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Abstract

In this paper, an algorithm for multiple camera based per-
son tracking is presented. Region covariance matrixes are
used to model the target appearance. The correspondence
between multiple camera views is established via homogra-
phy. It is utilized to improve the tracking of people under as-
sumption that they are at the common ground plane. If there
is occlusion in one view, the homography to this view from
another view is utilized to locate the object template. The
information about the true location of the template helps
the tracker to resume, even in case of substantial temporal
occlusions or large object movements. The object template
is represented by multiple non-overlapping patches. Owing
to such an object representation the tracker is capable both
detecting the occlusion and handling considerable partial
occlusions. The object tracking is achieved using particle
swarm optimization. The objective function is based on the
Log-Euclidean Riemannian metric. Experimental results
that were obtained on surveillance videos show the feasi-
bility of the presented approach.

1. Introduction
People tracking is an important problem for surveillance

applications. The goal of the tracking is to automatically

find the same target in an adjacent frames from an image

sequence once it is initialized. The challenge is to track

the object irrespective of scale, rotation, perspective projec-

tion, occlusions, changes of appearance and illumination.

Several methods were proposed to achieve object tracking

[1][7], including surveillance applications. However, most

current surveillance systems still treat multiple cameras as a

set of single cameras. They are typically utilized to extend

the viewing area. Therefore, reliable tracking of people in

multiple cameras is very desirable capability, particularly

for surveillance systems. This is because by using multi-

ple cameras we can handle occlusions better. However, the

use of multiple cameras is connected with difficulties such

as camera calibration and synchronization, as well as cor-

respondence. Correspondence between multiple cameras

involves establishing instant coherence between objects in

different views. It is one of the most important and difficult

problems in visual surveillance based on multiple cameras.

Some methods were proposed to achieve people track-

ing using multiple views. In [9] the homography is used to

align the foreground of the ground plane in images that are

acquired by cameras with overlapping fields of view. How-

ever, the results obtained by this method might be inaccu-

rate since the feet are typically segmented erroneously due

to small sizes as well as possible occlusions. Moreover, this

method tends to segment a person into several parts and in

consequence it often leads to large number of false positive

locations. The discussed method has been extended in [10]

[2] to planes at multiple heights. The major drawback of

such an approach is large number of so called false positive

candidates. Therefore, in [3] both 2D and 3D information is

used to reduce the amount of false positive candidates. The

discussed above methods operate on foreground extracted

via a background subtraction. Thus, the results strongly de-

pend on the quality of object detection. Hence, they might

be unsatisfactory in varying illumination conditions, in case

of shadows around the feet, etc. In [5] a homography based

method for tracking people in dense crowd via a multiple

camera system has been proposed. It uses multiple height

homographies for extraction of the head top and assumes

that the scene is observed by a set of overlooking cameras.

The intensity correlation on the projected patches is used to

detect the candidate blobs. However, due to well known re-

duced discriminative capability of the intensity correlation,

which does not consider both spatial and statistical proper-

ties of the object, the results might be not good enough.

In this paper we present an algorithm for tracking peo-

ple in multiple views. It is based on the region covariance

[16], which describes both spatial and statistical properties

of the objects. The correspondence between multiple views

is established via homography that is estimated using pairs

of corresponding landmarks on the ground plane. It is then
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utilized to improve the tracking of people under assumption

that they are at the common ground plane. If there is oc-

clusion in one view, the homography from another view to

this view is utilized to locate the template of the target. The

information about the true location of the template helps the

tracker to resume, even in case of substantial temporal oc-

clusions or large object movements. The object template is

represented by multiple non-overlapping patches. Owing to

such an object representation the tracker is able both detect-

ing the occlusion and handling considerable partial occlu-

sions. The object tracking is achieved using particle swarm

optimization [8]. The objective function is based on the re-

cently proposed Log-Euclidean Riemannian metric [4].

The paper is organized as follows. The next section is

devoted to region covariance based people tracking. At

the beginning, we overview the particle swarm optimiza-

tion. Afterwards, we discuss how the covariance can be

used to represent image regions. Then we present the Log-

Euclidean Riemannian metric to compute the similarity be-

tween region covariance matrixes. The last part of the sec-

tion is dedicated to presentation of tracking results, which

were obtained using single view. Section 3 is devoted to

multi camera based people tracking. In section 4 we present

the experimental results that were obtained using multiple

views. Finally, we conclude the paper in section 5.

2. Region covariance based people tracking

One way to achieve object tracking is searching for the best

match of the predefined object model in the image. In the

simplest solution the object tracking can be accomplished

via the deterministic searching of window location whose

content best matches the content of a reference window.

Particle Swarm Optimization (PSO) [8], which is a pop-

ulation based stochastic optimization technique, allows us

to avoid such time consuming exhaustive searching for the

best match. Region covariance [16] is a robust descriptor

for object detection and classification. Region covariance

based statistics of an image was utilized in [13] to achieve

reliable object tracking. In this section we overview the

PSO and show how this algorithm can be utilized to real-

ize object tracking. The section explains also how region

covariance matrix can be employed to accomplish reliable

tracking of objects which undergo considerable occlusions.

Afterwards, we demonstrate how the PSO built on the re-

gion covariance matrix copes with temporal occlusions of

an object being tracked.

2.1. Particle Swarm Optimization

PSO is a population based algorithm that exploits a set of

particles representing a potential solutions of the optimiza-

tion task [8]. This technique differs from other evolution-

ary techniques by inclusion of particle velocity. The par-

ticles fly through the n-dimensional problem space with a

velocity subject to both stochastic and deterministic update

rules. They undergo evaluation according to some fitness

function after each time step. In the course of the optimiza-

tion the particles iteratively evaluate their candidate solu-

tions and remember the coordinates of their best location

with the smallest objective value so far, making this infor-

mation available to their neighbors. Particles communicate

good positions to each other and adjust their own velocity

using such good positions. Additionally each particle em-

ploys a best value, which can be:

• a global best, which is immediately updated when a

new best position is found by any particle in the swarm

• neighborhood best, where only a specific number of

particles is affected if a new best position is found by

any particle in the sub-population

The topology with the global best converges faster as all

particles are attracted simultaneously to the best part of the

search space. The neighborhood best allows parallel explo-

ration of the search space and decreases the susceptibility

of falling into local minima. However, it slows down the

convergence speed.

In the ordinary PSO algorithm the update of the particle

velocity is realized in accordance with the following equa-

tion:

v
(i)
j ←wv

(i)
j +c1r1,j(p

(i)
j −x

(i)
j )+c2r2,j(pg,j−x

(i)
j )(1)

where v
(i)
j is the velocity in the j−th dimension of the i−th

particle, w is the positive inertia weight, c1, c2 denote the

acceleration coefficients, r1,j and r2,j are uniquely gener-

ated random numbers with the uniform distribution in the

interval [0.0, 1.0], p(i) is the best position that the particle

i has found, pg denotes best position that is found by any

particle in the swarm. The new position of a particle is cal-

culated in the following manner:

x
(i)
j ← x

(i)
j + v

(i)
j (2)

The local best position of each particle is updated according

to the following formula:

p(i) ←
{

x(i), if f(x(i)) < f(p(i))
p(i), otherwise

(3)

and the global best position pg is defined as follows:

pg ← arg min
p(i)

{f(p(i))} (4)

The value of velocity v(i) should be restricted to the range

[−vmax, vmax] to prevent particles from moving out of the

search space. In the evaluation phase the fitness value

of each particle is determined by a predefined observation

model according to the following formula:

f(x(i)
t ) = p(z(i)

t |x(i)
t ) (5)

where z
(i)
t is the observation corresponding to x

(i)
t .



2.2. Covariance as a region descriptor

In our approach we utilize the region covariance matrix

(RC) to represent the object template. For every pixel i of

the M × N template we calculate a feature vector bi

bi = (x y R G B Ix Iy)T (6)

where x, y represent the Cartesian coordinates of pixel i,
R, G,B stands for color components, and Ix, Iy are image

derivatives. The region covariance descriptor is given by:

C =
1

MN − 1

MN∑
i=1

(bi − b)(bi − b)T (7)

where b denotes the vector of means of corresponding fea-

tures for the pixels in the template. Such a region descrip-

tor can be computed fast using integral images [16]. The

region covariance descriptor has many advantages. In par-

ticular, RC indicates both spatial and statistical properties

of the objects, it allows to combine multiple modalities and

features, and last but not least, it is capable of relating re-

gions of different sizes. This descriptor is also robust to the

variations in illumination conditions, pose and view. Al-

though the covariance matrixes are positive semi-definite in

general, in practice they should be regularized by adding a

small constant multiple of the identity matrix, making them

strictly positive.

2.3. Similarity measure

Recently, a novel Log-Euclidean Riemannian metric [4] has

been proposed to obtain statistics on symmetric positive

definite matrixes. Under such a metric the distances and

Riemannian means assume an easier form in contrast to

widely used affine-invariant Riemannian metric [12].

The Singular Value Decomposition (SVD) of symmet-

ric matrix A of size n × n is UΣUT , where U is an or-

thonormal matrix, and Σ = diag(λ1, . . . , λn) is diagonal

matrix with nonnegative eigenvalues. The matrix exponen-

tial exp(A) of symmetric matrix is given by: exp(A) =
U ·diag(exp(λ1, . . . , exp(λn)) ·UT , conversely, the matrix

logarithm of symmetric positive definite matrix is given by:

log(A) = U · diag(log(λ1, . . . , log(λn)) · UT . Each sym-

metric matrix is associated to a tensor by the exponential,

conversely, a tensor has a unique symmetric matrix loga-

rithm. The distance between two symmetric positive defi-

nite matrixes X and Y under the Log-Euclidean Rieman-

nian metric is calculated according to:

dist(X,Y ) = ‖ log(X) − log(Y )‖2 (8)

The Riemannian mean of several elements is an arithmetic

mean of matrix elements. Using the Log-Euclidean metric

we can directly employ the algorithm [14] for the incremen-

tal subspace update.

2.4. Object tracking with occlusion handling

In the algorithm utilized in this work, the particle score (5)

is evaluated using the distance (8). Given the estimate of the

object state in the previous time, when a new image is avail-

able, the particles are drawn from a Gaussian distribution in

order to cover the promising object locations. The PSO is

employed afterwards in order to concentrate the particles

near the true state of the object. The optimization aims at

shifting the particles towards more promising regions in the

search area.

In order to evaluate the tracking performance of the PSO

built on the region covariance matrix we conducted exper-

iments on PETS2009 data sets. Here we follow a similar

idea for multi-region covariance, where the object template

is represented by multiple non-overlapping patches [11].

Owing to robust combining of such patch votes the object

tracker is able to handle considerable partial occlusions. As

we can observe in Fig. 1, thanks to multi-patch represen-

tation of the object, the template does not undergo shifting

during the occlusion.

Figure 1. Tracking a person under occlusion. Frames #204, 209,

210, 211, 212, 213, 214, 217

Similar behavior can be observed in Fig. 2, where the

template also keeps well the location despite considerable

occlusion. As we can see, the object being tracked under-

goes several occlusions, see frames #150 and #152. More-

over, the colors of the objects, i.e. the color of the jacket

and the signboard, are quite alike.

Figure 2. Tracking a person under considerable occlusion. Frames

#145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 160



Figure 3 illustrates the behavior of the algorithm in the

same image sequence, but with slightly different initial lo-

cation of the template. As we can notice in the discussed

images, despite small drift of the template, the tracker tem-

porally fails and then recovers quickly.

Figure 3. Tracking a person in sequence of images from Fig. 2

using different initial location of the template. Frames #149, 150,

151, 152, 153, 154, 155, 156

Figure 4 depicts some experimental results of person

tracking in another camera view. The quality of these im-

ages is poorer than the quality of images from Fig. 1. Be-

sides, the upper body of the pedestrian is severely occluded.

Despite this the tracker follows the target as well as keeps

precisely the location of the template.

Figure 4. Person tracking in another camera’s view. Frames #222,

231, 240, 241, 242, 243, 244, 245, 246, 247, 251, 261

The results that are presented above were obtained using

identical settings. The number of particles was equal to 50,

whereas the maximal number of iterations was set to 5. The

views of the scene are shown in Fig. 5. The above results

indicated the great tracking performance of the PSO built

on multi-patch covariances. However, as expected, in some

situations, single view based tracking might lose the target

due to considerable occlusion, even if a tracker is built on

robust image statistics like region covariance.

3. Multi camera based people tracking
The results obtained in the previous section acknowledged

that in some circumstances the single camera methods

Figure 5. Input images in view #1 and #3

might be insufficient for handling the tracking of people un-

der occlusion or for handling dense crowds. Occlusion and

lack of visibility in crowded scenes are the central difficul-

ties in tracking individual people correctly and consistently.

Most current surveillance systems still treat multiple cam-

eras as a set of single cameras. To take advantage of synergy

of multiple cameras and to achieve advantageous coopera-

tion, it is necessary to establish correspondence between the

different views. Finding such correspondence is one of the

most important problems in the visual surveillance.

Several recent methods take advantage of targets, which

move on a common plane and which are observed by cam-

eras with overlapping fields of view. In [9] it was developed

a planar homography constraint to determine occlusions

and robustly establish locations on the ground plane, cor-

responding to the feet of the people. In order to find tracks

the algorithm extracts feet regions over a window of frames

and stacks them creating a space time volume. In [10][2] the

same idea is extended for multiple parallel planes to obtain

3D volume of the target. In such a framework we can distin-

guish the following stages: (i) foreground detection to get

moving targets, (ii) the use of the homography constraint

to project the targets to a common plane, (iii) processing

the projected data to find the correspondence. Figure 6 il-

lustrates the mentioned above stages. The depicted results

were obtained on PETS2009 datasets, see Fig. 5. The ho-

mographic transformation of the pedestrian into the ground

plane was done through the use of accompanying calibra-

tion data. The cameras were calibrated using a method that

was proposed in [15].

a) b)

Figure 6. The foreground image of Fig. 5 (a), homographic trans-

formation of the foreground into ground plane (b)

In order to determine the homography between cameras,



the different views should share a common ground plane.

Let xi, yi and x′
i, y

′
i be a pair of corresponding points on the

ground plane in the two views. The homography H is given

by the following equation [6]:

⎡
⎣ x′

i

y′
i

1

⎤
⎦ =

⎡
⎣ h11 h12 h13

h21 h22 h23

h31 h32 1

⎤
⎦

⎡
⎣ xi

yi

1

⎤
⎦ (9)

Although H can be determined from at least 4 pairs of cor-

responding points on the plane, the more points is used, the

more reliable H will be.

Figure 7 illustrates the correspondence established via

the ground plane homography. The homography has been

estimated on the basis of ten pairs of points lying on the

ground plane, which have been selected manually. As can

be seen the homography induced by be the planar surfaces

permits precise warping of images taken by different cam-

eras.

Figure 7. Homography between different camera views

The shadows that are cast by persons, as depicted at

Fig. 6b, can by utilized to establish a correspondence be-

tween different camera views. The fusion of such shadows,

which are projected from different views amounts to car-

rying out the visual hull intersection on the ground plane.

But due to perspective distortions the process of establish-

ing the correspondence in 3D might be not an easy task.

Moreover, the method often leads to considerable number

of false positives. What is more, in real surveillance sce-

narios, the points of the feet may not be correctly detected

or even they may be undetectable due to occlusions. In ad-

dition, in real conditions the feature points of a person in

different views do not always correspond to the same phys-

ical point.

Taking into account the above shortcomings, our method

does not employ the background subtraction as the pri-

mary modality for object extraction, but instead it relies

more strongly on tracking correspondences. The correspon-

dence between multiple views is established via homogra-

phy. Such correspondence is used to improve the tracking

of people under assumption that they are at the common

ground plane. If there is occlusion in one view, the homog-

raphy to this view from another view is used to locate the

target template. The information about the template loca-

tion helps the tracker to resume, even in case of substantial

temporal occlusions or large object movements. Even if the

target is partially or fully occluded by another object, the

tracker still follows the target as long as it is visible in an-

other view. Assuming that occlusions produce large image

differences, the multiple patch based object representation

allows the tracker to detect occlusion as well as allows to re-

sume the tracking. On the other side, through such reliable

object representation the tracker can cope with considerable

occlusions.

4. Experiments
Experiments were conducted on the PETS2009 test se-

quences. Figure 8 shows some tracking results that were

obtained using view 1 and 5. Upper row depicts results ob-

tained on the images from camera 1, whereas bottom row

contains results obtained on the images from view 5. As we

can see, despite the occlusion in frame #130 from view 1 the

template is located correctly. Similar effect can be observed

in frame #151, where this time a woman is under next oc-

clusion in the another view. Owing to the proper tracking

in frame #145 in view from camera 1, see middle image in

the upper row, the template in view 5 reflects the true loca-

tion of the target. As we observed, even when the target is

fully occluded, see frame #145 in bottom row, or partially

occluded, see frames #130 and #151 in upper row, the al-

gorithm still follows the target as long as it is visible from

another view, see corresponding images in Fig. 8.

Figure 8. Multi view based person tracking. Frames #130 (left),

#145 (middle), #151 (right). Upper row contains images from

camera 1, whereas bottom row contains images from view 5

The detection of outliers takes place in each tracker by

sorting the similarity scores. If the number of outliers ex-

ceeds some value, say 50%, the algorithm calculates the dis-

tances between the projected locations and the current loca-

tions of the bottom edges of the templates. If the distance

is larger than a certain threshold as well as the number of

outliers exceeds the mentioned above percentage, the algo-

rithm selects the template with the larger number of outliers.



Afterwards, it validates if the outliers on such a template

compose a strip at a certain part of the template, particu-

larly in the upper/left/right part of the template. If yes, then

the algorithm verifies if the occlusion was detected in previ-

ous frame and then finally marks the template as occluded.

The location of such a template is determined on the basis

of the another template via the homographic projection.

We realized also tracking using a template modeling only

the region of torso. On the basis of location of the feet and

the heads or alternatively on the basis of the principal axes

we determine the corresponding lines at the ground plane

and then their intersection point. Then given the calibration

data and location of the head, and assuming that upright

person is located on such a point we determine the height

of the person. On the basis of the person height and image

coordinates in one view we determine the coordinates in the

corresponding view, see example results in Fig. 9.

Figure 9. Multi view based person tracking. Frame #130 in view 1

(left), #130 in view 5 (middle), #145 in view 1 (right).

The algorithm has been implemented in C/C++. A typ-

ical laptop computer equipped with 2.4 GHz Pentium IV

is utilized to run the tracker. The experimental results de-

scribed in this section were obtained on color images of size

768(720) × 576 using 100 particles. The maximal number

of iterations in the PSO algorithm has been set to 5.

5. Conclusions

We have presented an algorithm for multiple camera based

person tracking. The homography between camera views is

utilized to establish the correspondence. The object appear-

ance is modeled via the region covariance that is calculated

within the template. The object template is represented by

multiple object patches. Owing to such an object represen-

tation the tracker is capable of handling considerable partial

occlusions. The multiple patch based object representation

allows the tracker to detect occlusion as well as it allows

resuming the tracking. The information about the template

location in one view helps the tracker to recover in an an-

other view, even in case of substantial temporal occlusions

or large object movements. Experimental results that were

obtained on surveillance videos demonstrated that the pro-

posed multi view tracking algorithm can follow the person

even when he/she is fully occluded by an unknown object.
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[2] D. Arsić, N. Lehment, E. Hristov, B. Hörnler, B. Schuller,

and G. Rigoll. Applying multi layer homography for multi

camera tracking. In Proc. ACM/IEEE Int. Conf. on Distr.
Smart Cameras, Stanford, CA, pages 1–9, 2008.
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