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Abstract: The adaptive adjustment of the channels’
contribution in the QRS wave detection is described
in this paper. The automatic choice of the ‘best
channel’ is particularly justified in tong-term
recordings exposed to the variability of recording
conditions of environmental and physiological origin.
Two adaptation schemes and two different signal
quality estimators are proposed and tested in course
of the numerical experiment. The feedback-based
scheme uses the Signal-to-Noise Ratio computed on
the baseline and QRS segment, so it needs the
detection to be performed beforehand. The
feedforward-based scheme uses a custom developed
signal quality estimator without any anticipating
processing. The results show the growth of the
detection reliability, even in variable recording
condition, for both adaptation schemes. The
statistical outcome indicates slightly higher
performance of the feedforward scheme.

Introduction

The topic of the QRS detection in the
electrocardiogram is already widely exploited. The
detection of the ventricles' contraction representation is
a fundamental and mandatory subroutine for any
automated ECG processing [1] [2]. However, if a long-
term multichannel recording is considered, the assumed
stability of recording conditions is no longer sufficient
and the initial channel weighting may need to be
continuously updated for the optimal detection. The
problem of adaptive channels weighting during the ECG
acquisition in an unsteady environment is concerned in
this paper.

The detection of QRS wave may be performed in
many possible ways, among of which three main
methods can be distinguished:
- The extraction of mathematically derived features

of the signal followed by the binary decision
procedure.

- The pattern matching procedure using a multi-
entry dictionary usually yielding the morphology
recognition along with the QRS detection.

- The time or transform-domain features extraction
and processing with use of fuzzy logic or artificial
neural networks.

No matter how the detection procedure works, in
case of multilead recordings the simultaneous channels
may be processed:
- Separately – the logical output information for

each channel is independent and thus all
ambiguities are resolved at the logical level,

- Jointly – the contribution of each channel is
weighted at the level of features extraction, so the
intra-channels synergy (or coherence) is the final
decision base.

The main advantage of the long-term recordings is
the ability of ECG measurements in the natural life
conditions of the subject. The variability of these
conditions implies the random occurrence of side
signals and their interference with the electrical
representation of cardiac activity. In consequence,
improved immunity of the recording system is required
for these applications. But even if all artifact of
technical origin might be avoided with use of high
performance equipment, the biological sources of side
signals still remain active. These sources are:
- Skin activity, that covers a large amount of

phenomena involved in transforming the electric
information from the ion conductance-based
environment to the electronic circuit.

- Muscles activity, that represents the continuous
vital processes of any cells not belonging to the
cardiac muscle and conductive system. For the very
similar origin, these activities are represented in the
electric signal by components of the same
amplitude and frequency ranges as the cardiac
information.

The biologically conditioned unstability of the
recording conditions and the lack of guidelines
motivated us to design and develop an appropriate
algorithm for continuous and adaptive optimization of
the channel’s contribution by the software. Without
loosing the generality of the viewpoint, in the further
part of the paper we focus on the QRS detector based on
the mathematically derived features of the ECG signal.
These features are usually represented by the discrete
time domain ”detection function” those values are a



kind of probability of the QRS wave’s occurrence. In
case of multilead recording, these features are usually
derived in a subset of simultaneous channels (1 ... n)
and contribute to the global decision with the channel-
dependent constant ratio wn (figure 1). This ratio is
initially assigned to each channel and works fine as long
as the assumption of the stability is fulfilled. For the
long-term signals, however, the initial contribution of
each channel should be continuously updated to follow
the changes in recording conditions.

The adaptive adjustment of the channel contribution
may be considered as a typical automation process and
needs two interdependent issues to be considered:
- The control scheme.
- Definition and measurement of driving features.

There are two possible schemes of the control:
feedforward and feedback (figure 2). The feedforward
scheme uses the pre-extracted signal features in each
channel to modify the contribution weights. Main
drawback here is the lack of information on the signal
contents and thus additional processing of high

complexity is needed. The feedback scheme relies on
previously detected QRS wave and on the assumption of
short-term stability of recording conditions. The
processing is less complex, using the definition of the
ECG "signal" and "noise" that assumes the detection of
QRS wave completed beforehand. Like the classical
digital IIR filters, unfortunately, the feedback scheme
yields the oscillatory response if overwhelmed.

The signal features driving the adaptive adjustment
of the channel contribution have to be extracted directly
from the signal and, in case of feedforward control
scheme, the possible low computational complexity is
an important criterion. In this case, for the lack of time
indices, the whole signal has to be scanned for the
desired features. On the contrary, once the QRS wave is
detected, it becomes the most important time indice and
the signal is processed only for the QRS and the
baseline segments (on average approximately 30% of
the signal length). The feedback scheme supports the
use of wide range of signal quality estimators: from the
simple RMS noise measure [3] to the advanced
modeling of background activity [4].

Materials and methods

Two different algorithms were designed, developed
and tested for performance. The first one uses the
feedforward scheme and the custom-developed
coefficient PMR of the Signal-to-Noise Ratio (SNR)
type, described hereafter. The second algorithm bases
on the feedback scheme and the CSE-recommended
RMS noise measure. More advanced measures of signal
quality, although interesting, were not considered for
their computation complexity and the overgrowth of the
resulting data sets.
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Figure 1. The example processing scheme for a
multichannel detection function
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Figure 2. The feedforward and feedback scheme of
the adaptive channels wieghting for QRS detection



The Peak-to-Median Ratio (PMR) is the result of the
statistic processing of the time-windowed signal (fig. 3).

For the constant pre-roll time of 2 s before the
currently processed sample, the signal is segmented by
adjacent positions of the rectangular window. The
length of the window equals to 117 ms (16 samples),
what is a compromise between the baseline length and
the QRS wave's length. For each segment the sum of
absolute value of the signal samples is calculated and
compared to other sums in all the pre-roll time. The
minimum value is representative for the baseline and
subtracted from the others, the peak value P represents
the signal amplitude in the QRS-wave while the median
value M represents the signal amplitude for other ECG
components. The Peak-to-Median Ratio is thus the
measure of how the QRS-wave is distinct from the
signal and from the detector's point of view is the
representation of the local signal quality.

Each channel is then assigned a percentage (weight)
of contribution in the detection function proportional to
the computed signal quality.

The alternative measure of signal quality is the
Root-Mean-Square (RMS) estimator of the noise level
recommended by the CSE (Common Standard for
Quantitative Electrocardiography) [3].

This coefficient gives an accurate measure of the
noise contribution in the ECG. It bases on the
physiological assumption of the electrical inactivity of
the heart during the conduction of stimulus in the Atrio-
Ventricular Node, represented in the ECG by the PR
distance. This assumption is fairly fulfilled thanks to the
low velocity of conduction in AVN tissues and to the
central position of the node close to the electrical center
of the heart. In consequence, the baseline level is widely
recognized reference point in the electrocardiogram.
The RMS gives an accurate measure of the noise and,

compared to the QRS amplitude yields the correct
estimation of Signal-to-Noise Ratio. The computation
complexity is not very important here, since the
processing concerns only two short signal segments per
heartbeat. The calculation of the RMS, however, must
be anticipated by the detection of the QRS-wave and (at
least) by the determining of the QRS-onset point.
Another drawback of the RMS consists in the definition
of the noise contribution is as frequent as the heartbeats
are. If the noise estimation is needed more frequently or
at the uniform rate, the involvement of linear or spline-
based interpolation is necessary. In our algorithm the
local stability of the recording condition is assumed and
the SNR-based weighting coefficients (3) computed for
the last detected QRS-wave is used to modulate the
channels contribution in the next detection.

The performance of both proposed algorithms was
measured with use of 360 s three-channel Holter
recording (128 sps, 10 bits - figure 4). The noise strips
originate from the MIT-BIH Arrhythmia Database (the
NSTDB folder, files Bw.dat, Em.dat and Ma.dat) [5].
Before the use in the experiment, the noise patterns
were resampled to 128 Hz, cut in length to 360 s and
combined to yield a three-channel uncorrelated noise
(figure 5). To simulate the variability of recording
conditions, all noise channels were independently
modulated with a positive valued sinus envelope
containing 3 periods in the first channel and respectively
4 and 5 periods in the remaining channels (figure 6).
After the normalization of energy at five different levels
varying from –30 dB to –6 dB, the noise patterns were
added to the ECG reference signal. The global energy of
the added noise was a parameter for six successive
testing steps. This simulates the unstability of the
recording environment in long-term acquisition of the
ECG [6].

The numerical experiment was designed and carried
out in Matlab environment, except for the QRS
detecting procedure natively coded in C++. This
procedure is the modified working version with added
the "detection function" output and weighting
coefficients input. Six trials were performed for each
noise level (one additional for the signal without the
added noise). Two previously described channel
adjustment schemes were tested and compared to the
fixed adjustment based on the amplitude ratio in the
initial section. The local signal quality estimators and
the resulting weighting coefficients were recorded along
with the signal. Moreover, the final performance of the
detector (the percentage of false detection events) was
recorded and processed statistically. The experiment
was expected to support the choice between the
feedback- and feedforward-based algorithm and to give
an insight on how far the increase of noise level in a
particular channel may be compensated by the
optimization of the channels contribution.

function z=pmr(s, t)
% s - input ecg signal (one channel)
% t - current sample
prr=256; % sampling frequency 128 Hz
win=16; % 117 ms
winc=ceil(prr/win); % windows count
wins=zeros(winc, 1); % average buffer
for i=1:winc
  wins(i)=sum(abs(s(t+(i-1)*win+1:t+i*win)));
end;
wins=wins-min(wins);
z=max(wins)/median(wins);

Figure 3. Listing of the procedure of the Peak-to-
Median Ratio computation
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Results

The results obtained for the performance test of the
modified QRS-wave detector are statistically processed
and displayed in the Table 1. The detailed results,
however, being the number of errors in the consecutive
16 s strips are also very interesting, because of
representing the detector's behavior in the 'easy' and the
'difficult' parts of the signal (fig. 4). These results cannot
be completely displayed for the lack of space, and thus
table 2 presents only the outcome for the noise level –12
dB. Additional plot in the figure 7 is devoted to the
presentation of the data from the table 1. It facilitates
the interpretation of the 'best adjustment scheme'. Figure
8 displays a short signal strip with large variability of
the recording conditions. The weighting coefficient
values displayed along with the three-channel signal
gives an insight how the channel contribution is
modified due to the interference or poor signal quality.
Figure 9 displays the difference in variability of channel
contribution between the PMR-based feedforward and
the SNR-based feedback control schemes. These plots
were not initially expected for presentation, but the
study on detailed results and in particular the pursuit for
the false negative detections are well supported by
observed differences in variability.

Figure 4. The full disclosure of 3-channel Holter recording (128 sps, 10 bits, channel 1) used for the numerical tests

Figure 5. Noise properties in time domain and in
frequency domain (channel 1)

Figure 6. Noise modulation in three channels



Table 1. The performance of the modified QRS detector

fixed feedforward feedbacknoise
level fn fp fn fp fn fp
off 23 54 16 32 16 44
-30 45 44 14 35 26 41
-24 19 50 12 29 14 31
-18 46 49 16 37 17 46
-12 37 38 10 44 23 35
-6 53 45 31 55 41 52

total 657

Table 2. Detailed results for the noise level –12 dB

fixed feedforward feedbackstrip
nbr fn fp fn fp fn fp
1 1 1 1
2 7 3 2
3 23 7 1 6 7 10
4 1 1
5 1 1 2
6 1 2
7 1 7 2 7 3 5
8 1 1
9 2 7 2 9 4 4
10 2 5 2
11 1 1
12
13
14
15
16
17 1 1 1
18
19
20
21 11 2 5 6 8 8
22

total 37 38 10 44 23 35
QRS 648 677 651

Figure 7. False detection percentage for the fixed channel
contribution based QRS detector and the new algorithms.

Figure 9. The study of the quality estimator and
channel 3 contribution variability. Upper plot – the
ECG signal; middle plot – the result for PMR-based
feedforward scheme (standard deviations: 0.066
and 0.058 respectively); lower plot – the result for
SNR-based feedback scheme (standard deviations:
0.364 and 0.179 respectively);

Figure 8. Example of the signal strip with large
variability of the recording conditions.



Discussion

The results of the numerical tests prove the initial
assumptions that the adaptive adjustment of channel
contribution ameliorates the detector's performance.
Except the case of very high noise level (-6 dB), the
performance of detector fed with an adaptively
weighted three-channel recording was better than the
performance of the fixed-contribution detector.

The choice of the control scheme, however, is not so
evident. The feedforward PMR-based control scheme
yields lowest occurrence of false negative detections,
but in the same time exhibits the important growth of
the false positive beats for the noisy recordings. The
feedback SNR-based control is less sensitive to the
signal quality, the number of false detection is relatively
higher than for the feedforward detector, but only
slightly depends on the added noise. The feedback-
based detector controls the signal quality at the
irregularly distributed time points and thus the
variability of the output is much higher than for the
feedforward-based detector. In particular, the false
positive detections cause the computation of SNR at the
sections that are assumed to be the baseline, but in
reality are not. For this reason, many sudden changes in
channels' contribution, not justified by real variations of
the signal quality, may lead to the false negative or
another false positive detector's response. That suggests,
even for the feedback-based control scheme, the use of
constant-rate parameter for estimation the local signal
quality. This parameter should be immune to the
eventual false detections.

Another issue is the correct choice of the signal
quality estimator. The numerical experiment did not
answer (but it was not expected to) whether the
proposed Peak-to-Mean Ratio (fig. 3) is an accurate
representation of the noise. Additional study would
probably determine the optimal parameter, but assessing
the operation of the adjustment scheme did not indicate
a necessity for a better estimator. For this application,
the PMR has two important advantages: low
computation cost and processing of an unannotated
signal.

The detailed results on the number of errors in the
consecutive 16 s strips, summarized for the single case
of noise level –12 dB, represent the detector's behavior
in presence of noise variability. The rowwise study of
these tables for all noise levels spots the detector's
output on the 'easy' and the 'difficult' parts of the signal.
These study yields several remarks:

- poor signal quality always causes false detections,
they can be reduced, but not completely avoided
with use of an adaptive adjustment of channels
contribution (tab. 2 strip 3);

- if all three channels exhibit high noise level, the
adjustment algorithm may cause supplementary
false detection (tab. 2 strip 9);

- the spike in channel 1 (fig.4, at 00:04:45) always
yields the false positive detection (tab. 2 strip 17) –
the event is shorter than the adaptation time.

The use of the adaptive adjustment of channels'
contribution improves the detector's performance. The
algorithm for the adaptive control of channel's
contribution weighting coefficients was designed and
implemented in the C-coded commercial software.
Currently, the self-adjustable detector is tested against
the library of 300 all-day Holter recordings and the
preliminary results are very close to those presented
hereby.
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