

e.g., [27], [32], [35], [36]. We emphasize that the underlying

arborescences do not need to be spanning (as in prior work),

partial rooted structures can be enhanced as well.

Our approach, henceforth called DAG-FRR, thus consists

of three parts: §III-A describes how to build the partial

arborescences, §III-B how to extend the arborescences, and

§III-C how to extend the routing itself. We discuss in §III-D

implications w.r.t. the worst-case resilience of DAG-FRR.

A. Part 1: Building Rooted Partial Arborescences

Prior work focused on building k arc-disjoint rooted spanning

arborescences in k-connected graphs, even if the destination

has a degree of k′ ≫ k. As such, in the common scenario

that the network has a well-connected core that gets sparser in

its outskirts, exactly the low connectivity of the outer regions

defines the global survivability.

We overcome this restriction by building as many rooted

arborescences as the destination can support by its number

of neighbors. While not each of these arborescences can

reach all nodes (i.e., be spanning), already a greedy approach

will guarantee that every node is contained in at least one

arborescence: else, there must be at least one node v, not in

any arborescence, neighboring a node w in an arborescence T ,

a contradiction, as T can be extended from w to v.

We hence propose the following simple decomposition algo-

rithm. We assign each of the k′ incoming arcs of the destination

to a different arborescence T1, . . . , Tk′ , and grow them greedily

one after another, switching to the next arborescence Ti+1 if

no more nodes can be added to Ti. Notwithstanding, this could

leave many arcs unassigned to any arborescence, which we

cover in the next subsection via arborescence extension.

B. Part 2: Extending Arborescences to DAGs

The underlying idea of our extension process is to utilize the

so-far unused links and add them to the arborescence routing

structures. As an input, we require a set of arborescences, or

generalized, DAGs, and proceed as follows: For each DAG

Di, we add unused arcs e to it, as long as: 1) Di with e is

cycle-free, and 2) e connects to V (Di).
We hence check all arcs if they can extend the given DAGs

with the above two properties, repeating the process if some

DAGs increased in size while doing so, see Algorithm 2.

C. Part 3: Extending Arborescence Routing

A fundamental strength of arborescence routing is that

by considering the inport on which a packet arrives global

information about the packet’s journey so far can be inferred:

the current node immediately knows which arborescence

the packet is currently routed on, even though the packet

remains unchanged. We thus strive to retain a packet in its

current arborescence, which is easy in the case of DAGs: due to

loop-freedom, at each node, each outgoing link of the current

arborescence-DAG brings the packet closer to the destination.

A natural routing extension herein is to choose a surviving

link that reduces the distance to the destination the most3, and
3 Though any choice from the set of outgoing links is viable.



Algorithm 2: DAG Extension Algorithm

Input: Directed graph G = (V,E), arc-disjoint

arborescences or DAGs D = {D1, . . . , Dk}
Output: A maximal set D of arc-disjoint DAGs

1: extended←true

2: while extended=true do

3: extended←false

4: for all Di ∈ D do

5: for all e = (u, v) /∈ D do

6: if v ∈ V (Di) then

7: if E(Di) ∪ {e} is cycle-free then

8: E(Di)← E(Di) ∪ {e}
9: extended←true

only switch to the next arborescence-DAG when all outgoing

links of the current arborescence-DAG have failed. Note that

the remaining routing logic stays intact and hence the routing

extension can be implemented conceptionally as a simple

subrouting, respectively an extension of the priority list of

outgoing ports. We formalize this in Algorithm 3.

Algorithm 3: Circular Routing for DAGs

Upon receiving a packet destined for t at node v:

1: current DAG Dl (determined by in-port, else D1)

2: if destination not reached yet, t 6= v then

3: if a next hop on Dl available then

4: forward packet along outgoing arc in Dl that reduces

distance to t the most

5: else

6: update Dl to next DAG from circular DAG list

D. Part 4: Worst-Case Resilience Discussion

Prior work already established that circular routing on k
arc-disjoint rooted spanning arborescences is resilient to k − 1
arc failures [30]. The underlying reasoning is that after k − 1
failures, at least one arborescence will be intact, i.e., the packet

will eventually reach the destination. The invariant still holds

for k arc-disjoint rooted spanning DAGs: by fixing a global

circular order on the DAGs, one will eventually reach a failure-

free DAG. We cast our observation into the following theorem:

Theorem 1. Starting on k arc-disjoint rooted spanning ar-

borescences/DAGs, DAG-FRR is resilient to k− 1 arc failures.

We note that in §III-A we advocated for building partial

rooted decompositions, instead of enforcing (fewer) spanning

ones, to better leverage the network’s heterogeneity, and might

hence lose out on worst-case resilience. On the other hand,

our DAG-FRR is flexible and can also start by employing a

network decomposition that uses k arc-disjoint rooted spanning

arborescences on k-connected topologies [29].

IV. CLUSTER-FRR: LOCAL CLUSTER ALGORITHM

We now describe a more sophisticated arborescence decom-

position algorithm, called Cluster-FRR. It applies a generic

rooted spanning arborescence decomposition, e.g., the greedy

algorithm also used in [30]. The algorithm is based on local

clusters: nodes having a positive clustering coefficient4 may

form local regions of higher link connectivity relative to the

entire graph. Here, algorithms computing the set of arc-disjoint

spanning arborescences covering the graph would only return

so many trees as is the value of the link connectivity of the

graph, while the potential of the highly-connected regions

would remain under-utilized. Indeed, by constructing additional

arc-disjoint trees covering the highly-connected regions and

using them to extend the primary set of arborescences, our

algorithm (see Algorithm 4) is able to improve the fast recovery

capabilities of a network in the case of multiple failures.

A. Cluster-FRR Arborescence Generation

The algorithm starts by computing a spanning arborescence

decomposition of G rooted at the destination. Next, the

clustering coefficient is determined for all nodes. Nodes for

which the corresponding value is greater than zero are marked,

together with their direct neighbors. Based on the previously

marked nodes and the existing links between them, the subgraph

Gm of G is also created. Note that it is not required that

subgraph Gm be connected — in fact, as it comprises nodes

and links belonging to each of the highly-connected regions

of graph G, the next action is to decompose Gm into strongly-

connected components and store them in set Sm. The output

set Tout is also initialized to contain the arc-disjoint spanning

arborescences stored in set T . When the graph is k-connected,

Tout at this point contains k arc-disjoint destination-rooted

spanning arborescences T1, T2, . . . , Tk.

Then, the algorithm considers each of the connected com-

ponents Gcc individually, ignoring those that contain less than

three nodes. First, to improve the local link connectivity of

Gcc, all nodes of degree 1 are removed from Gcc in a series

of subsequent iterations of the while loop, until no more such

nodes can be found in the graph. If the resulting graph contains

less than three nodes or its link connectivity is less than

two, Gcc is rejected and the next connected component is

considered instead. Second, the local root node rcc of the

expected additional arborescences is selected in Gcc based on

the shortest distance to r in the original graph G. The arc-

disjoint spanning arborescences rooted at rcc and covering Gcc

are then determined — the result is stored in set Tcc. Next, the

algorithm adds to set A all arcs of Gcc that are included in one

of the additional arborescences stored in Tcc, except for the arcs

being part of the primary arborescences already included in the

output set Tout. The main reason behind this selection process

is to guarantee that no arc is assigned to multiple arborescences

rooted either at r or rcc; thus, that a failure of a single network

link can disable at most two different arborescences associated

with the related pair of opposite arcs. Each arc in set A is also

4 For the formal definition of the clustering coefficient in the context of graphs,
the reader is referred to [37].



Algorithm 4: Cluster-Based Forest Construction

Input: Directed graph G = (V,E), destination r ∈ V
Output: A set Tout of rooted arc-disjoint spanning arbo-

rescences and additional directed acyclic subgraphs of G

1: T ← ArborescenceDecomposition (G, r)
2: for all v ∈ V do

3: cv ← ClusteringCoefficient (G, v)
4: if cv > 0 then

5: Mark node v (not marked by default): mv ← 1
6: Mark all neighbors of v: ∀u∈Neighbors(G,v)mu ← 1
7: Gm ← Subgraph induced by the marked nodes

8: Sm ← StronglyConnectedComponents (Gm)
9: Tout = T , Acount = 0

10: for all Gcc = (Vcc, Ecc) ∈ Sm do

11: while |Vcc| > 3 and MinDegree (Gcc) < 2 do

12: Remove all nodes of degree 1 from Gcc

13: if |Vcc| < 3 or LinkConnectivity (Gcc) < 2 then

14: Proceed to the next iteration

15: rcc ← GetClosestNodeToDestination (Gcc, r)
16: Tcc ← ArborescenceDecomposition (Gcc, rcc)
17: A← ∅
18: for all (a, b) ∈ Ecc do

19: if (a, b) not included in any graph in Tcc or (a, b)
already included in a graph in Tout then

20: Proceed to the next iteration

21: id← GetArborescenceId (Tcc, (a, b))
22: A← A ∪ (id, (a, b))
23: s← The number of unique arborescence identifiers

among the elements of A
24: Index of an extra graph: j = 1
25: for all identifiers id among the elements of A do

26: for all (a, b) associated with id in A do

27: Current graph identifier:

q ← LinkConnectivity (G) +Acount + j
28: Add (a, b) to the q-th graph in Tout

29: j ← j + 1
30: Acount ← Acount + s
31: return Tout

associated with the unique numeric identifier of the related

arborescence. Finally, in lines 23− 28, the algorithm groups

arcs associated with the same tree and transfers the resulting

groups from A into the output set Tout. Both the primary

arborescences and the newly added groups of arcs are assigned

unique numeric identifiers from a contiguous range (the primary

arborescences have the lowest indices starting from 1).

B. Cluster-FRR Routing and Resilience

For k-connected graphs, Cluster-FRR generates

a destination-rooted spanning arborescence decomposition

T1, T2, . . . , Tk, along with further non-spanning partial

arborescences, with local root nodes and identifiers

greater than k. Cluster-FRR then employs the circular

arborescence-based routing scheme from Algorithm 1,

starting in the arborescence with the lowest identifier. Hence,

Cluster-FRR retains good worst-case guarantees: after up

to k − 1 arc failures, at least one of the primary spanning

arborescences T1, T2, . . . , Tk remains intact and can be used

to route to the destination. In other words:

Theorem 2. On k-connected graphs, Cluster-FRR is re-

silient to k − 1 arc failures.

After more than k − 1 arc failures, Cluster-FRR might

need to resort to the local partial arborescences, and we can

hence no longer provide the worst-case guarantees. On the other

hand, the increased local survivability leads to greater resilience

to non-adversarial failures, as we will see later in §VI.

V. AUGMENT-FRR: CONNECTIVITY AUGMENTATION

So far, we proposed two methods that start with few arbores-

cences, and then incorporate the remaining links, either by

means of DAGs in §III or by building small local arborescences

in §IV. In this section, we take a fundamentally different

approach and start with many arborescences.

To this end, we augment the graph with virtual links to

extend large local connectivity to the whole graph, build

arborescences on top, and then remove these virtual links from

the arborescences (hence they are no longer spanning) and let

standard failover routing take over. In other words, we leverage

that arborescences work well on homogeneous topologies.

In the following, we first describe how to augment the

network efficiently to the desired level in §V-A and then cover

in §V-B how to build the arborescences in a way that takes

the distinction between virtual and real links into account.

A. Turning a Network Homogeneous

In order to maximize the efficiency of arborescence routing,

a first step would be to obtain a network that is minimally

k-connected, i.e., the removal of any bidirected5 link reduces

the connectivity below k. In such networks, a rooted spanning

arborescence decomposition can include every arc, except for

the ones outgoing from the root.

A simple way of achieving this goal would be to turn the

network into a clique Kn, which however raises the question

of how many virtual links we should include. On the one

hand, we want to cover as many real arcs as possible with our

augmentation, on the other hand, we want to include only few

virtual links, as they disrupt the routing behavior.

To this end, we pick the node with the highest degree ∆ in

the network (as each arborescence, for each node v 6= t, can

only cover one outgoing arc of v), and augment the network to

be ∆-connected. For bidirected graphs, this is a well-studied

problem, and selecting the minimum number of links can be

solved efficiently [38].6

Hence, to summarize, Augment-FRR selects the largest

degree ∆ in the network and then turns the network to be

∆-connected with a minimum number of virtual links.

5 The problem can be defined analogously for directed networks, but we
focus on bidirected full-duplex links given their prevalence in most networks.
6 We refer to Frank [38] for a discussion on further (directed) model variants.



B. Building Arborescences on Virtual Links

Building ∆ arc-disjoint rooted spanning arborescences on

∆-connected graphs is well understood and can be computed

efficiently [29]. However, in our context, we have to consider

how to distribute real and virtual links over the arborescences.

Augment-FRR follows an approach that preserves worst-

case resilience. To this end, it takes a ∆-connected network as

the input, and then runs an greedy rooted spanning arborescence

decomposition [30] adapted to the problem at hand as follows:

when growing arborescence Ti, (1) a candidate arc a is only

added if the remaining network, without T1, . . . , Ti and without

a is still be ∆− i-connected, and (2), when multiple arcs can

be selected for growing the arborescence Ti, arcs belonging to

real links are strictly preferred over virtual ones.

C. Augment-FRR Routing and Resilience

Augment-FRR utilizes circular arborescence routing from

Algorithm 1 on the obtained decomposition, treating virtual

links as link failures, in turn obtaining high resilience:

Theorem 3. Augment-FRR achieves resilience to k − 1 arc

failures on k-connected graphs.

Proof: As proven in prior work [30], using circular

arborescence routing on k-arc disjoint t-rooted spanning

arborescences achieves resilience to k − 1 arc failures. It

is left to show that Augment-FRR retains these worst-case

guarantees. Observe that when building the arborescences,

Augment-FRR leverages the greedy algorithm from Chiesa

et al. [30] in such a way, that real links always have preference

over virtual links. Hence, as the greedy algorithm builds

k arc-disjoint t-rooted spanning arborescences on the non-

augmented network, the greedy algorithm’s output behavior

will be identical for the first k arborescences on the augmented

network. As such, virtual links will only be included from the

k + 1 arborescence on.

As k− 1 arc failures leave at least one of the first k arbores-

cences unharmed, circular routing starting on arborescence T1

will hence allow Augment-FRR to reach the destination.

VI. EVALUATION

To evaluate our approach and algorithms, we conducted

extensive simulations. In general, whether the network will be

able to restore the connectivity between any pair of nodes in

the event of one or more link failures, depends on the structure

of the network graph, and its link connectivity in particular.

In the following, we hence first present different link failure

models for which we will evaluate our algorithms, and also

describe the experimental setup. We then report on our main

insights from our evaluation.

A. Link Failure Models

To investigate how the proposed solutions perform in

different failure scenarios, we considered two different link

failure models, denoted as RANDOM and CLUSTER.

Random Link Failures (RANDOM). The first considered

model introduces link failures uniformly at random across the

entire network. It assumes that each link in the network has

an equal probability of failure, and that none of the observed

link failures result from targeted actions taken by malicious

actors. Thus, in this model, we do not focus on how to take

the maximum advantage of local redundancy — instead, we

investigate how the network deals with multiple link failures

in the general case. We also assume that each failure affects

the corresponding network link in both directions.7

Targeted Attacks (CLUSTER). In this failure model, we try

to capture more adversarial failures, e.g., due to an attack.

We imagine that clusters in a network graph may represent

well-connected regions, e.g., associated with groups of cities

of strategic importance. In this context, the potential adversary

might be interested in carrying out targeted and coordinated

attacks against links belonging to one or more clusters, to

degrade the fast-recovery capabilities of the network in the

affected areas. Indeed, despite the relatively high connectivity

in such areas, it is still possible that targeted link attacks will

disrupt some of the precomputed or predefined primary and

backup paths used by many data flows [40]. Thus, the related

challenge for the investigated fast-recovery algorithms is how

to use the local redundancy in those regions to respond to

targeted attacks effectively.

According to the considered model, failed links are selected

as follows. First, the clustering coefficient is computed for all

nodes in the network, and then, each arc incident to a node

with a non-zero value of the clustering coefficient is added to

the set Fcand of candidate arcs that might be disabled, unless

the set already contains the opposite arc. Second, as the number

of failed bidirectional links is limited by one of the simulation

parameters, fnum, the following two cases are considered:

• |Fcand| > fnum: if the set of candidate arcs contains

more elements than the value of fnum, select fnum arcs

uniformly at random from set Fcand and disable the

corresponding bidirectional network links;

• |Fcand| ≤ fnum: if the set of candidate arcs contains no

more elements than fnum, disable all bidirectional network

links corresponding to arcs included in Fcand.

B. Experimental Setup and Metrics

Each of our experiments was performed based on the

following general scheme, proceeding in five steps:

1) Given the topology of a network, a destination node t was

selected uniformly at random from the set of all nodes.

2) Then, the precomputations to construct the routing tables

were performed for each of the investigated algorithms and

the time for these computation was measured separately

for each algorithm.

3) In the next step, fnum undirected links were selected as

the failed network links based on one of the link failure

models discussed in §VI-A. In addition, sample_size

source nodes were chosen uniformly at random from the

set of all nodes in the graph excluding the destination.

7 We note that it would also be interesting to consider unidirectional link
failures. For example, a recent data center study found that “only 8.2% of the

links [. . .] with packet corruption had bidirectional corruption” [39].



4) Then, the routing function was executed on the graph with

fnum failed links. In some cases, the source nodes may

no longer have been connected to the destination.

5) Finally, the success rate (defined as the number of data

flows reaching the destination, divided by the number of all

data flows) was computed separately for the investigated

algorithms. The expected success rate for a perfectly

resilient algorithm ρ is thus (ncc− 1)/(n− 1) where ncc

denotes the number of nodes in the connected component

of the destination after failures.

C. Routing Success in Highly Heterogeneous Networks

We first investigate the performance of our algorithms in

highly heterogeneous networks in which connectivity varies

significantly. To this end, we consider the following synthetic

ring-of-cliques network topology model which contains several

well-connected regions. Specifically, we assume that the

network topology consists of L interconnected cliques (see

Fig. 2), each having an internal link connectivity of kclique.

C1

C2

C...

CL

mbridge

· · ·· · ·

· · ·

Fig. 2. Illustration of the ring-of-cliques network topology model. Each of the
cliques C1, C2, . . . , CL has an internal link connectivity kclique and there
are mbridge links between adjacent cliques.

Two adjacent cliques are connected by mbridge links incident

to randomly chosen nodes on the two involved cliques, forming

a graph for which the overall link connectivity is kgraph ≥
min (kclique, 2mbridge). To investigate the effectiveness of the

considered algorithms in terms of their ability to deal with

simultaneous failures of multiple network links, we further

assume that kclique > kgraph (the internal link connectivity of

cliques is higher than the link connectivity of the entire graph).

In our first experiment we vary the number of failed links

the algorithms have to cope with and study their success rate.

For randomly created rings of 10 cliques with kclique = 9 and

mbridge = 2, i.e., graphs with 100 nodes and 470 links we

observe the following behavior in Fig. 3:

Under randomly chosen failures the three proposed algo-

rithms are able to sustain around 100 link failures without

any routing failures, while the pure Greedy Arborescence De-

composition and Keep Forwarding approaches exhibit routing

problems already for as few as 10 failed links. When the

number of failed links exceeds 100, the number of nodes in

the connected component of the destination is below n, yet

on average DAG-FRR, Cluster-FRR and Augment-FRR

achieve a success rate of ρ, the expected success rate of a

perfectly resilient algorithm for randomly chosen sources.
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Fig. 3. Routing success rates on the ring of cliques for varying number
of RANDOM failures and for different algorithms. The black dashed line
represents the average value of ρ, the percentage of the number of nodes in
the connected component containing the destination (after failures), and is
therefore a statistical upper bound on the success rate. Ribbons represent 1/4th
of the standard deviation over 200 independent repetitions.

When choosing the failed links with the cluster failure

approach, see Fig. 4, Greedy and KF perform even worse. While

KF gets stuck in local sinks as in Fig. 1, the Greedy method

cannot leverage the local link diversity. On the other hand,

our algorithms DAG-FRR and Cluster-FRR still reach ρ,

while Augment-FRR is a bit below them on average.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300

Number of failed links fnum

R
o

u
ti
n

g
 s

u
c
c
e

s
s
 r

a
te

Algorithm Greedy KF DAG Cluster Augment

Fig. 4. Routing success rates on the ring of cliques for varying number
of CLUSTER failures and for different algorithms. The black dashed line
represents the average value of ρ, the percentage of the number of nodes in
the connected component containing the destination (after failures), and is
therefore a statistical upper bound on the success rate. Ribbons represent 1/4th
of the standard deviation over 200 independent repetitions.

The reason is due to how Augment-FRR chooses

the roots of partial non-spanning arborescences. Whereas

Cluster-FRR picks them according to the distance to the

destination, the corresponding choice for Augment-FRR is

driven by the underlying connectivity augmentation algorithm,

which takes this distance orientation only by a lesser degree into

account. Similar in result to Cluster-FRR, DAG-FRR points
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Fig. 5. Routing success rates on the Topology Zoo dataset, as a function of
the fraction of nodes remaining connected after 10 RANDOM failures. The
black dashed line represents the average value of ρ, the percentage of the
number of nodes in the connected component containing the destination (after
failures), and is therefore a statistical upper bound of the success rate. A point
(x, y) indicates that for a network topology on which 10 random link failures
disconnect an average fraction of 1− x nodes, the corresponding algorithm
achieved a routing success rate of y.

the additional arcs towards nodes that are closer to the

destination, w.r.t. distance in routing along the current directed

acyclic graph, and hence also performs well here.

D. Routing Success on Real-World Networks

We next evaluate the performance of our algorithms for

the real-world network topologies collected as part of the

Internet Topology Zoo project8 Since the number of nodes

and links in these graphs as well as their local and global

connectivity varies considerably, we restrict ourselves to the

subset of 122 topologies with 20 to 50 nodes and study the

routing performance under random link failures.

To avoid cases where the destination is not connected to a

significant number of nodes, we select them from the largest

connected component after link failures. In Fig. 5 we present

the success rate of the routing algorithms with respect to

the percentage of nodes that are in the connected component

of the destination after 10 random failures. We observe that

DAG-FRR, Cluster-FRR, and Augment-FRR achieve a

success rate of almost ρ, the expected success rate of a perfectly

resilient algorithm for randomly chosen sources, while Greedy

and Keep Forwarding perform less well.

Figure 6 provides a detailed look at the relative performance

of our algorithms. It shows, for each Topology Zoo graph, the

routing success rate of each algorithm normalized by the routing

success of Cluster-FRR in the same graph. This allows for a

more precise comparison of our algorithms: a point above y = 1
translates that the algorithm under scrutiny performed better

than Cluster-FRR on the corresponding graph, whereas

a point below translates a routing success rate under the

one of Cluster-FRR. We omit Greedy for readability, and

Cluster-FRR as all its corresponding datapoints lie on the

y = 1 line by construction.

8 http://www.topology-zoo.org
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Fig. 6. Relative routing success rates of algorithms on the Topology Zoo
dataset, for all graphs containing between 20 and 50 nodes, as a function of the
fraction of nodes remaining connected to the destination after 10 RANDOM
failures, compared to Cluster-FRR.

Interestingly, DAG-FRR performs precisely identically to

Cluster-FRR (all data points on y = 1). KF always performs

worse than Cluster-FRR, especially on lightly impacted

topologies (x > 0.5). Augment-FRR performs differently

than Cluster-FRR, but with overall the same performance.

The gap between Augment-FRR and Cluster-FRR

performances increases on heavily impacted topologies. The

small amplitude of these differences can be explained by

the performance of these algorithms: even on highly affected

topologies, Augment-FRR, Cluster-FRR and DAG-FRR

all rarely fail to route in the remaining connected compo-

nent. As before, the underlying augmentation process of

Augment-FRR explains its variance, but as we see here,

there is a good set of topologies where Augment-FRR also

performs better than all other algorithms.

E. Runtime to Compute Routing Tables

In order to evaluate how the precomputation time complexity

of the algorithms scales in terms of the number of nodes in

the network, we consider the ring-of-cliques network which is

defined for any number of nodes by changing the number of

cliques from 3 to 20 with 5 nodes per clique.

Figure 7 plots the runtime of the different algorithms,

specifically showing the average wall clock time. Our results

show that for all algorithms, the routing tables in networks

with up to one hundred nodes can be precomputed in less

than twenty seconds, rendering these algorithms practical in

many scenarios. In fact, except for Augment-FRR which is

significantly slower, all algorithms even complete in less than

two seconds — an overhead we deem bearable, especially for

infrequent updates. KF is significantly faster. However, as we

have seen above, this comes at a price of reduced resilience.

VII. RELATED WORK

Failures are common in ISP networks [41], [42], cloud

provider WANs [43], and datacenters [1], [44]. The design of

fast rerouting algorithms has already been studied intensively
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Fig. 7. Average wall clock times for the precomputation of the routing tables
of each algorithm on networks of increasing number of nodes. The shaded
area symbolizes the 10 and 90 percentiles of the distribution sampled over 80
independent runs. The y-axis is square-rooted.

in the literature. While there exists much interesting work

on how to efficiently react to link failures in the control

plane [45], [46], e.g., using fast reconvergence techniques [47],

link reversal schemes [48], [49] or leveraging centralized

approaches arising in software-defined networks [48]–[51], the

reaction times provided by these solutions are significantly

higher compared to fast failover mechanisms in the data

plane [52]: the focus of our paper. Data plane-based failover

mechanisms are typically used as a first line of defense and

also well-explored in the literature; implementations exist for

most relevant protocols, IP [53], [54] (including Segment

Routing [55]–[57]), MPLS [19], [58], BGP [59], SDN and

programmable data planes [20], [60], among many more. We

refer the reader to the recent survey by Chiesa et al. [13] for a

literature overview on fast recovery schemes in the data plane.

Fast failover algorithms for the data plane can be categorized

according to whether they require dynamic packet headers

modifications (or even dynamic state at the routers), and

according to which header fields a router needs to be able to

match. By rewriting packet headers, it becomes possible to, e.g.,

carry failure information in the packets [26], [61] or to employ

classic graph exploration algorithms [62], [63] as well as

rotor router approaches [64], which can be exploited to render

networks more resilient. However, this is often impractical, and

is generally not supported. It is also known that in scenarios in

which not only the destination field but e.g., also the source or

the inport can be matched, the design of resilient fast failover

algorithms is greatly simplified [27], [30], [65]. We also note

that the focus in this paper is on deterministic algorithms,

which, in contrast to related work such as [66], [67], do not

require random number generators at routers.

There already exist several interesting results on fast failover

algorithms which do not require packet header rewriting.

Feigenbaum et al. showed [12] that it is not always possible

to achieve “perfect resilience” in this scenario, that is, it is not

always possible to locally reroute packets to their destination

even if the underlying network is remains connected after

the failures; similar observations were obtained in parallel by

Borokhovich and Schmid [68] who also derive bounds on what

can be achieved in terms of load-balancing in such scenarios.

Foerster et al. [69] recently generalized the impossibility results

related to connectivity by establishing a connection between

graph minors and resilience; in particular, the authors showed

that perfect resilience cannot be achieved on any non-planar

graph, but is at least possible on outerplanar graphs.

The state-of-the-art approach to design highly resilient

failover algorithms is based on arc-disjoint arborescence covers

and is due to Chiesa et al. [27], [30], [66]. This approach

generalizes the widely-used approaches based on spanning

trees [70]. However, while this approach may work well on

graphs which are homogeneously k-connected (this is still an

open question), it is not well-suited if directly applied to the

general setting considered in our paper. In contrast, we in

this paper have shown how to extend these concepts to more

general and more heterogeneous networks.

The work closest to ours is by Yang et al. [28], who aim

to go beyond the limitations of spanning trees and acyclic

graphs by introducing what they call the partial structural

network model. The authors show that this model indeed has

several interesting features in practice. However, while their

simulations look promising, the approach fails under worst-case

failure scenarios. In particular, we have shown in this paper

that even if the remaining connectivity is very high (linear in

the number of nodes), a single arc failure suffices for their

algorithm to fail. In contrast, our algorithms retain worst-case

guarantees from arborescence approaches and can maintain

k − 1 arc failures, tolerating adversarial link failures.

VIII. CONCLUSION

This paper has studied how to extend existing fast failover

mechanisms based on spanning trees and arborescences to

improve the resilience of more heterogeneous networks whose

connectivity varies across the topology. In particular, we pre-

sented three novel data plane algorithms which outperform state-

of-the-art solutions in that they allow to maintain connectivity

under significantly more failures.

From the three algorithms, our cluster and DAG algorithms

perform relatively identical throughout our simulations, with

our connectivity augmentation algorithm showing some slight

variance in comparison. Due to our DAG algorithm having the

fastest routing table precomputation time, we recommend it as a

general choice amongst the three, but note that the augmentation

algorithm sometimes performs slightly better, and hence a brief

simulation for the intended topology might be worthwhile. To

this end, and in order to guarantee reproducibility and allow

other researchers to build upon our algorithms, we have made

our code publicly available together with this paper.

We believe that our work opens several interesting avenues

for future research. In particular, it remains to explore the

resilience of our algorithms in more specific failure scenarios,

both analytically and empirically. It would also be interesting

to explore whether there are opportunities to improve our

approach with randomization.
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