

Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes

Klaus-Tycho Foerster (University of Vienna, Austria) **Andrzej Kamisiński** (AGH University of Science and Technology in Kraków, Poland) Yvonne-Anne Pignolet (DFINITY, Switzerland) Stefan Schmid (University of Vienna, Austria) Gilles Tredan (LAAS-CNRS, France)

3

How to deal with link/node failures?

Existing reconvergence mechanisms relying on the control-plane

- Signaling
- Relatively long recovery time
- Packet losses and increased delay

How to deal with link/node failures?

Existing reconvergence mechanisms relying on the control-plane

- Signaling
- Relatively long recovery time
- Packet losses and increased delay

Fast-Recovery mechanisms

- Based on locally-available information
- Low delay and packet losses
- **Examples:** Loop-Free Alternates, input interface-aware routing, tunneling
- State of the art:
 - Multiple arc-disjoint spanning arborescences

M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári and S. Schmid, "A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks," in *IEEE Communications Surveys & Tutorials*, 2021, doi: 10.1109/COMST.2021.3063980.

How to deal with link/node failures?

Existing reconvergence mechanisms relying on the control-plane

- Signaling
- Relatively long recovery time
- Packet losses and increased delay

Fast-Recovery mechanisms

- Based on locally-available information
- Low delay and packet losses
- **Examples:** Loop-Free Alternates, input interface-aware routing, tunneling
- State of the art:
 - Multiple arc-disjoint spanning arborescences
 - Multiple extended/combined arborescences [THIS TALK]

M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári and S. Schmid, "A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks," in *IEEE Communications Surveys & Tutorials*, 2021, doi: 10.1109/COMST.2021.3063980.

Homogeneous networks: state-of-the-art algorithms based on redundant arc-disjoint arborescences

- Provide actual guarantees on recovery
- <u>Do not scale well</u> (example: 1-connected networks)

Heterogeneous networks: Keep Forwarding

- Shown to retain 99% reachability for 1/2/3 link failures
- <u>No formal guarantee is claimed</u>, not even for single link failures

Homogeneous networks: state-of-the-art algorithms based on redundant arc-disjoint arborescences

- Provide actual guarantees on recovery
- <u>Do not scale well</u> (example: 1-connected networks)

Heterogeneous networks: Keep Forwarding

- Shown to retain 99% reachability for 1/2/3 link failures
- <u>No formal guarantee is claimed</u>, not even for single link failures
 We show that *Keep Forwarding* can fail after a single failure, even if the remaining network remains highly connected

Grafting: How to Build Better Arborescences for Heterogeneous Networks?

- We extend or combine multiple arc-disjoint arborescences, to be able to use more arcs (especially in densely connected networks)
- We present three new fast-failover routing schemes that:
 - Retain worst-case guarantees
 - Leverage network connectivity in non-adversarial multi-link failure scenarios

https://en.wikipedia.org

- The proposed algorithms
- The selected evaluation results
- Conclusion

DAG-FRR: Leveraging Network Heterogeneity via DAGs

DAG-FRR: Leveraging Network Heterogeneity via DAGs

Starting on k arc-disjoint rooted spanning arborescences/DAGs, DAG-FRR is resilient to k-1 arc failures

PART I: Decomposition (1-connected graph)

16

PART I: Decomposition (1-connected graph)

PART II: Cluster-Based Forest Construction

1) Find local clusters based on the value of the clustering coefficient

- 2) Within each cluster, select the root node as the closest node to the destination
- 3) Given the local root, find arc-disjoint spanning arborescences within the cluster
- 4) Exclude arcs belonging to primary arborescences from the local ones

PART III: Extending Arborescence Routing

If possible, use existing spanning arborescences (circular routing)
 Otherwise, switch to partial arborescences in local clusters

PART III: Extending Arborescence Routing

If possible, use existing spanning arborescences (circular routing)
 Otherwise, switch to partial arborescences in local clusters

On k-connected graphs, Cluster-FRR is resilient to k-1 arc failures

PART I: Graph Augmentation (virtual links)

- 1) Select the node with the highest degree d
- 2) Augment the network to be d-connected, using as few virtual links as possible

PART I: Graph Augmentation (virtual links)

PART II: Building Arborescences on Virtual Links

- **Question:** How to distribute real and virtual links over the arborescences?
- Answer: Run a greedy rooted spanning arborescence decomposition algorithm

While growing arborescence *T_i*:

- Add a candidate arc *a* only if the remaining network (excluding arc *a* and arborescences *T*₁,*T*₂,...,*T_i*) is still (*d*-*i*)—connected
- Prefer arcs associated with **real** links

PART II: Building Arborescences on Virtual Links

- **Question:** How to distribute real and virtual links over the arborescences?
- Answer: Run a greedy rooted spanning arborescence decomposition algorithm

While growing arborescence *T_i*:

- Add a candidate arc *a* **only if** the remaining network (excluding arc *a* and arborescences $T_1, T_2, ..., T_i$) is still (d-i)—connected
- Prefer arcs associated with **real** links

On k-connected graphs, Augment-FRR is resilient to k-1 arc failures

Link failure models

- Random link failures
- Targeted attacks (model based on local clusters)

Network topologies

- Ring-of-cliques (synthetic; k_{clique} > k_{graph})
- Topology Zoo (real-world networks)

Extensive simulations

- Routing success rate
- Fraction of connected nodes after failures
- Time to compute the routing tables

Routing Success Rate in Highly Heterogeneous Networks (RANDOM)

Routing Success Rate in Highly Heterogeneous Networks (CLUSTER)

10-13/05/2021 Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes (IEEE INFOCOM 2021)

Routing Success Rate on Real-World Networks (RANDOM)

Algorithm \circ Greedy \triangle KF + DAG \times Cluster \diamond Augment

10-13/05/2021 Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes (IEEE INFOCOM 2021)

Relative Routing Success Rate on Real-World Networks (RANDOM)

Algorithm \triangle KF + DAG \diamond Augment

Precomputation of the Routing Tables: Average Wall Clock Runtime

Algorithm \rightarrow Greedy \rightarrow KF \rightarrow DAG \rightarrow Cluster \rightarrow Augment

The proposed algorithms:

- Maintain the worst-case guarantees of state-of-the-art algorithms based on spanning-arborescences
- Leverage the structure of heterogeneous networks for nonadversarial failure scenarios
- Outperform state-of-the-art solutions in that they allow to maintain connectivity under significantly more concurrent link failures

The source code and simulation results will soon be available at: <u>https://gitlab.cs.univie.ac.at/ct-papers/fast-failover</u>

Thank you for your attention

Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes

Klaus-Tycho Foerster (University of Vienna, Austria) Andrzej Kamisiński (AGH University of Science and Technology in Kraków, Poland) Yvonne-Anne Pignolet (DFINITY, Switzerland) Stefan Schmid (University of Vienna, Austria) Gilles Tredan (LAAS-CNRS, France)

Presenter: Andrzej Kamisiński (andrzejk@agh.edu.pl)