
Abstract  - This work discusses the practical aspect of the
transform-based decorrelation of simultaneously recorded ECG
channels. High data redundancy may be observed in the
conventional 12-lead ECG recordings. Eliminating this
redundancy opens new possibilities for lossless coding of the
ECG that complies with the most severe expectations about the
signal storage. The uncorrelated signals have significantly
narrower dynamic range, in result, the statistical properties
featured by uncorrelated signals in the transform domain are
more appropriate for various data distribution-based coding
techniques (Huffman). Four linear transforms are studied and
numerically verified with use of the real ECG data. Some
practical considerations on the data representation format the
additional overhead bits and the round-off errors complement
the final result. The compression efficiency significantly exceeds
the values obtained with use of general-purpose lossless
algorithms.
Keywords -  ECG, compression, linear transform, integer wavelet
decomposition.

I.  INTRODUCTION

Electrocardiogram (ECG) is the most frequently
performed electrophysiological test, due to the high mortality
risk of cardiovascular diseases that are induced by the life
style in developed countries. For the low cost and high
accessibility of the ECG, the compression of electrocardio-
gram signal is of great practical significance and is widely
used in clinical practice. Various ECG applications usually
need the compression, among of them three should be
mentioned as the most important: management of databases
for reference purpose, transmission of the ECG over
telecommunication networks and ambulatory long term
recording (Holter systems).

Several papers were devoted to reviewing and classifying
of ECG-compression methods, proving the attention received
by this issue in the scientific world [1], [2]. Accordingly to
the performed function, data reduction techniques are
commonly classified as [3]:
- Direct methods – the samples of the original signal are

subject to manipulations resulting in lower samples count
(e.g. TP, AZTEC, CORTES, SAPA and others).

- Transformation methods where after a linear
transformation data reduction is performed in the new
domain.

- Parameter extraction methods – some features are
extracted from the signal with use of a preprocessor and
coded in low bitrate stream (linear prediction, syntactic
or neural network methods).
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In our research we focussed on the second group of
compression methods. The main goal was the exploration of
performance and applicability of the perfect reconstructing
compression, also called "lossless". For this purpose, the
coding algorithm and the applied transforms have to be
reversible in the sense of identity of the original and
reconstructed discrete signal representations.

Compared to the lossy methods, lossless compression is
usually featured at a price of considerably lower compression
efficiency. Some diagnostic applications of the ECG,
however, assume no data loss and in many countries the
lossless techniques are the only legal way of medical data
storage. The perfect reconstruction property may be achieved
only for the finite-length sets of symbols representing the
data. Each symbol is assigned a unique corresponding output
token. The lossless reduction of the data volume is achieved
due to the unequal probability of symbols occurrence, when
the frequent symbols are represented by shorter tokens. This
method is a foundation of a class of histogram-based coding
techniques, characterized by variable-length output tokens,
among of which the most popular is the Huffman Coding and
its successors.

The lossless coding may be applied to the raw ECG data
making use of the natural distribution of quantized ECG
values. However, the compression efficiency increases for the
narrow-histogram signals where many datapoints are
represented with use of few symbols. This justifies the pursuit
for a reversible transform yielding the distribution of symbols
optimized for effective coding. The simplest example of such
transform is time-domain differentiating.

The differentiating and its successors (short- and long-
time prediction methods) were found very efficient for the
single channel ECG compression [4], [5], and [6]. For
multichannel signals the additional improvement of efficiency
is expected because of high information redundancy in the
simultaneously recorded signals. During the reported research
we focussed only on transform-based channel decorrelation,
but certainly this technique may be a part of a complex
coding method [7], [8]. Consequently, our aim is to
investigate how much memory (or data stream) can be saved
by elimination of the intra-channel redundancy.

II.  METHODOLOGY

As far as the perfect reconstruction is considered, all
transforms are expected to yield the reconstructed signal
identical to its original counterpart, that usually is fixed-point
valued. Since the decorrelated signals dynamic range is very
low, the round-off error, issued if the floating-point
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representation is used, yields an unacceptable level of
distortion in the reconstructed signal.

For the redundancy, the limb channels III, aVR, aVL and
aVF may be discarded at the beginning. They may be always
calculated from two retained limb channels, I and II. Because
of high correlation expected in the chest channels V1 ... V6,
these channels are put before the limb channels in the data
set. Decorrelating the multichannel signal involves the use of
linear transform (1):

nn XAY ⋅=

where is the original domain signal
representation, is transform domain
signal representation and A is the C × C transform matrix.

The optimum linear transform, the discrete Karhunen-
Loeve Transform (KLT), is defined for the stationary random
processes, but it may be extended for slowly varying
nonstationary processes like ECG. The transform matrix is
computed from the statistics of the ECG signals. First the
covariance matrix Vx is estimated from the ECG channels:
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where M is the number of ECG samples per channel and C is
the channel count (eight in our case). In next step, the
eigenvectors of the covariance matrix Vx are computed and
used as rows of the transform matrix A.

The KLT is issued by eigenvalues decomposition and thus
performs the optimal channel decorrelation. Unfortunately, its
implementation requires overcoming the technical problems:
- there is no fast algorithm for KLT computation,
- the transform matrix is necessary for the signal

reconstruction and has to be stored with the signal and
the overhead decreases the compression performance,

- processing longer time sections lowers the overhead
influence, but the assumption of "stationarity" is less
acceptable,

- the transform matrix uses floating-point data
representation; in order to obtain the fixed-point output,
the transform involves quantization that yields round-off
errors, the alternative solution is computation of fixed-
point matrix A' nearest to the original A, but the
computation is time consuming and the transform is no
longer "optimal"

The alternative approach uses the Discrete Cosine
Transform (DCT) in the role of linear transform. The
transform is fed by the sequence of corresponding samples in
all considered channels: . For this
sequence, the DCT coefficients are defined as:

where k = 0, 1, 2, ... C-1, αk = 1 for k = 0 and  αk = 2
otherwise. The DCT is a suboptimal transform that
approximates the theoretical performance of KLT. However,
the computation of the DCT is more efficient than in case of
KLT, there exist fast algorithms of order (N log N)
performing the transform. Some specialized DSP processors
provide the ability of DCT operation in the hardware. The
additional advantage is the absence of transform matrix,
because of the use of "standard" cosine function. The
compression performance is thus not affected by the
overhead.

Third option is the channel decorrelation by the
differentiating of their time-frequency representation. If the
decomposition performed uses real-valued orthogonal filters,
the resulting time-frequency plane is also real-valued (also
called: "phaseless"). An interesting property of such
representation is the support of arithmetical operations on the
signals as if they were performed in the time domain. The
important frequency components occur in the same time in all
simultaneously recorded channels that justifies the hope for
lower dynamic range of the sequence containing differences
of the corresponding time-frequency atoms.

The use of a floating-point transform causes the real-
valued time-frequency representation and the resulting signal
sampled at the variable rate is also real-valued or the
additional quantization issues the round-off errors.

An interesting alternative is the use of wavelets that map
integers to integers [9] [10]. For the novelty of this approach
its principles are worth to be reminded hereby.

The single stage of lifted wavelet signal decomposition
(figure 1) starts with splitting the signal into two half-length
components, what is called trivial wavelet transform or the
Lazy Wavelet. Next, the half-band properties of these strings
are improved using the lifting and the dual lifting alternately.
The lifting operation means here increasing the number of
vanishing moments of a wavelet without any changes of its
properties.

The Lazy Wavelet splits the signal into two strings:
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Fig. 1. The computing scheme of one stage of wavelet decomposition
using M lifting steps
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A dual lifting step, despite the name used first, consists of
applying a low-pass integer filter p to the even samples and
subtracting the results from the corresponding odd samples:

A primal lifting step, used immediately thereafter,
consists of applying a high-pass integer filter u to the odd
samples and subtracting the results from the corresponding
even samples:

After M lifting steps, the even samples become low-pass
coefficients and the odd samples become high-pass
coefficients, with applying the scaling coefficient K:

In our application, we used the simplest Haar filters for p
and u. The first difference acts as high-pass filter, and the
average acts as low-pass filter:

It is worth a remark, that the lifting algorithm generates
two subsampled strings: the decimated low-pass coarse signal
and the detail high-pass signal, exactly like one
decomposition stage of a traditional wavelet transform. The
lifting scheme is a reversible process; thus the resulting stings
contain complete original information. Thanks to perfect
reconstruction property, it corresponds to reversible wavelet
decomposition. The whole processing involves the integer-
format values only. For the average, the result is rounding
towards -∞ or +∞, depending on the difference’s least
significant bit, since the sum and difference of two integers
may only be even or odd both.

III.  RESULTS

A. Conditions of the numerical experiment
Numerical verification of the compression algorithms

features was custom-coded and carried out in Matlab 5,
except for the Huffman coding procedure downloaded over
the Internet [11]. As a source of multichannel ECG data we
used the CSE-Multilead Database [12] (data set 3) providing
a set of 125 recordings containing simultaneous 12-lead ECG
and the P-QRS-T segmentation points. The amplitude
resolution is 12 bits and sampling frequency is 500 Hz. We
developed our own m-files for the KLT and LWT transforms
accordingly to the original authors, while the DCT, and the
compactly supported WT (Daubechies) were provided by
Matlab. Main goal of our research is to eliminate the data
redundancy aiming at the effective but lossless signal storage.

For this reason the performance of decorrelation algorithms
was measured as the bitrate of the data yielded by the
Huffman coding performed on decorrelated data.

B. Results for the KLT overhead
The KLT, however provides the optimal decorrelation, is

far from being optimal for the real-world implementation.
One of reasons is the existence of the optimal matrix A (1)
with the floating-point entries for each data set. For the fixed-
point application two solutions are possible: searching for a
sub-optimal fixed-point matrix or quantization of the optimal
matrix. The second option was applied in our experiment
because of avoiding very expensive computation at a price of
round-off errors that appear as a low but non-zero distortion
level. The contribution of the data overhead may be reduced
for longer data section processed at a time. In this case,
however, the stationarity condition is less fulfilled, and thus
the decorrelation is no longer optimal. In the introductory part
of the experiment, the percentage of the data overhead
contribution and the distortion level were screened for
dependence on the signal length. Table 1 and 2 summarize
the results for section's durations of 0.5, 1 and 2 s.

TABLE 1
PERCENTAGE OF THE DATA OVERHEAD CONTRIBUTION

signal length [ms]
CSE-ID

500 1000 2000
1 71.8 39.7 20.5
2 67.5 37.3 20.7

124 54.6 38.7 24.0
125 55.1 39.9 23.9

mean ± std 62.3 ± 10.6 38.2 ± 4.51 20.8 ± 2.05

TABLE 2
DISTORTION LEVEL [PRD %] FOR VARIOUS SIGNAL LENGTH

signal length [ms]
CSE-ID

500 1000 2000
1 0.19 0.19 0.20
2 0.30 0.29 0.29

124 0.39 0.37 0.37
125 0.28 0.30 0.33

mean ± std 0.28 ± 0.07 0.31 ± 0.09 0.34 ± 0.09

C. Performance of signal decorrelation
Assessment of the transform-based decorrelation's

performance uses a constant-length signal's section of 512
samples that represents on average one heartbeat interval.
Table 3 displays the decorrelation performance and fig. 2
shows an example of KLT–based decorrelation. (CSE-001).

Getting a low distortion level for rounded KLT transfor-
mation matrix and DCT coefficients, we intended to apply the
quantization to the time-frequency representation as well.
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TABLE 3
DECORRELATION PERFORMANCE

EXPRESSED AS HUFFMAN CODING OUTPUT BITRATE (Kb/s)
ORIGINAL BITRATE 6.0 Kb/s

decorrelation method
CSE-ID no

transform KLT DCT WT
(Daub5)

LWT

1 3.66 2.80 3.45 2.38 1.51
2 3.85 2.82 3.26 2.67 1.66

124 4.12 2.53 2.51 1.94 1.16
125 4.11 2.72 2.87 2.33 1.40

mean
±std

3.85
±0.50

2.82
±0.32

3.10
±0.40

2.40
±0.27

1.49
±0.21

PRD [%] 0 0.31 0.38 10.8 0.071

Fig. 2. Example of KLT–based decorrelation of CSE file Mo_00001

As we completed the experiment using the Daubechies 5-th
order compactly supported wavelet, it turned out that the t-f
coefficients are extremely vulnerable to the round-off error.
In consequence, even for a perfect reconstruction transform,
the distortion level exceeds the acceptable values. The source
of the round-off error was eliminated by the use of LWT that
in whole processing uses fixed-point data representation only.

IV.  DISCUSSION

Four data decorrelation techniques were implemented and
tested in course of the numerical experiment with use of the
original ECG signals. The decorrelation is designed for the
purpose of reducing the volume of the data stream and thus
the use of fixed-point data representation is assumed for the
input and output signals. Although the decorrelation
technique and the subsequent Huffman coding have perfect
reconstruction property, slight difference between the original
and reconstructed signals caused by data round-off error
appear for KLT and DCT transforms. In case of conventional
WT the distortion level was surprisingly high and this method
should not be considered for application unless improved. On
the opposite, the application of LWT yields a practically
lossless coding where the only differences appear at the end
of the signal sections due to the border effect and the filter

roll-off. In a target application segment overlapping may
eliminate these differences.

V.  CONCLUSION

Decorrelation of the multichannel ECG recordings may
reduce the output data stream by a factor of 4 in case of LWT.
The perfect reconstruction property is the most important
feature of the decorrelation-based compression technique.
Certainly, the spatial (or inter-channel) decorrelation may be
combined with other time-domain techniques, like
differentiating or prediction, resulting in a new lossless data
compression algorithm of high efficiency. Another advantage
of the spatial decorrelation is that this technique accepts raw
signal at the input and all additional processing consists in
getting the optimal channel's sequence. The real-world
implementation should consider the existence of specialized
Signal Processors performing the DCT in the hardware. The
implementation of the LWT is also feasible even in a simple
processor using fixed-point arithmetic.
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