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Abstract

Most work on activity recognition focuses on 2D im-

age properties, holistic spatiotemporal representations, or

space-time shapes in image domain rather than with 3D

pose in a body-centric or world frame. Such techniques

rely on advanced pattern recognition algorithms and in-

terpreting complex behavioral patterns. In this work we

posit that it is possible to achieve 3D pose tracking using

videos recorded in multi-camera surveillance systems. We

show experimental results that were obtained on PETS 2009

datasets. The estimation of the 3D articulated motion is

achieved using a modified particle swarm optimization.

1. Introduction

With millions of surveillance cameras monitoring city

centers and streets, major meeting points like airports, un-

derground and railway stations, automatic analysis of video

content has become an important task. The fundamental

problem in visual surveillance systems is detecting human

presence, tracking human motion, analyzing human activ-

ities and signaling events of interest. A commonly-used

strategy in vision-based surveillance systems is to detect

people with bottom-up approaches such as background sub-

traction and color segmentation. The analysis and classifi-

cation of human behavior inherently involves the estimation

of body pose, understanding bodily motion, analysis of fa-

cial expressions, gait, etc. Multiple cameras with overlap-

ping fields of view are usually utilized to disambiguate clut-

tered targets and to provide more confident reasoning about

the events of interest. Such multi-view systems allow cov-

ering wide areas and handling the occurrence of occlusions

by exploiting the different viewpoints.

Developing algorithms for activity recognition in

surveillance videos that are both accurate and efficient in

terms of computation overhead is challenging due to vari-

ability in shapes and articulation of human body, clutter,

camera imperfections, lighting conditions and occlusion.

Even when the scenario is simple, for instance there is only

single unoccluded person and the illumination conditions

are perfect, the action recognition is a difficult task, mainly

because of variability and complexity of human actions.

Most algorithms for action and activity recognition were

tested on video sequences acquired in controlled conditions

or specific settings. A pioneering work on recognition of

actions in less constrained conditions was done by Efros et

al. [7]. The algorithm recognizes a set of simple actions

of people whose images in the video are only 30 pixels tall

and where the image quality is poor. As most current sys-

tems do not record videos at high resolution, dealing with

low-resolution videos as well as decompressed images is

important issue.

The majority of previous work on activity recogni-

tion has focused on 2D image properties, local interest

points, holistic spatiotemporal representations, or space-

time shapes in image domain rather than with 3D pose in

a body-centric or world frame, e.g. [14]. Thus, most tech-

niques rely on advanced pattern recognition algorithms and

interpreting complex behavioral patterns that are generated

when humans interact with others [20].

The experiments with moving light displays, which were

done by Johansson [12] demonstrated that people are able

to recognize human actions on the basis of motion of a

small set of points on the human body. The discussed ex-

periments stimulated discussion whether people recognize

actions from 2D motion patterns, or they rely on 3D re-

constructions from the motion of patterns. A discussion

of motion-based techniques to activity recognition can be

found in [3]. The authors argue that in action recognition,

motion is more important modality than spatio-temporal

representations. Gavrila [9] presents a survey focusing on

the use of 2D or 3D models in action recognition. More re-

cent survey on techniques related to activity recognition as

well as motion capture and model initialization can be found

in [16]. In general, the use of articulated models in ac-

tion recognition simplifies occlusion handling. The model-

based approaches are view independent and less dependent

on the training data.

In recognition by reconstruction we can distinguish two
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stages, namely motion capture stage that on the basis of

an articulated 3D model estimates human motion and ac-

tion recognition stage, which operates on joint trajectories.

In motion-based techniques, the object trajectories are of-

ten used to infer object activities. As they are sensitive to

translations, rotations and changes in scale many activity

representations such as velocities, relative motions, spatio-

temporal curvatures were proposed [3].

This work presents a 3D model based method for track-

ing human motion in surveillance videos. The articulated

human body model is represented as a 3D kinematic tree

consisting of 11 nodes. The tracking is accomplished with

particle swarm optimization, with likelihood derived from

background subtraction and edges. The algorithm estimates

the 3D position of virtual markers at major joints of the

body. In our approach we represent each motion as a pose

trajectory, i.e., a vector consisting of the 3D joint positions

at each time step. We report experimental results that were

obtained on PETS 2009 datasets. The images were acquired

by multiple cameras overlooking the same scene. The ex-

perimental results were obtained on decompressed images

taken in real conditions. We demonstrate that the algorithm

is able to cope with occlusions and imperfect synchroniza-

tion between cameras. We demonstrate that owing to 3D

articulated tracking there is no need for view-based models

in behavior analysis.

The rest of the paper is organized as follows. In Section

2, we present background and the relevant work. Section

3 is devoted to particle swarm optimization. In Section 4,

we outline our 3D articulated model and discuss the cost

function. Finally, in Section 5, we present motion tracking

results on PETS 2009 datasets. The paper concludes with a

summary.

2. Background and related work

Our research was motivated by work of Sigal et al. [18]

who demonstrated that on the basis of 3D articulated pose

estimates it is possible to infer subtle physical attributes of

human, like gender and weight, and even some aspects of

mental state, e.g., happiness or sadness. As it was previ-

ously mentioned, the model-based approaches less depen-

dent on the training data in comparison to methods that are

based on holistic space-time features or space-time shapes.

Moreover, by the use of 3D articulated tracking we do not

need view-based models. One of the benefits of model-

based trackers is that they permit a comprehensive explo-

ration of the space of possible poses.

Several multi-camera approaches for articulated motion

tracking were published recently. In their influential work,

Gavrila and Davis [10] used four calibrated and widely

spaced cameras. The model was projected into each of them

under perspective. They defined a fitting cost by chamfer

matching in filtered and background-subtracted edge im-

ages. The pose estimation was achieved by recursive search

space decomposition, i.e., using a best-first search the best

torso/head configuration is determined, afterwards the con-

figuration of arms is estimated, etc. Kakadiaris and Metaxas

[13] use three near-orthogonal views to perform 3D body

tracking. An extended Kalman filtering is utilized for the

model prediction. Furthermore, at each frame, in order to

deal with occlusions a selection among 3 cameras takes

place to choose views delivering the best information.

Deutscher et al. [6] demonstrated that probability den-

sity functions for joint angles are non-Gaussian. Even in

case of the absence of cluttered background, the complex

nature of the observation process during human motion cap-

ture causes the posterior density to be non-Gaussian. In [5],

the motion tracking is achieved using three cameras and a

particle filter based on simulated annealing. Compared to

a classical particle filter, they reduced the number of sam-

ples by a factor of up to 10. In [2], instead of standard full

projective geometry, scaled orthography is employed and

in consequence the effects of changes in distance from the

camera are compensated by changes in scale of the object.

This approach seems to be appropriate for surveillance se-

tups based on uncalibrated cameras or when objects of in-

terest are far from the camera. In [17], a 3D model is used

to achieve human motion capture in uncontrolled environ-

ments.

Particle filtering (PF) is one of the most important and

common methods in human motion tracking. In the parti-

cle filter each sample represents some hypothesized body

pose. However, the number of particles needed for a suc-

cessful implementation of any PF algorithm grows expo-

nentially with the dimension of the state. In contrast, parti-

cle swarm optimization (PSO) [15], which is a population-

based searching technique, possesses better search effi-

ciency by combining local search (by self experience) and

global one (by neighboring experience). Particularly, a few

simple rules result in high effectiveness in exploring the

search space. Recently, PSO was proposed as an alterna-

tive of PF for full-body articulated motion tracking [21].

A survey on visual surveillance of object motion and be-

haviors is presented in [11]. Despite larger complexity, mul-

tiple camera setups exhibit several advantages consisting in

covering wide areas, handling the occurrence of occlusions,

reducing ambiguities in single camera’s view. The main

difficulty in multi-camera surveillance systems is establish-

ing the relationship between multiple cameras and the cor-

responding object. In such systems, camera handoff is a

fundamental step to obtain continuously tracked and con-

sistently labeled trajectories of the objects of interest [4].

3. Object Tracking Using PSO

PSO is a population based algorithm introduced in [15]

that utilizes a set of particles representing potential solu-



tions of the optimization task. Despite the simplicity of the

individual particles, the swarm as a whole has a remarkable

level of coherence and coordination. Each solution is rep-

resented as a series of coordinates in n-dimensional space.

A number of particles are initialized randomly within the

search space. Every particle flies in the solution space with

a velocity adjusted dynamically according to its own experi-

ence and the experience of the whole swarm. Each particle

has a very simple memory of its personal best solution so

far, called pbest. The global best solution for each iteration

is also determined and is termed gbest. On each iteration,

every particle is moved a certain distance from its current lo-

cation, influenced a random amount by the pbest and gbest

values. The particles are evaluated according to a user de-

fined fitness function f(). The velocity of each particle i is

updated in accordance with the following equation:

v
(j)
i ← wv

(j)
i +c1r1(pbest

(j)
i −ω

(j)
i )+c2r2(gbest(j)−ω

(j)
i )
(1)

where v
(j)
i is the velocity in the j−th dimension of the i−th

particle, c1, c2 denote the acceleration coefficients, r1 and

r2 are uniquely generated random numbers in the interval

[0.0, 1.0], and w stands for an inertia weight. The inertia

weight allows the balance of the exploration and exploita-

tion abilities of the swarm as well as eliminates the need for

velocity clamping.

The first part in (1) takes into account the previous veloc-

ity, which provides the necessary momentum for particles to

fly across the search space. The second part is known as the

cognitive component and represents the personal thinking

of each particle. This component encourages the particles

to fly toward their own best position pbest found so far. The

third part is known as the social component and represents

the collaborative effect of the particles in finding the global

optimum. This component pulls the particles toward the

best position(s) found so far by their neighbors. The inertia

part keeps particles to explore new areas while the cogni-

tive and social parts try to keep them exploiting around the

visited points.

The new position of a particle is calculated in the follow-

ing manner:

x
(j)
i ← x

(j)
i + v

(j)
i (2)

The local best position of each particle is updated as fol-

lows:

pbesti ←

{

xi, if f(xi) > f(pbesti)
pbesti, otherwise

(3)

and the global best position gbest is defined as:

gbest← arg max
pbesti

{f(pbesti)} (4)

The value of velocity vi should be restricted to the range

[−vmax, vmax] to prevent particles from moving out of the

search range.

At the beginning of the optimization the PSO initializes

randomly locations as well as the velocities of the particles.

Then the algorithm selects pbest and gbest values. After-

wards, equations (1)-(4) are called until maximum iterations

or minimum error criteria is attained.

In contrast to traditional optimization problems with sta-

tionary optima, tracking objects in image sequences re-

quires the algorithm to find the optimum not once, but in

every successive image. There are various approaches to

dealing with moving objects, such as decaying the score of

the best position after every frame. In consequence, such an

operation results in forcing the swarm to continually search

for a better location. In particular, it prevents the swarm

from completely converging to a single point, allowing the

swarm agents to be appropriately spaced in order to quickly

reacquire a target in the next image. In PSO based tracking,

at the beginning of each frame in the initialization stage, an

initial position is assigned to each particle

ωi,t ← N (gbest,Σ) (5)

given the location gbest that has been estimated in the pre-

vious frame t− 1.

4. Tracking framework

The skeleton of the human body is modeled as a kine-

matic tree. The articulated 3D model is composed of a

eleven segments with the limbs represented by truncated

cones. The body model is built in a tree-like hierarchy start-

ing with the pelvis as root body part. It comprises pelvis,

torso/head, upper and lower arm and legs. The configura-

tion of the model is defined by 20 joint angles plus global

pose (26 degrees of freedom in total). The model’s config-

uration is parameterized by position and orientation of the

pelvis in the global coordinate system and the relative an-

gles between the linked body segments. Together these pa-

rameters build a 26-dimensional configuration vector that

specifies the pose of the model. From such a 3D represen-

tation of the human body, using a given parameters, any

possible 2D view observation can be rendered.

In order to obtain a hypothesized 3D pose of the person

of interest each truncated cone is projected into 2D image

plane via perspective projection. In such manner we obtain

an image containing the rendered model in a given config-

uration. Such features are then matched against observed

person’s features. In matching the model against the image

cues the image edges are broadly used as they have good

localization properties.

The fitness function consists of two components: f(x) =
w1f1(x) + w2f2(x), where wi stands for weighting coeffi-

cients that were determined experimentally. The first term

is silhouette-overlap term. It reflects the degree of overlap

between the projected model and the extracted silhouette.



The silhouette-overlap degree is calculated through check-

ing the overlap from the projected model to the extracted

silhouette and from the silhouette to the rasterized image

of the model. The silhouettes were delineated on the ba-

sis of the background subtraction [1]. The second term re-

flects the degree of overlap between the projected edges of

the model and image gradients. Image gradients do not de-

pend on background subtraction, but likewise are sensitive

to object properties, textures, and lighting, etc. However,

they might be easily confused with static object in the back-

ground with strong gradients. Therefore, in the second term

we employ background-subtracted edge images. Addition-

ally, the second term is calculated with the support of edge-

proximity, i.e. distance map. A distance map is essentially a

grey level image where the pixel intensity is determined by

its distance from the nearest edge. In our approach we em-

ploy chessboard distance and limit the number of iterations

on the chain propagation to 3. Figure 1 depicts the images

that are utilized in the calculation of the cost function.

Figure 1. Input image, background subtraction, thresholded gradi-

ent magnitude, distance map.

The estimation of the pose is achieved by a modified par-

ticle swarm optimization. Our approach is motivated by

[10], where the configuration space was constrained using a

hierarchical search. In the discussed approach, called search

space decomposition, a part of the articulated model is lo-

calized independently in advance, and then its location is

used to constrain the search for the remaining limbs. On

the basis of color cues the torso is localized first and then

it is used to confine the search for the limbs. However, in

realistic scenarios, among others due to occlusions, it is not

easy to localize the torso and to extract reliably such a good

starting guess for the search. Therefore in our approach we

first localize the torso using the whole model and reduced

number of particles. Afterwards, given the configuration

of the legs in previous frame, we carry out rediversification

of the particles in the part of the vector state that describes

the pose of the legs. This means, that given the location of

the torso that has been determined in advance, we generate

several hypothesized leg configurations. Then we perform

optimization using part of the state vector that describes the

pose of the legs. At this stage, in the objective function we

employ only legs. The pose of the hands is determined in a

similar manner.

5. Experiments

The method has been evaluated on the PETS 2009

datasets [8]. The PETS sequences were recorded at 7

frames per second. The images of size 720×576 were taken

from different positions using different cameras. All frames

are compressed as JPEG image sequences. The cameras

were calibrated using Tsai model [19] and geometric pat-

terns on the ground. Although every effort has been made to

ensure the synchronization of frames from different views,

there exist slight delays and even frame drops. The experi-

ments were conducted on Dataset S2, which addresses peo-

ple tracking. Figure 2 shows representative frames from

the views 5, 6 and 8, which were utilized in our tests. The

datasets from views 5 and 6 were filmed using Sony DCR-

PC1000E (ffmpeg de-interlaced), whereas the dataset from

view 8 was filmed using Canon MV-1 (progressive scan).

Figure 2. Representative frames from the sequence S2 and views

5, 6 and 8.

Figure 3 depicts foreground images, which were ex-

tracted from the images shown at Fig. 2. The foreground

images were used to compute the silhouette-overlap term in

the cost function. The images were dilated in order to ex-

tract binary masks of the persons. They were then used to

extract background-subtracted edge images.

Figure 3. Representative binary images from the sequence S2 and

views 5, 6 and 8.

At Fig. 4 we can see some tracking results that were ob-

tained in frames 476-499 using images from views 5, 6 and

8. The tracking was initialized manually in frame #475. As

we can observe, the motion tracker is able to cope with tem-

poral occlusions in a camera view, see frame #476.

Images in the second row of Fig. 5 illustrate the esti-

mated pose in consecutive frames. The motion estimation

has been achieved using images from views 5, 6 and 8. As

we can observe, the lateral walk pose is estimated quite reli-

ably using the mentioned camera views. In the third row we

can observe the location of some virtual markers. Since the

human body consists of several rigidly moving body limbs,



Figure 4. Motion tracking. Frames #476, 481, 487, 499.

the pose can be seen as a set of parameters that describe

the actual location of these body parts. People easily recog-

nize the human motions if only the positions of the major

skeletal joints (i.e., the elbows, shoulders, ankle, etc.) are

visible, e.g. as white moving dots on a black background,

as depicted graphically at images in third row of Fig. 5.

Figure 5. Motion tracking in frames 475-484. Croped input images

(1st row), estimated pose (2nd row), position of virtual markers

(3rd row).

The algorithm delivers joint angles in body-centric coor-

dinate frame. It generates also the trajectories of the virtual

markers, see Fig. 6. Of course there are other possible mo-

tion features [3].

Figure 6. Trajectories of virtual markers.

Figure 7 illustrates motion tracking, which was initial-

ized in frame #600. The motion of the person has been

successfully tracked until frame #643. As we can observe,

the algorithm can deal with temporal occlusions, see frame

#608 in view 6, as well as frames #613 and #618 in view 8.

Figure 7. Motion tracking. Frames #601, 608, 613, 618.

At Fig. 8 are demonstrated some results of motion track-

ing, which has been initialized in frame #231. The motion

of the person has successfully been tracked until frame #266

despite partial occlusion in frames 237-241 from view 6 and

considerable occlusion in frames 254-264 from view 8.

Figure 8. Tracking result in frames #232, 241, 251, 267.

Figure 9 depicts the 3D locations and velocities of left

and right ankle and knee. The larger the cone is, the larger

is the velocity of the virtual marker.

The algorithm has been implemented in C/C++. The ex-

periments were conducted on desktop PC with 4 GB RAM,

Intel Core i5, 2.8 GHz. The parallelization of the code

was done using OpenMP directives and the parallel com-

putations were realized on multi-core (4-core) CPUs. The

algorithm operates at ∼0.65 fps. The above presented re-

sults were achieved by PSO in 20 iterations in each phase.

During estimation of the whole pose we used 100 particles,

whereas while estimation of the pose of each limb pair we

utilized 50 particles.



Figure 9. 3D trajectories and velocities of left/right ankle and knee.

6. Conclusions

In this paper, we have shown that a successful articulated

motion tracking can be done on surveillance videos. The

results showed that even in case of slight delays between

frames from different views the tracking is still possible.

Moreover, the results demonstrated that successful tracking

is possible even in case of temporal occlusion in one of the

camera views. We demonstrated that 3D human poses can

contribute toward view-invariant action recognition. While

video-based motion estimates are noisy, they can support

action recognition in surveillance videos.
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