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Abstract 

The paper presents an adaptive time-frequency 

denoising algorithm. Main novelty is a running quasi-

continuous scalo-temporal model of background activity 

built and subtracted from the ECG in order to yield a 

rectified representation of cardiac action. 

Our algorithm is based on the P, QRS and T wave 

borders automatically detected in the ECG and uses the 

information on expected local signal bandwidth to 

determine time-frequency regions containing cardiac 

representation. The complement is assumed to contain 

only the background activity representation and thus 

these values can be picked-up directly to the time-scale 

model of noise. 

The numerical tests performed with use of artificially 

noise-affected test signals reveal highly discriminative 

properties of the method. The amount of removed noise 

varies from 65% to 90% depending on input noise level. 

 

1. Introduction 

The ECG signal recorded in ambulatory or home care 

conditions is affected by the influence of extra-cardiac 

bioelectrical phenomena. These can hardly be avoided 

due to the variable recording conditions or due to the 

simultaneous activity of adjacent muscles. Noise removal 

techniques, being recently a hot topic of many research 

worldwide falls to one of the following categories: signal 

averaging [1], adaptive noise canceling [2] or wavelet-

based noise reduction [3-6]. These techniques, however, 

assume particular conditions about noise stability and are 

not suitable for home care recordings when the broadband 

noise contribution varies in energy. The interest for an 

intelligent noise discrimination method grows with the 

common use of wearable devices for pervasive cardiac 

monitoring. The method is expected to yield a signal 

suitable for automated interpretation, even if the recorder 

is operated by untrained user in life-critical conditions. 

The physiological background activity, despite its 

unavoidable character, shows a considerable extent of 

regularity that means also low variability of its statistical 

features. If the recording conditions are optimized for 

avoiding extracardiac cells stimulation, the Power 

Spectral Density and the temporal energy distribution of 

the noise may be considered as constant. These features, 

may be extrapolated from one time point to another and 

from one frequency band to another giving an impression 

of continuity, even if rarely or non uniformly sampled. 

The documented electrical inactivity of the heart 

during the slow conduction of the stimulus in the 

Atrioventricular Node is a foundation of accurate measure 

of the noise level in the PR section of the ECG. This 

assumption is fairly fulfilled thanks to the central position 

of the AV Node close to the electrical center of the heart. 

In consequence, the baseline level is widely recognized 

reference point in the electrocardiogram. The RMS yields 

an accurate noise print, however it is accessible once per 

heartbeat only. Consequently, this approach has important 

limitations in a real application of ECG recordings:  

− The baseline is short - (typically 60 ms) thus the 

measured noise spectrum starts at ca. 17 Hz. 

− The baseline occurs once per heartbeat - thus the noise 

pattern is updated irregularly in long intervals. 

− The baseline may not be present in rare cases such as: 

atrial flutter, fibrillation or premature R on T beats.  

These limitations may be suppressed by a quasi-

continuous noise model using maximum number of noise 

measurement samples beyond the baseline. The temporal 

distribution of diagnostic information in the discrete 

heartbeat representation and also the local ECG 

bandwidth are correlated with start- and endpoints of the 

P, QRS and T waves. This relationship, deduced from the 

physiological background of the electrocardiography, has 

been demonstrated with the use of statistical tools [2]. 

From the practical viewpoint, relying on these points is 

advantageous since their positions are computed by 

standard diagnostic software with the acceptable 

accuracy. 

The time-frequency domain noise model is computed 

for each consecutive heartbeat with the use of 

individually detected wave borders and the general 

knowledge about the bandwidth of cardiac components 

expected locally. The noise model values in time-

frequency are next subtracted from corresponding raw 

signal representation yielding a distilled ECG. This idea 

is the key point of our novel ECG-dedicated adaptive 

denoising algorithm. 
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2. Methods 

The main assumption of our method is the extension of 

cardiac component-free region beyond the baseline 

borders. This extension is possible thanks to the uniform 

signal sampling and local variability of the cardiac 

component bandwidth. In order to correctly represent the 

high frequency QRS components and fulfill the sampling 

theorem, the sampling frequency is usually set to 500 or 

1000 Hz. This value is much too high for other cardiac 

components occupying the majority of recording time. 

Knowing the expected cardiac component bandwidth one 

can use the gap above it to estimate the noise at least at 

high frequency on a scalo-temporal plane. Since the P, 

QRS and T waves are automatically determined with a 

high reliability, we found interesting to correlate the local 

bandwidth estimate with these waves, and not by the 

explicit time. As a result of long research, we found three 

possible sources of local bandwidth estimation in ECG: 

− the study of physiological limitations, some 

processes (e.g. repolarization) could not be as fast as 

depolarization by their physiology described at a 

cellular membrane level, 

− the analysis of database signals [7] with use of time-

frequency decompositions such as wavelet transform,  

− the analysis of expert perception of the ECG trace 

revealing local signal conspicuity and thus its 

relevance to the final diagnosis [8].  

All these methods were found converging in their main 

results and the differences of the local bandwidth 

estimation methods are more subtle that the transform 

resolution. This is because the noise discrimination 

method uses a time-frequency domain arithmetic and 

consequently a reversible wavelet transform of a 

resolution limited by the uncertainty rule.  

The heuristic function of local bandwidth expected at 

the time point n is expressed by a discrete function f(n): 

representing the local relative cut-off frequency. This 

function, using k1 ...k5 ∈{0, 1, ...N} as the representation 

of the standard positions of wave borders is projected to 

the local position of current heartbeat wave borders  

h1 ...h5 ∈{0, 1, ...M} for each point i = 1...5 (fig. 1):  

and the projection scale Si varies from section to section: 

 

 
Figure 1. The example heartbeat (solid line) and the 

adapted bandwidth variability function (dashed line) 

 

The time-frequency atoms of raw ECG representation 

are qualified as cardiac components only for scale j and 

time point  m for which: f'(m) > 2
-j-1

. Otherwise they are 

considered as extra-cardiac components (noise 

representation) and directly included in a basis of time-

frequency noise model (fig. 2).  

 
Figure 2. Splitting the time-frequency signal 

representation in the noise measurement region (above 

the local cut-off frequency) and the cardiac representation 

region (below). 

 

In separate octaves Nj, j ∈{1...3}, the noise 

measurement points are considered as non-uniformly 

sampled time series Nj({n, v(n)}) and projected to the 

regular space [9] using the continuous function:  

x ∈ [xi, xi+1], i ∈ {0, 1,....n-1} best fitted to the time series 

Nj , known as cubic splines interpolation. 

The uniform representation of the noise, extended to 

the cardiac component area, is then obtained by sampling 

the Si(x) at the time points m (fig. 3):  

As the scale number increases, the contribution of 

cardiac representation groves and below 32 Hz (j > 3), the 

reliable measurement of noise is never possible since the, 

bandwidth is entirely occupied by the representation of 

cardiac activity. Therefore a noise extrapolation based on 

the first three scales coefficients is used to estimate the 

noise print in lower frequencies. This extrapolation uses 
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the second-order polynomials:  

generated by all atoms of embedded trees originating 

from the considered coefficient. Therefore, the estimation 

of the noise level at a given time point k on the scale j is 

based on three average values Mj(k, i) of all 

corresponding atoms s(n, i) on each of the first three 

scales (fig. 4): 

 

 
Figure 3. Distribution of noise measurement and 

interpolation samples on each scale. The missing values 

'o' are estimated from the previous and subsequent 

measured values 'x'. 
 

 
Figure 4. Extrapolation of noise values to low frequency 

bands with averaging of the noise print in the time 

domain 

 

The time-frequency ECG background activity model 

contains partially measured and partially computed atoms 

of noise N' matching exactly the time-frequency plane of 

the raw signal. In respect of noise discrimination, it is 

interesting to continue the processing in the time-

frequency domain instead of recovering the time-domain 

noise pattern. The values of time-frequency atoms in the 

noise model N'(j, m) are subtracted from the values of the 

corresponding atoms in the representation of the raw 

signal R(j, m):  

This operation yields a modified time-frequency plane 

representing the distilled cardiac signal D(j, m). This 

plane is then fed to the inverse wavelet transform, which 

produces the time-domain ECG signal with discriminated 

noise. 

 

3. Results 

The ECG-dedicated adaptive wavelet discrimination of 

muscular noise was tested for the efficiency against CSE 

Multilead Database signals accompanied by reference 

segmentation points and against mathematically 

synthesized artificial signals. Three noise patterns:  

− poor electrode contact (abrupt baseline changes), 

− electromagnetic interference (sinus wave, 60 Hz), 

− muscle fibrillation (high frequency noise) 

were re-sampled from the MIT-BIH Noise Stress 

Database (12 bit, 360 Hz) [10], normalized to four test 

levels 50%, 20%, 10% and 5% (corresponding to -3dB,  

-7dB, -10dB and -13 dB SNR) and mixed with the 

original ECG. 

The measure of noise discrimination efficiency was the 

PRD ratio representing how far the noise-contaminated 

and distilled signal is close to the original. The CSE-

originated signals could not be considered as noise-free 

and because the tested algorithm discriminates equally the 

intrinsic and mixed noise, the distilled version was not 

expected to converge to the original. Therefore the CSE 

signals were used for testing the model adaptivity to local 

ECG changes (tab.1), while tests with artificial signals 

provide a proper estimate of noise discrimination 

efficiency (tab. 2).  

 

Table 1. The average difference of denoised and original 

database signals for most frequent patterns of continuous 

noise. 

PRD [%] noise 

pattern 50  20  10  5  

poor electrode contact 47  13  4.7  2.7  

electromagnetic interference 17  4.3  1.3  0.95  

muscle fibrillation 14  2.3  1.0  0.85  

 

Table 2. The average difference of denoised and original 

synthesized signals for most frequent patterns of 

continuous noise. 

PRD [%] noise 

pattern 50  20  10  5  

poor electrode contact 46  11  4.3  2.1  

electromagnetic interference 17  4.3  1.3  0.95  

muscle fibrillation 10  1.4  0.71  0.33  
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The dynamics of noise model adaptation was also 

tested with use of modulated noise. Two modulations 

were used:  

− sine modulation simulating the muscular activity  

(fig 5, tab. 3),  

− square modulation simulating a sudden occurrence of 

noise (fig. 6, tab. 4).  

In order to avoid any correlation with the ECG, the 

modulating function uses frequency constantly increasing 

in a range from 1 to 10 Hz. 

Figure 5. Result of the denoising test with the use of 

sinus-modulated noise (a) added noise pattern, (b) 

remaining noise. 

 

Table 3. The average difference of denoised and original 

synthesized signals for patterns of sinus-modulated noise. 

PRD [%] noise 

pattern 50  20  10  5  

poor electrode contact 47  13  4.5  2.4  

electromagnetic interference 17  4.4  1.4  1.1  

muscle fibrillation 11  1.6  0.78  0.37  

Figure 6. Result of the denoising test with the use of 

square-modulated noise (a) added noise pattern, (b) 

remaining noise. 

 

Table 4. The average difference of denoised and original 

synthesized signals for patterns of square-modulated noise 

PRD [%] noise 

pattern 50  20  10  5  

poor electrode contact 47  16  5.7  3.9  

electromagnetic interference 23  9.1  4.4  1.9  

muscle fibrillation 19  4.7  2.1  1.2  

4. Discussion and conclusions 

A new ECG-dedicated method for noise modeling and 

discrimination was developed and tested. The noise 

discrimination efficiency for static and sinus-modulated 

signals were 11.6 dB and 11.1 dB respectively and falls to 

6.5 dB due to the inaccuracy of model adaptation when a 

noise step occurs in a section where the full bandwidth is 

used by cardiac components. The time-frequency noise 

model is quasi-continuous and adapts to the physiological 

changes of muscular activity. The use of the standard 

bandwidth function allows the user to define his or her 

own profile of interest and even to adapt the method to 

other signals of variable information density. 
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