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The paper presents an adaptive time-frequency denoising algorithm. Other denoising methods use 
a very general probability-based noise model and as general-purpose algorithms rarely consider 
the a priori knowledge about the signal. Main novelty of the proposed algorithm is the running 
quasi-continuous scalo-temporal model of background activity built and subtracted from the ECG 
in order to yield a rectified representation of cardiac action. Our algorithm is based on the P, QRS 
and T wave borders automatically detected in the ECG and adapts the general information on 
expected local signal bandwidth to each particular heartbeat. This leads to determine time-
frequency regions containing cardiac representation. The complement is assumed to contain only 
the background activity representation and thus these values can be picked-up directly to the time-
scale model of noise. For the remaining part of scalo-temporal surface the noise is interpolated 
with cubic splines in each scale independently and than extrapolated to lower scales. The 
numerical tests performed with use of artificially noise-affected test signals reveal highly 
discriminative properties of the method. The amount of removed noise varies from 65% to 90% 
(SNR increased by 6.5 dB and 11.6 dB respectively) depending on input noise level. The time-
frequency noise model is quasi-continuous and adapts to the physiological changes of muscular 
activity using maximum available real data points. The use of the standard bandwidth function is 
arbitrary for the ECG, but allows the user to adapt the method to other signals of variable 
information density. 

 
INTRODUCTION  
 
The ECG signal recorded in unstable conditions (e.g. ambulatory or home care) suffers from the 
influence of extra-cardiac bioelectrical phenomena. Due to the simultaneous activity of adjacent 
muscles this influence can hardly be avoided with use of technical measures. Classical noise 
removal techniques assume noise stability and since in home care recordings the broadband noise 
contribution varies in energy, this requirement is not fulfilled. Particular interest for an intelligent 
noise discrimination method comes from the common use of wearable devices and telemedicine. 
In these applications, the recorder is expected to yield a signal suitable for automated 
interpretation, even if operated by untrained user.  
The documented electrical inactivity of the heart during the slow conduction of the stimulus in the 
Atrioventricular Node is a foundation of commonly performed measurement of the noise level in 
the PR section of the ECG [1]. This assumption is fairly fulfilled thanks to the central position of 
the AV Node close to the electrical center of the heart. In consequence, the baseline level is widely 
recognized reference point in the electrocardiogram. Unfortunately, this approach has important 
limitations in a real application of ECG recordings: short duration of the baseline limiting the 
bandwidth, and rare, irregular occurrence of the baseline. 
The background activity, despite its unavoidable character, is limited by the rules of 
electrophysiology and thus predictable to a considerable extent. Main idea of our proposal is to 
divide the cardiac-originated components and the background electrophysiological signs in a time-



frequency plane. The domain allows setting maximum number of noise measurement points and 
only few gaps has to be filled with use of interpolation or extrapolation in order to obtain a quasi-
continuous noise model. Finally, the noise model is subtracted from the original signal yielding 
rectified ECG record. Such approach considers local variability of background activity, variability 
of the heart rate and favorites the measured noise information over the estimates.   
 
MATERIALS AND METHODS 

Local bandwidth of the ECG 

The typical sampling frequency of 500 or 1000Hz corresponds to relatively short QRS complex 
and is much too high for other cardiac components occupying the majority of recording time. The 
gap above the expected cardiac component bandwidth and the Nyquist frequency is used to 
measure the noise level at high frequency on a scalo-temporal plane. Because of different nature of 
particular components of heart evolution (the P, QRS and T waves), we found interesting to 
correlate the local bandwidth estimate with these waves, and not by the explicit time. Fortunately, 
the waves can be determined automatically with acceptable reliability by the software.  
Local bandwidth of the ECG was estimated by the analysis of expert perception of the ECG trace 
revealing local signal conspicuity and thus its relevance to the final diagnosis [2], however our 
research show other approaches converging to similar results. The heuristic function of local 
bandwidth expected at the time point n is expressed by a discrete function f(n): 

 
representing the local relative cut-off frequency. This function, using k1 ...k5 ∈{0, 1, ...N} as the 
representation of the standard positions of wave borders is projected to the local position of current 
heartbeat wave borders h1 ...h5 ∈{0, 1, ...M} for each point i = 1...5 (fig. 1):  

 
with projection scale Si varying from section to section: 
 

Figure 1 a) The example heartbeat (solid) and the adapted bandwidth variability function (dashed). 
b) Corresponding time-frequency signal representation divided in the noise measurement region 
(above the local cut-off frequency) and the cardiac representation region (below). 
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The time-frequency atoms of raw ECG representation are qualified as cardiac components only for 
scale j and time point  m satisfying: f'(m) > 2-j-1. Otherwise they are considered as extra-cardiac 
components (noise representation).  

Towards the noise model continuity 

In separate octaves Nj, j ∈{1...3}, noise measurement points are considered as non-uniformly 
sampled time series Nj({ n, v(n)}) and projected to the regular space [3] using the continuous 
function: x ∈ [xi, xi+1], i ∈ {0, 1,....n-1} best fitted to the time series Nj , known as cubic splines 
interpolation. The uniform representation of the noise, extended to the cardiac component area, is 
then obtained by sampling the Si(x) at the time points m (fig. 2a):  
As the scale number increases, the contribution of cardiac representation groves and below 32 Hz 
(j > 3), the reliable measurement of noise is never possible since the, bandwidth is entirely 
occupied by the representation of cardiac activity. Therefore a noise extrapolation based on the 
first three scales coefficients is used to estimate the noise print in lower frequencies. This 
extrapolation uses the second-order polynomials generated by all atoms of embedded trees 
originating from the considered coefficient. Therefore, the estimation of the noise level at a given 
time point k on the scale j is based on three average values Mj(k, i) of all corresponding atoms 
 s(n, i) on each of the first three scales (fig. 2b): 

Discrimination of modeled noise in the ECG 

The time-frequency ECG background activity model contains partially measured and partially 
computed atoms of noise N' matching exactly the time-frequency plane of the raw signal. In 
respect of noise discrimination, it is interesting to continue the processing in the time-frequency 
domain instead of recovering the time-domain noise pattern. The values of time-frequency atoms 
in the noise model N'(j, m) are subtracted from the values of the corresponding atoms in the 
representation of the raw signal R(j, m):  

 
This operation yields a modified time-frequency plane representing the distilled cardiac signal  
D(j, m). This plane is then fed to the inverse wavelet transform, which produces the time-domain 
ECG signal with discriminated noise. 
 

 
Figure 2. (a) Distribution of noise measurement and interpolation samples in first three scales.  
(b) Extrapolation of noise values to low frequency bands with averaging of the noise print in the 
time domain. Missing values 'o' are estimated from adjacent measured values 'x'. 
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RESULTS 
 
The ECG-dedicated adaptive wavelet discrimination of muscular noise was tested with CSE 
Multilead Database signals accompanied by reference segmentation points and with and with 
synthesized noise-free ECG. Both kinds of signals were mixed with MIT-BIH Noise Stress 
Database (resampled from 360 Hz), normalized to four test levels 50%, 20%, 10% and 5% 
(corresponding to -3dB, -7dB, -10dB and -13 dB SNR) and with mathematically synthesized noise 
representing three patterns:   

− poor electrode contact (abrupt baseline changes), 
− electromagnetic interference (sinus wave, 60 Hz), 
− muscle fibrillation (high frequency noise)  

The measure of noise discrimination efficiency was the PRD ratio representing how far the noise-
contaminated and distilled signal is close to the original. The tests with artificial signals provide a 
proper estimate of noise discrimination efficiency (tab. 1).  
The dynamics of noise model adaptation was also tested with use of sinus-modulated noise. In 
order to avoid any correlation with the ECG, the modulating function uses frequency constantly 
increasing in a range from 1 to 10 Hz. 
 
Table 1. The average difference of denoised and original synthesized signals for patterns of static 
and sinus-modulated noise. 
 

PRD [%] 
static noise modulated noise 

noise 
pattern 

50  20  10  5  50  20  10  5  
poor electrode contact 46  11  4.3  2.1  47  13  4.5  2.4  

electromagnetic interference 17  4.3  1.3  0.95  17  4.4  1.4  1.1  
muscle fibrillation 10  1.4  0.71  0.33  11  1.6  0.78  0.37  

 
DISCUSSION 
 
A new ECG-dedicated method for noise modeling and discrimination was developed and tested. 
The noise discrimination efficiency for static and sinus-modulated signals was 11.6 dB and  
11.1 dB respectively. The time-frequency noise model is quasi-continuous and adapts to the 
physiological changes of muscular activity. 
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