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Abstract
This paper compares two methods of non-uniform

ECG sampling: the variable depth decimation (VDD) and
the continuous non-uniform sampling (CNU).

The VDD algorithm uses the wavelet-based time-scale
decomposition of the segmented ECG in which the high
frequency scales representation is eliminated for the
signal sections of narrower bandwidth (e.g. T-P
segment). In result, the signal is locally decimated down
to the level depending on the expected bandwidth. The
CNU algorithm uses a soft estimation of the length for
each subsequent sampling interval on a basis of expected
local bandwidth of the signal.

For ECG records from the CSE Multilead Database
the average efficiency of the VDD algorithm is
significantly higher (4.26) than the efficiency computed
for the CNU method (3.01). Unfortunately, the global
reconstruction error (PRD) is also higher for the VDD
(0.40%) than for the CNU algorithm (0.22%).

1. Introduction
Optimizing the transfer of the fundamental vital sign

(electrocardiogram, ECG) is the focus point of high
priority in the modern information society. The discrete
ECG representation commonly uses the uniform
sampling that is easy to manage but not optimal for this
variable-bandwidth signal. The use of non-uniform
sampling adapted to the local signal contents is an
interesting alternative for its two advantages: reduced
data volume and improved signal-to-noise ratio.

This paper describes the comparison of two methods
of non-uniform ECG sampling developed currently in our
laboratory: variable depth decimation (VDD) [1] and
continuous non-uniform sampling (CNU) [2]. Both
methods require as input an ECG-based function defining
the instantaneous bandwidth of the signal. For the
comparison purpose the same local bandwidth function
related to the P-QRS-T waves' start- and endpoints was
used in each case.

Main novelty of this approach is the use of medical
information, extracted from the signal by the specialized
algorithm as it were used for the diagnostic purpose, to

influence the sampling parameters. Consequently, the
adaptive discrete representation reflects the non-uniform
temporal distribution of medical data in the ECG signal.

The VDD algorithm uses the wavelet-based time-scale
decomposition of the segmented ECG in which the
representation of scales corresponding to high frequency
is eliminated for the signal sections of narrow bandwidth.
In result, the signal is locally decimated down to the level
depending on expected signal bandwidth.

The CNU algorithm uses a soft estimation of the
length for each subsequent sampling interval on a basis of
expected local bandwidth of the signal. First, the adaptive
anti-alias filtering eliminates the components of
frequency exceeding the local bandwidth of cardiac
representation. Then, the positions of irregularly spaced
samples are computed and their values are estimated with
use of cubic splines interpolation.

2. Principles of adaptive representations
This section guides into details about the detection of

local diagnostic information density and explains the
principles of both compared optimisation algorithms.

2.1. The local bandwidth of the ECG
The segmentation of the ECG signal may be

performed by any subroutine, complying with the
diagnostic standards [3, 4]. For testing the optimisation
algorithms we used a typical subroutine originally
designed for an ECG recorder or the reference
segmentation points provided by the CSE Multilead
database [5]. The segmentation bases on the ECG signal
sampled at a constant rate (500 Hz).

The temporal relationship of medical data
vulnerability resulted from our previous experiment with
controlled data cancelling in time-frequency domain [6]
was used as an estimate of the required local bandwidth
of the ECG signal. Other ECG-related functions may also
play this role accordingly to the particular diagnostics
interest.

The shape of this standard importance function is
piecewise fitted with use of the cubic spline interpolation
into the segmentation points detected individually for
each heartbeat (fig. 1).



2.2. The variable depth decimation
The decimation of a discrete signal representation is

commonly implemented with use of filter banks. An
interesting algorithm is the lifting wavelet transform
(LWT), for its relatively high computational efficiency
and because it maps integers to integers directly [7, 8].

The single stage of lifted wavelet signal decomposition
(fig. 2) starts with splitting the signal into two half-length
components, what is called the trivial wavelet transform
or the Lazy Wavelet. Next, the half-band properties of
these strings are improved using the lifting and the dual
lifting alternately. The lifting operation means here
increasing the number of vanishing moments of a wavelet
without any changes of its properties.

resulting stings contain complete original information.
Because nearly a half of the signal length is sampled at

the minimum rate, the decimation is performed
continuously and yields an uninterrupted coarse
approximation of the ECG. Within the P, QRS and T
waves, that start- and endpoints are valid also in the time-
frequency domain, the signal is completed by the details
representing high frequency bands. These components
appear occasionally depending on the adapted importance
function and thus need additional synchronization byte
referring to the continuous signal (figs. 3, 4). Adding the
high frequency information to the approximation sampled
at the low rate increases locally the effective sampling
rate and expands the bandwidth of the discrete signal.

Figure 3. The ECG signal, its time-frequency
representation and the effective sampling resulted from
the variable depth decimation

Figure 1. Standard importance function and its version
adapted to the ECG signal (CSE, file Mo001)
Figure 2. The computing scheme of one stage of wavelet
decomposition using M lifting steps
A dual lifting step consists of applying a low-pass
integer filter p to the even samples and subtracting the
results from the corresponding odd samples. A primal
lifting step, used immediately thereafter, consists of
applying a high-pass integer filter u to the odd samples
and subtracting the results from the corresponding even
samples. The lifting algorithm generates two decimated
data strings: the low-pass coarse signal and the detail
high-pass signal. The lifting scheme is a reversible
process in the integer-format environment thus the

Figure 4. Coarse approximation of the ECG (0...32 Hz)
and high frequency details for P, QRS and T waves



2.3. The non-uniform sampling algorithm
Sampling the signal at the variable rate involves two

independent processes controlled by the adapted
importance function: adjustment of the anti-alias filter's
cut-off frequency and calculation of the local sampling
intervals. Both of them return quantization-free values in
the continuous range from the minimum to the maximum.

The role of the digital anti-alias filter in the non-
uniform sampling rate algorithm is to suppress all the
components falling above the local bandwidth of the
ECG signal and below the Nyquist frequency of the
signal sampled at the constant rate. For this purpose we
adapted the sliding window average low-pass filter. The
window's centre is moved to the consecutive samples of
the original signal, but the window spans from 2 to 16 ms
depending on the value of the adapted importance
function. The border samples are partially included into
the window with use of weighting coefficients, and thus
the window length is not limited to the integer number of
samples. The resulted cut-off frequency covers the range
from 32 to 250 Hz (for sampling intervals of 16 to 2 ms).

The transformation of the constant sampling rate
signal to its variable sampling rate equivalent begins with
the computation of time points corresponding to irregular
positions of samples (fig. 5). These positions depend on
the adapted importance function (see fig. 1). Next, the
continuous ECG signal is simulated from regularly
spaced samples with use of cubic spline interpolation.
Finally, for each irregularly spaced sample the optimized
representation value is determined and memorised in the
output data stream (fig. 6) [9, 10, 11].

3. Results
For the purpose of testing, the reversible algorithm

performing the variable depth decimation (VDD) was
implemented in Matlab and processed the CSE-Multilead
Database signals (2.44 µV, 500 Hz). The reference start-
and endpoints for P, QRS and T waves in each signal
were fed to the importance function adjustment procedure
that provides data controlling the decimation depth. The
resulted data stream volume was compared with the
volume of the original record in order to compute the
average compression ratio (CR). The reconstructed signal
of constant sampling rate was next compared to the
original signal in order to estimate the differences (PRD)
caused by reduction of the data volume.

Table 1. The results of variable depth decimation -
average compression ratio (CR) and differences (PRD)

CR 4.27
global 4.75 (71.3)
within P-wave borders 0.38 (5.7)
within QRS-complex borders 0.40 (6.0)
within T-wave borders 0.50 (7.5)

PRD
[% (µV)]

out of waves 3.63 (54.5)

The algorithm of continuous non-uniform sampling
(CNU) was also implemented in Matlab and processed
the CSE-Multilead Database signals. This algorithm used
the same results of importance function adjustment as the
VDD procedure, but this data controls here the anti-alias
filter parameters and the local sampling interval length.
The average compression ratio (CR) is displayed in the
table 2 together with the estimate (PRD) of global and
local differences between the original and the
reconstructed ECG signal.

Table 2. The results of non-uniform sampling - average
compression ratio (CR) and differences (PRD)

CR 3.01
global 3.11 (46.6)
within P-wave borders 0.16 (2.4)
within QRS-complex borders 0.22 (3.3)
within T-wave borders 0.37 (5.6)

PRD
[% (µV)]

out of waves 1.11 (16.6)

The results given in tables 1 and 2 confirm that the
optimal discrete ECG representation is quite efficient.
Our experiments considered only the aspect of data
volume and distortion level, but it should be noticed that
another advantage of using the adaptive sampling rate is
an increase of signal-to-noise ratio. The tables also
demonstrate the temporal distribution of distortions that
concentrate in the signal sections with low diagnostic
importance.

Figure 6. Comparing the heart beat represented in the
regular and in the variable sampling rate signals

Figure 5. Sampling interval controlled by the values of
adapted importance function (CSE, file Mo001)



4. Discussion
The idea of adaptive discrete ECG representation is

realized in two algorithms: variable depth decimation and
continuous non-uniform sampling. The adaptability is
based on the medical findings, typically used for the
diagnostic purpose, derived automatically from the
signal. The standard importance function represents the
expected signal behavior and may be altered following
the needs of particular users. The user-defined sampling
profile is the third principal advantage of this approach,
besides data compression and suppression of noise.

The VDD algorithm yields better efficiency and thanks
to the use of LWT is significantly less complex than the
CNU method. These features predestine it to the
hardware implementation in portable ECG recording
devices. The VDD algorithm, however, has limitations
resulting from stepwise changes of sampling frequency:
- The sampling frequency is changed only by the

factor of two, because of the dyadic decimation
performed by the wavelet decomposition; the step of
such size is far too coarse to closely follow the shape
of adapted importance function.

- The temporal precision of sampling frequency
adjustment is limited by the Uncertainty Principle
and falls once or twice for the whole wave.

- The change of the sampling frequency results in
border effect oscillations and their appearance near
the wave start- or endpoints causes incorrect
assessment of wave's length.

The CNU method, despite its lower efficiency, better
follows the variability of physiological content of the
electrocardiogram. The sampling frequency adaptation
slope is smoother than in VDD algorithm and never has
discontinuities that reach the limits of Uncertainty
Principle. The border effect oscillations were not
observed in the reconstructed signals and the diagnostic
parameters computed from the optimized discrete
representation were practically the same as from the
original signal.

On the other hand, the efficiency and the
computational complexity of the CNU method is
comparable to the currently best ECG-dedicated bit-
accurate compression algorithms [12]. Therefore only
two advantages support the use of the CNU: suppression
of noise and the user-defined sampling profile. The
standard importance function is based on the
physiological sequence of heart activity. In case of severe
pathology, this sequence may be disturbed by
extrasystolies or missing waves. Complex signal
irregularities without a regular waveform (i.e. atrial
flutter) do not influence the sampling rate

adjustment and may cause inappropriate results of
optimization. This issue needs further study before the
clinical application of the adaptive discrete ECG
representation.
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