
1. INTRODUCTION 

An integral part of automated processors for Holter recordings is a beat classification procedure.
This is very important, since the main advantage of Holter methods is the ability to find out unique
isolated pathological beats among many correct ones. On the other hand, this should be done as fast
as possible, as there are about 100 thousands beats in a typical 24 h record. Usually, the classification
procedure is based on a tresholded correlation between the processed beat and the representative
patterns for existing classes [1], [2], [3]. 

This paper introduces a new classification method based on shape factors [4], [5], [6], [7]. 
All detected heart beats are first processed to derive their shape factors, and than these factors

(instead of signals themself) are compared [8]. Of course, the patterns (class centers) are also the
corresponding shape factors. Since the simple verification of membership requires comparison of 3
variables only (3 different shape factors per beat per channel) instead of 10 (assuming the sampling
rate of 100 Hz and QRS duration of 100 ms) we expected the new method to be up to 3 times faster
than those used previously. The computation time for the shape factors is constant (not depend on
class number) and relatively short if the class number exceeds 10. 
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Abstract
The heart-beat classification in  Holter ECG processors can be succesfully
done by comparing the  shape  coefficients  of the around-QRS fragments
instead  of  comparing  the  signals themselfs. The additional computation
time is compensated  during  the  classification  procedure,  since up to 10
coefficients  are stored for each  class and compared  instead  of  30 signal
samples  (for 3-channels,  128 Hz-sampled ECG, QRS duration about 100
ms). The most discriminative  shape  coefficients  are choosen with regard
to the particular  heart-diseases  probability  supported  by the  MIT-BIH
database. The newly proposed classification method has been verified and
the reached  misclassification error is of about 0.5%. The other advantage
of our  method  is  the insensibility  to  the amplitude  changes  nor  to the
small  desynchronization  between the compared  QRS,  thus the  simplest
and  fastest  fiducial  point   detectors   can  be  used  without  the  loss  of



2. MATERIALS AND METHODS 

The aim of our investigation was to find the most specific shape factors for the frequently
observed heart-beats types. As a medical reference we used the MIT-BIH standard database
(directory: MITDB) containing 44 half-hour recordings [9]. Due to the poor signal quality, the
records 104, 105, 208, 213, 223 and 228 were excluded. Among all annotated beat types the 9 most
frequent (i. e. 99.3% of whole beat number) were choosen as shown in table 1. 

 
Table 1. Heart beat types used to the classifiers adjustment and tests 

MIT-BIH
code

abbreviation MIT-BIH
contribution c [%]

description

1 NORMAL  64,5  normal beat 

2 LBBB  7.98  left bundle branch block beat 

3 RBBB  9.02  right bundle branch block beat 

4 ABERR  0.05  aberrated atrial premature beat 

5 PVC  4.26  premature ventricular contraction

6 FUSION  1.23  fusion of ventricular and normal beat 

7 NPC  0.53  nodal (junctional) premature beat 

8 APC  0.97  atrial premature contraction 

12 PACE  9.45  paced beat 

The learning set consisted of 10 randomly choosen examples for each considered beat type
without regard to their contribution to the MIT-BIH database. 

Initially we have proposed 10 different shape factors computed on the constant-length windowed
signal. Since the applied QRS detector produces his positive response (fiducial point) in the initial
sector of QRS, the window was assymetrical to the QRS fiducial point, that means the fiducial point
is allways in 1/4 of window length. The window lengths were: 60, 80, 100, 120 and 140 ms. Having
do this, the set of 50 shape factors was tested in order to discriminate the choosen 9 beat types. The
best shape factor should meet both of the following criteria: 

 maximize the average distance d between classes, 
 minimize the average class size e. 
All "geometry" values like "distance" or "size" are expressed in absolute logarithmic units

regardless to their physical units. Initlialy we tried to separate all 9 classes by a single shape
coefficient, but while the results were unsatisfactory we increasing the argument space (number of
shape coefficients considered simultaneously) by 2, and then by 3. In order to express the

discriminating capability by a single value, the quotient: 

dn = δ1...n
ε1...n n = 2...9 (1)



is computed for a subset of 2, 3, 4 ... 9 most frequent classes, and the obtained values were
cumulated with regard to the class contribution c in the MIT-BIH database (see tab. 1.). 

and the maximum value of D is interpreted as the best class discrimination. 

3. RESULTS

The detailed analysis of cumulated class distance to size quotients values led to following
conclusions:

Neither the 1-dimensional space, nor the 2-dimensional were not sufficient to separate all 9
classes perfectly,

The classification should also include the local heart rate (HR) variability which is necessary to
distinguish the normal (atrial as well as ventricular) and premature beats of similar shapes. 

An example of 2-dimensional (2 shape coefficients) plot of all possible combination of them is
shown on fig. 1.

For 3 dimensional space the best discriminating shape factors for the QRS classes were1: 

1 Please accept author's apology for the absence of detail matematical description of other shape coefficients, but due
to the lack of space only the most important results can be presented. 

D = Σ
i=2

9
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Fig. 1. An exemple plot of cumulated class distance to size quotients D values for all possible
pair (2 dimensional space) of shape coefficient.
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1 - process 1, window length of 60 ms,

23 - process 5, window length of 100 ms,
50 - process 10, window length  of 140 ms. 

h10 = Σk : (s(k) − s(k − 1)) ≥ 0.4 max
n=1, N

(s(n) − s(n − 1)) (5)

h5 = 1000
max

n=2, N
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Fig. 2. The classification results obtained in the 3 dimensional decision space with use of shape
coefficients 1, 23 and 50. All distances are expressed in logrithmic absolute values. Points with
class numbers are particular class members positions, and rectangular boxes are class "territories"



The classification results obtained in the 3 dimensional decision space with use of shape
coefficients 1, 23 and 50 is shown on figure 2. On the plot only the 9 most frequent MIT-BIH classes
(i. e. 99.3% of total beats) are considered. For the exact class separation the additional use of HR
(heart rate) is necessary. This is one value for all simultaneously processed channels and permits to
distinguish the regular and irregular rhythms (i. e. class 5 and 6).

4. VERIFICATION 

Having implemented the developped method in the real-time Holter processor, we used the whole
database (directory: \MITDB) to test its performance. 

The computation time2 was shorter than for traditional classification method if the class number
exeeds 8 (there are no record with smaller class number). The classification performance was
satisfactory with the misclassification error (two different MIT-BIH types in one class) of about
0.5%. Table 2 summarizes results of the experiments.

Tab. 2.  Results of the experiments witch use of whole MIT-BIH database

value total %

 total number of QRS complexes:  48540  100

 number of not classified QRS:  2525 5.202

 number of erroneously classified QRS:  282 0.581

 total number of created classes:  954  100

 number of classes with misclassified beats:  68 7.128

 average processing time for half-hour record      
 (Pentium® 90MHz):

17.96s

Additionally, the great advantage of the method is that it is not sensitive neither to signal
amplitude changes, nor to the synchronisation error in time. Since the fiducial points are not required
to be delimited very precisely, the use of simpler and faster detector is possible without deteriorating
the general performance. 

The main drawback of the proposed method is its large sensitivity to the signal quality. Particulary
the high frequency noise and baseline wander should be removed before the classification is
performed.  
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