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Abstract. This work proposes an optical-flow based feature tracking
that is combined with region covariance matrix for dealing with tracking
of an object undergoing considerable occlusions. The object is tracked
using a set of key-points. The key-points are tracked via a computation-
ally inexpensive optical flow algorithm. If the occlusion of the feature is
detected the algorithm calculates the covariance matrix inside a region,
which is located at the feature’s position just before the occlusion. The
region covariance matrix is then used to detect the ending of the feature
occlusion. This is achieved via comparing the covariance matrix based
similarity measures in some window surrounding the occluded key-point.
The outliers that arise in the optical flow at the boundary of the objects
are excluded using RANSAC and affine transformation. Experimental
results that were obtained on freely available image sequences show the
feasibility of our approach to perform tracking of objects undergoing con-
siderable occlusions. The resulting algorithm can cope with occlusions of
faces as well as objects of similar colors and shapes.

1 Introduction

Tracking an object in a sequence of images is currently utilized in many computer
vision applications. The goal of visual tracking is to locate a region in each image
that matches an appearance of a target object. The algorithms for visual object
tracking can be divided broadly into two categories, namely: feature-based and
visual-model/template-based [1]. Feature-based methods track an object through
tracking a collection of local features such as corners [2]. The second group of
methods achieves the object tracking through matching a template or a model
to the input image [3].

In typical scenarios, interactions between moving objects result in partial or
significant occlusions, making the object tracking a highly challenging problem.
Various systems and methods have been proposed to handle object tracking in
complex crowded scenes with the occlusions arising in the object tracking [4].
Multiple cameras are often used to cope with occlusions [5]. In most conventional
multi-camera systems the targets are represented as a collection of blobs in 3D
space, which are tracked over time. This requires finding the corresponding blobs
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across multiple images as well as assigning 2D blobs to the 3D blobs. However,
using a multi-camera system in many applications may be impractical. Therefore,
stereo cameras are often used to perform object tracking in such circumstances
[6]. However, conventional stereo cameras usually do not provide useful and
reliable depth estimates in occluded regions, particularly when they are texture-
less.

The object tracking is often achieved using a single camera. However, one
fundamental limitation of using one camera in the tracking of objects is dealing
with object occlusions. In single-camera methods, occlusion can be identified
through prediction of the object location or on a per-pixel basis. Kalman filtering
or particle filtering [7] can be used to predict the positions of objects during
occlusions. Methods relying on per-pixel representation often use templates to
represent objects. The underlying main assumption behind template matching
is that the appearance of the template remains almost the same throughout the
entire image sequence. Hence, handling occlusions is not an easy task in such an
approach [3]. Babenko et. al [8] recently proposed an online multiple instance
learning algorithm to achieve robust object tracking under occlusion. However, to
achieve long-term object tracking, a persistent tracker must cope with occlusions
as well as must be able to reacquire the object in case of considerable occlusions.

Despite the above advances, in many situations the existing algorithms do
not have satisfactory tracking robustness, especially when there is a large amount
of occlusion between two or more objects. Therefore, a highly efficient occlusion
handling scheme, which could lead to a considerable improvement of the tracking
performance, even when there is a large amount of occlusion between two or
more objects is needed. Our approach to cope with considerable occlusions is to
construct a region covariance matrix in the surround of the feature just before
occlusion and then to employ such a descriptor to detect the ending of the
occlusion. The motivation behind such an approach is that the region covariance
matrix is a strong and robust indicator for point-to-point correspondence. It is a
powerful descriptor that encodes the variance of the channels, such as red, green,
blue, gradient, etc., their correlations with each other, and the spatial layout [9].
Moreover, variations in illumination as well as in pose or viewpoint do not affect
the covariance considerably. Through the use of such a robust region descriptor
a tracked feature can be detected and recognized again after loosing it.

The features are tracked using the optical flow. In optical flow-based feature
tracking the significant errors might occur on the occluding boundary. In [10]
it has been shown that features belonging to the same object have correlated
behavior, whereas features belonging to different objects show evidence of more
uncorrelated and independent behavior. Motivated by this observation we as-
sume that key-points in previous and current images are related by an affine
transformation, and we then try several combinations of 3 points in a RANSAC
framework to exclude outliers, i.e. features that do not move consistently with
the inliers. This helps us to detect the occlusion, and more importantly, the
features do not undergo undesirable shifting through the appearance changes at
the boundaries where occlusions take place.
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In Section 2 we present a feature-based object tracking and start with a dis-
cussion of feature detection and optical flow estimation. Thereafter we present
how the consistency of matches is handled in our approach. Then we outline
covariance matrix based region descriptor as well as present our algorithm. Sec-
tion 3 is devoted to demonstration of experimental results. We end the paper
with conclusions.

2 Feature-Based Object Tracking

2.1 Feature detection and optical flow estimation

Good detectors of features are very important for object tracking [2]. Several
feature detectors and descriptors have been proposed and evaluated in the lit-
erature [11][12]. Recent research [12] has demonstrated that the repeatability
of the key-point detectors deteriorates with change of the viewpoint. The work
mentioned above has also demonstrated that no key-point detector performs
well in case of considerable view changes. Taking this into account we utilize
the Harris corner detector [13] in our algorithm. Another rationale of our choice
is that the Harris corner detector has relatively low computational cost when
compared to the SIFT algorithm.

The inter-frame translations of the key-points are determined by the Lucas-
Kanade optical flow algorithm [14]. This method is still one of the best methods
for two-frame motion estimation. The advantage of the method is that the fea-
tures can be tracked with low computational cost and therefore it is utilized in
our algorithm.

2.2 Consistency of matches

RANSAC (RANdom SAmple Consensus) is a robust method to estimate param-
eters of a mathematical model from a set of data contaminated by considerable
amounts of outliers [15]. The percentage of outliers which can be handled by
RANSAC can be larger than 50% of the entire data set. The RANSAC algo-
rithm consists of two steps, which are repeated in an iterative hypothesis-and-
test fashion. In the hypothesis step, minimal sample sets are randomly chosen
from the input dataset and then the model parameters are estimated using only
elements from such sets. In the second step, the RANSAC tests whose elements
of the entire dataset are consistent with a model, which is instantiated with the
parameters from the first step. The steps mentioned above are repeated a fixed
number of times. Each time, either a refined model is produced or the model is
declined because too few points are classified as inliers.

In our approach we employ RANSAC to find the largest set of matches
consistent with an affine transformation. The affine transformation is given by
the following equation:
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where [x′i y
′
i 1] is the matched feature location in the current image and [xi yi 1]

is the matched feature location in the previous image. A sum of square errors is
minimized to estimate the affine transform parameters h = [h1 h2 h3 h4 h5 h6]
according to the following equation:

min
h
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′
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2 (2)

The solution to the optimization problem (2) is given by the following equation:
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2.3 Covariance matrix based region descriptor

Recently, in [16] an elegant and simple solution to integrate multiple image fea-
tures has been proposed. It is based on the covariance matrix. Using a covariance
matrix (CM) as a region descriptor has many advantages, namely: 1) CM in-
dicates both spatial and statistical properties of the objects; 2) it provides an
elegant means to combine multiple modalities and features; 3) it is capable of
relating regions of different sizes.

Let I be an image of size W ×H. At each pixel location x = [x, y]T we can
extract d features such as intensity, gradient, color, etc. Using such a feature set
we can construct a W ×H × d feature image H. Given a rectangular window R
we can then compute the covariance matrix cR of the features according to the
following equation:

cR =
1

|R| − 1

∑

x∈R
(H−mR)(H−mR)T (6)

where mR = 1
|R|
∑

x∈R H(x) denotes the vector of means of corresponding fea-
tures for the pixels in region R, and |R| stands for the size of region R. The
diagonal entries in such a covariance matrix express the variance of each feature
and the off-diagonal entries indicate their mutual correlations. The covariance
matrix is a very informative region descriptor because it encodes information
about the variance of features, their correlations witch each other, and spatial
layout. It can be computed efficiently through the use of integral images in a way
that has been shown in [9]. To measure the dissimilarity between the covariance
matrixes c1 and c2 we employed the following distance [16]:

ρ(c1, c2) =

√√√√
|R|∑

i=1

ln2 λi(c1, c2) (7)
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where {λi(c1, c2)}i=1,...,|R| are the generalized eigenvalues of c1 and c2, which
are calculated on the basis λic1xi − c2xi, where xi 6= 0 are the generalized
eigenvectors. Another possibility to measure the similarity between covariance
matrices is to use Log-Euclidean metrics [17].

2.4 The algorithm

When a new frame is available, after detecting Harris corners, the optical flow
is estimated to determine the current location of key-points. At this stage we
calculate the quality of the features [2] in order to verify if they are still track-
able and have not drifted away from original targets. Through monitoring the
features’ quality we verify whether each feature is occluded or not. In case of an
occlusion we calculate the region covariance matrix at feature’s location before
the occlusion and afterwards we finally decide if the occlusion takes place. For
the non-occluded features we apply RANSAC with the affine model in order to
determine the outliers, i.e. features that move inconsistently according to the
best affine model. For such features we compute region covariance matrixes and
add the features to the set of occluded features. This way we suppress the motion
errors that arise at the boundary of the occlusions. In subsequent frames for each
occluded feature we execute a test if the occlusion is finished. Given the feature
location before the occlusion we perform greedy search in a window surrounding
such a location for the best similarity of region based covariance descriptors. If
the best distance between covariance matrixes is below the threshold we start
the tracking of the feature. In [18] the RANSAC algorithm is used to identify
consistent subsets of correspondences and obtain a better homography. Our work
differs from the mentioned work in that we focus on handling the occlusions of
the object undergoing tracking with the support of the RANSAC.

3 Experimental Results

We validated the algorithm by tracking a face, which undergoes considerable oc-
clusions?. Although almost the whole face was occluded our tracker successfully
tracks the face, see images in upper row of Fig. 1, as well as detects it after the
occlusion, see images in bottom row. As we can observe the algorithm is able
to reacquire the object despite similar colors as well as textures of both objects.
The above mentioned similarity of both objects leads to sporadic misdetections
of the feature’s occlusion as it can be seen in frame #7, where some features are
located at the occluding hand. Through the use of RANSAC built on an affine
motion model, such feature drifting is eliminated quickly as can be observed in
frame #9. In frame #13 we can notice that the algorithm reacquired most of
the features. The location of the features is consistent with their location before

? Thanks Dr. Birchfield for this sequence, obtained from
http://robotics.stanford.edu/˜birch/headtracker
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occlusion, see frame #5. In the next frames of the discussed sequence we can per-
ceive the behavior of the algorithm after redetection of the features and during
the subsequent occlusion. As we can see at frame #26 the number of redetected
features is sufficient to continue the tracking of the face. The locations of the
redetected features are consistent with the location before the second occlusion,
see frame #13, as well as with initial feature locations, see frame #5.

Fig. 1. Object tracking during considerable occlusion. Frames #5, 7, 9, 13 (upper row),
#20, 21, 23, 26 (bottom row)

The experimental results shown in Fig. 2 demonstrate that the RANSAC
algorithm allows us to obtain far better tracking results. In particular, as ex-
perimental results show, without RANSAC some features undergo undesirable
shifts and in consequence the number of the reacquired features is somewhat
smaller, see frame #26. Even more, as we can see at the mentioned image, some
features can be located in the wrong objects.

Fig. 2. Key-point-based object tracking without RANSAC. Frames #7, 9, 23, 26

Figure 3 demonstrates a scene in which a face undergoing tracking is tem-
porally occluded by another one. The occluded face moves slightly during the
occlusion and in consequence the number of the reacquired features is something
smaller. The extension of the algorithm about Procrustes analysis [19] to com-
pute the similarity transform (translation, rotation and scale) between two sets
of visible features and then to transform the occluded features is straightforward.
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Fig. 3. Tracking a face that undergoes occlusion by an another face. Frames #420,
422, 434, 449

The algorithm has been implemented in Matlab. The above described exper-
iments were done on color images of size 128× 96. The recovery of the occluded
feature is done through the greedy search for the best similarity of the region
covariance matrixes and then comparing it with a threshold value. The searching
is realized in a window of size 5×5 centered on feature’s position just before the
occlusion. The region covariance is built in a windows of size 6× 6 using feature
location, R, G, B color values and first and second image derivatives.

4 Conclusions

To persistently track an object in long image sequences the algorithm must cope
with considerable occlusions. Since the existing algorithms can not perform well
under considerable occlusions, we propose an algorithm that employs region
covariance descriptors to reacquire the occluded features. We demonstrated ex-
perimentally that such a descriptor is very useful in recovering the features. The
RANSAC algorithm helps considerably in detecting the occlusions as well as
allows us to exclude outliers arising at the boundary between moving objects.
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