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Abstract 

In this paper we present methodology used in a non-
invasive, easy-to-use and low-cost monitoring system for 
nightlong human sleep quantification. Our system uses 
simultaneous measurement of three different signals 
representing the activity of the human body: infrared 
video-recorded subject motion, audio-recorded acoustic 
effects and the three-leads electrocardiogram. Signal-
specific interpretation methods yield parameters selected 
as most discriminative for the sleep quality, synchronized 
and combined as a sleep record.  

In the experimental stage the nightlong sleep was 
supervised by a reference EEG recordings and particular 
components of the sleep record were correlated to the 
presence of delta wave representing deep sleep. 
Significant correlation values in most subjects allows to 
validate the proposed sleep record as comparable to the 
standard polysomnogram.   
 
1. Introduction 

Average human spends one third of his live in sleep. 
This justifies the investigation of the sleep quality as an 
important component of the quality of life. Unfortunately, 
sleep studies today require specialized equipment and 
qualified personnel, therefore cannot be easily transferred 
to the home care conditions.  

A pursuit for an intelligent health surveillance 
infrastructure embedded in the subject’s premise 
motivated us for investigation of possible integration of 
cheap off-shelf components to a sleep-quality assessment 
system. The research presented in this paper aims at:  

- optimal selection of the system components, 
- estimation of convergence of sleep descriptions to 

results from clinical methods. 
 

2. Material and Methods 

The system is targeted to healthy and diseased users as 
well, therefore in our studies we investigated selected 
modalities of nightlong sleep recorded from eight healthy 
volunteers (three females and five males, aged 21-59). 
Characteristic pattern of each of the acquired signals and 

video frames were analyzed by means of dedicated 
software. Final conclusions about the state and activity of 
every investigated patient are presented by setting-up and 
comparison specific parameters: ECG-derived HRV and 
breathing parameters, snoring parameters and body 
motion index referenced to the presence of delta waves, 
representing the deep sleep in the EEG. 

 
2.1 Recording equipment 

For basic electrocardiographic recording three-leads 
(III, V1 and V5) battery operated personal recorder with 
12-bit 128 sps was used (Aspekt 702, Aspel).  

 Brain electrical activity data were acquired from C4-
A1 (or C3-A2 backup) derivations according to the 10-20 
system, two mastoid electrodes (A1 and A2) in reference 
and a ground electrode placed between Fp1 and Fp2. The 
maximum value of skin resistance was 5 kΩ. An EEG 
amplifier (ISO1032, Braintronics) uses a 16 bit analog-to-
digital converter (500 sps). The acquired signal was 
filtered with a bandpass filter (0.3-35 Hz) and a power 
line frequency (50 Hz) notch filter accordingly to the 
desirable digital specifications in [1]). The baseline (mean 
value)  was subtracted from the signal and then in order to 
reduce calculation time quadruple resampling to 125 Hz 
was applied. 

Small microphone attached to the patient chin 
measured acoustic effects recorded with the sample rate 
set to 44100 Hz in Cool Edit Pro software.  

Nightly video motion measurements were possible due 
to setting up black/white CCD (Charge Coupled Device) 
camera with additional kit of nine infrared diodes which 
role was to illuminate the research area.   

 
2.2 Heart rate variability and respiratory wave  

The ECG recordings were used to acquire 
electrocardiogram-derived respiratory (EDR) and the 
pattern of heart rate variability (HRV) in dependence of 
time domain. The typical tachogram and its main 
parameters were calculated: RMSSD, SDANN. The 
square root of  the mean squared differences of successive 
NN intervals (RMSSD) calculated over 2.5 min and the 
standard deviation of the average NN interval calculated 



over ten minutes periods (SDANN) represented short-
time and long-time variability respectively. 

The respiratory signal (EDR) was calculated with 
cubic splines within the detected QRS area, based on RS 
amplitude, measured as the difference between the 
minimum of the S and maximum of the R waves (fig. 1): 

 amp(i) = Ramp(i) − Samp(i), i=1, 2, . . . , n. [2]. 
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Figure 1. a) ECG removal of baseline b) RS amplitude c) 
respiratory signal from a subject breathing at 26 bpm. 

 
2.3.  Brain waves decomposition 

Analysis of the electroencephalographic signal 
consisted in basic brain waves decomposition into 
stochastic time-frequency dictionaries of Gabor functions 

},...,,{ 21 ngggG = , where 1=ig [3]. For that aim 

free MP4 application proposed by Ircha and Durka [4] 
was used. This software is based on the iterative method 

of Matching Pursuit (MP) [5]. First, the waveform ogγ  

which creates a maximal scalar product with the signal, is 
selected from the dictionary. Thus the fitting to the signal 
is most significant. In each successive step, the analytic 

function ngγ  (pattern) is made running along the 

analyzed signal xRn , yielding as a result the correlation 
and residual functions. The best matching pattern and the 
corresponding time distribution of pattern-to-signal 
likelihood are adopted as decomposition coefficients, 
while the residual function is subject for further 
decomposition. After n steps of decomposition, the signal 
is expressed as a convolution of n analytic signals 
weighted by the (time-pattern) decomposition coefficients 
and the residual signal not sufficiently well fitting to any 

of the dictionary component. These operations are 
presented below by the following set of equations [6]:   
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When the particular time-frequency waveforms have been 
fitted to the analyzed signal, the procedure is convergent 
to x:  
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Waveforms )(tgγ  are generated by translating (u), 

scaling (s) and modulating window function g(t): 
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where: 
),( φγK  – normalizing factor such that 

1),( =φγg  

φ  – phase   

After the MP decomposition, each sample of the EEG 
signal in a given time period of 30 seconds was verified 
for matching the time range of any atoms corresponding 
to exact wave. Then all samples which satisfied this 
criterion were totalized and the percentage contributions 
depending on time were prepared for each wave. 

 
2.4. Acoustic effects analysis 

Snoring is produced in the vocal tract, similarly to 
speech. Thanks to that analogy, existing techniques for 
speech analysis have been applied to evaluate snoring 
sounds.  

The transformation of data from the time domain to the 
frequency domain was performed by the Short-Time 
Fourier transform algorithm implemented in the Matlab 
programming environment. Sampling frequency of the 
analog-to-digital converter (44100 Hz) determines the 
maximum time duration of the sample. Frequency range 
of 12 kHz can completely describe the snoring 
phenomenon. Snoring sounds were analyzed using the 
short-time Fourier transform (STFT) to determine the 
frequency and content of local sections of the samples. It 
can be described using the following equation [7]: 
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where w(t) is the window function, commonly a 

a) 

b) 

c) 



Hamming window (width  N = 353 samples),  centered 
around zero, and x(t) is the signal to be transformed. 
Essentially X(τ, f) is the Fourier Transform of x(t)⋅w(t-τ), a 
complex function representing the phase and magnitude 
of the signal over time and frequency.  

Time variation of the frequency spectrum is calculated 
by dividing the analyzed signal into short, overlapping 
segments. Signal in 10ms segments becomes stationary, 
so short time Fourier transform can be performed. After 
raising the resulting spectrum to the second power these 
segments can be combined. Time variation of the 
frequency spectrum is defined as square module of STFT 
[4, 5]. It can be described using the following equation: 

2
),(),( ftSTFTftG xx ==  

The STFT is a complete description of the signal and it is 
an important procedure for further analysis.  

 
2.5. Motion index 

Quantitative evaluation of the movements activity 
during nightlong sleep were performed by means of 
processing the absolute value of difference images from 
the consecutive video frames at 1 sec. intervals in respect 
to the changeable in time background signal [8].  

Firstly, the relationship between all pixels mean 
brightness sum (y) in dependence of sleep time for 
obtained difference images was calculated. This operation 
yields supportive signal (ss) representing the noise level 
by local minima of the signal y in time window 2d: 

)):(min()( didiyiss +−=  

To estimate movements activity of the human body the 
percentage contribution of pixels with ss overthreshold 
brightness was calculated over 1s periods. Motion index 
(MI) defined in that way reveals both the value and the 
frequency of the patient movements during sleep. 

 
3. Results 

Complete quantitative analysis of nightlong sleep was 
made for all volunteers participated in this study. In order 
to characterize the sleep during its various stages, based 
on ECG, motion, respiration and acoustic methods we 
calculated several specific parameters: RMSSD, SDANN, 
motion index MI, snoring index SI and breathing index 
BI. These parameters were calculated for periods of at 
least 20 minutes during deep sleep with presence of delta 
waves (tab. 1) and for periods after deep sleep stage 
determined by absence of delta waves. Motion index was 
integrated whereas other parameters were averaged in 
those chosen intervals for each subject.  
 
 
 
 

Table 1. Sleep quantitative analysis during deep sleep 
(delta waves).  
 
Parameters/ 
Patients 

1 2 3 4 5 6 7 

RMSSD 52.2 173.0 12 10.3 122.3 88.6 35.7 
Std RMSSD 12.6 44.6 1.5 0.7 16.7 4.8 11.1 

SDANN 14.2 13.7 7.0 2.6 10.2 9.7 3.3 
Std SDANN 4.7 7.2 9.2 3.6 14.5 15.6 1.4 

MI 8.5 0 0.9 3.2 6.9 0 0 
Snoring 
events/min 

none none 16, 
more 
than 
65dB 

17, 
50-

65dB 

none none none 

Breathing 
events/min 

19 15 16 17 20 18 19 

 
Joint analysis of different modalities of biosignals 
recorded during the whole sleep period yields several 
observations and statements. Figure 2 presents the 
relation of ECG-derived short-time HRV parameter 
RMSSD and motion index. Figure 3 displays the example 
of relation of delta waves contribution percentage and 
motion index MI during nightlong sleep. Figure 4 
presents the respiratory signal calculated with use of two 
methods: acoustic analysis and EDR. Comparison of the 
breath signal calculated by these methods indicates their 
equivalence in the assessment of breath during sleep.   
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Figure 2. Presentation of RMSSD and MI parameters in 
dependence of whole sleep time. 
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Figure 3. Correlation of delta waves and MI value during 
the whole sleep time. 

 
Figure 4. Correlation of sound-derived respiratory and 
EDR signals from a subject breathing at 18 bpm during 
deep sleep stage (delta waves). 
 
4. Discussion 

In the study several methods were presented and few 
basic parameters sufficient to sleep evaluation were 
proposed. Analysis of RMSSD and SDANN during deep 
sleep and non-delta waves episodes revealed inter-subject 
variability as well as variability in time of the same 
patient. Significant negative correlation between body 
movements amount and percentage contribution of delta 
waves could be seen.  

Acoustic methods and EDR are very important in 
identifying sleep apnea and other abnormalities during 
sleep. Thanks to a complete acoustic analysis we were 
able to observe that during the deep stages of sleep 
breathing is steadier then in any other period.    

Quantitative sleep analysis shows significantly lower 
RMSDD parameter values during and after the deep sleep 
stages for subjects presenting measureable snoring events.  

In authors’ opinion the proposed multimodal home-
care nightlong sleep analysis system is not equivalent to 
the standard polysomnogram, however is sufficiently 
accurate for identification of human state and evaluation 
of nightlong sleep quality. 
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