Gait Recognition Based on Marker-less 3D Motion Capture

Tomasz Krzeszowski
Rzeszow University of Technology

Powst. Warszawy Av., 35-959 Rzeszow, Poland

tkrzeszo@prz.edu.pl

Agnieszka Michalczuk

Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warszawa, Poland

Abstract

We present an algorithm for view-independent gait-
based person identification. The identification is achieved
using data obtained by our marker-less 3D motion track-
ing algorithm. The motion tracking was accomplished by
a particle swarm optimization algorithm. The accuracy of
the motion tracking algorithm was evaluated using ground-
truth data from MoCap. It was determined on 88 sequences
with 22 walking performers. We obtained 90% identifica-
tion accuracy (rank 1) on 230 gait cycles.

1. Introduction

Gait is the product of coordinated, cyclic combination of
movements that together lead to individual manner of walk-
ing. In recent years, gait-based identification became an
active research area due to possible applications in visual
surveillance [2]. It is the only feature that can be employed
in an identification of the person at a larger distance. Human
can effortlessly identify an acquaintance based on walking
style, bearing or carriage as one walks. Successful identi-
fication of friends can be achieved even if a person is too
far to be recognized by his/her face. Although considerable
progress in gait biometrics has been made in recent years,
reliable gait recognition is still a challenging problem.

In one of the earliest approaches to automatic identifi-
cation on the basis of walking style, the gait signature was
derived from the spatiotemporal pattern of a walking per-
son [11]. Different walkers were distinguished through ex-
tracting their spatiotemporal gait patterns obtained from the
curve-fitted stick model of a human. The identification was
done under assumption that the head and the legs have dis-
tinctive signatures in domain of time and translation. On a
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dataset that consisted of 26 sequences of five different sub-
jects, the classification ratio varied from nearly 60% to 80%
depending on weighting factors.

Existing methods for gait recognition can be broadly
divided in two main categories, namely model-free and
model-based [10]. Model-free methods generally consider
the complete motion pattern of human undergoing identi-
fication. These approaches strongly depend on the delin-
eated person’s silhouette and statistical methods. The ma-
jority of the methods belonging to this group can achieve
successful identification from a specific viewpoint, usu-
ally fronto-parallel (side-view). To accomplish better view-
independent gait-based person identification [12] an image-
based reconstruction method was proposed [1]. Recently, a
gait database [5] was publicly available to evaluate the gait
recognition algorithms in the presence of occlusions.

The advantage of the model-based approaches is that
they can reliably handle self-occlusion, noise, scale and ro-
tation, as opposed to silhouette-based approaches. The first
model-based approach to gait biometrics was developed in
[3]. The gait signature was based on the angular motion of
the hip and the thigh, where the angular motion of the hip
and the thigh was described by Fourier series. A recognition
rate of 90% on a database of 10 subjects has been reported.

Model-based gait recognition algorithms are typically
built on 2D fronto-parallel body models and represent hu-
man body structure explicitly, with support of the biome-
chanics of human gait [16]. Structural models are widely
utilized to describe the topology or the shape of body parts
and limbs such as head, trunk, hip, thigh, knee and ankle
by measurements like the length and width. In some work
coarse human body models were used. For instance, in [8]
the ellipses are fitted to different parts of the binary silhou-
ettes and their parameters (e.g. location and orientation) are
employed as gait signatures.



The coarse models that are usually employed in 3D ap-
proaches to gait recognition are far more resistant to view
changes in comparison to 2D ones. Obviously, 3D gait data
contains more information in comparison to 2D gait data. It
is also more natural representation of human gait. However,
most research in gait biometrics has been conducted using
2D approaches. As pointed out in [13] the main reason for
that is the lack of a publically available 3D dataset. An-
other reason is that 3D model based approaches are more
complex and the cost of experiments is considerable.

In [15], an approach relying on matching 3D motion
models to images, and then restoring the motion parame-
ters is proposed. The evaluation was performed on datasets
with four people, i.e. 2 women and 2 men walking at 9
different speeds ranging from 3 to 7 km/h by increments
of 0.5 km/h. Motion models were constructed using Vicon
MoCap system. In [17] a laser range sensor was employed
to capture the 3D gait data. The 3D model was fitted into
the data to obtain the kinematics information. The gait cy-
cles were synthesized by interpolation of joint positions and
their movements from the fitted body models. Large recog-
nition rates on six performers were shown using such high
precision data. To overcome the non-frontal pose problem,
more recently multi-camera based gait recognition methods
have also been developed [4]. In the above mentioned work,
joint positions of the full body are used as features.

In this work we present an approach for view-
independent gait recognition. The motion parameters are
estimated using our algorithm for marker-less 3D human
motion capture. The system estimates the 3D motion us-
ing video sequences that are acquired by four calibrated
and synchronized cameras. The motion tracking is for-
mulated as a dynamic optimization problem. The motion
of a walking person is inferred with the help of a 3D hu-
man model. The 3D human pose is reconstructed over time
through matching the projection of the human body model
with the current image observations. The human silhouette
is extracted via background subtraction and then the edges
are located within the extracted silhouette. The objective
function takes into account the normalized distance between
the model’s projected edges and the closest edges in the im-
age. The optimization of the objective function is achieved
by Particle Swarm Optimization. Afterwards, a third or-
der tensor is calculated. Finally, the tensorial gait data are
reduced using Multilinear Principal Components Analysis
(MPCA) algorithm and then classified.

The performance of the system was determined on a
dataset with 22 persons. Every performer completed 4
walks from which 2 were done straight on and 2 diagonally.
We show the performance of our motion tracking algorithm
using ground-truth data, which were acquired by a commer-
cial motion capture system from Vicon Nexus.

Currently, practical advantages of 3D approaches have

not yet been fully explored and investigated. Given their
advantages, it is then likely that such approaches will con-
tinue to play a significant role in research focusing on using
gait as a biometric. The contribution of this work is an al-
gorithm, which on 88 image sequences and 230 gait cycles
achieves 90% recognition rate (rank 1).

2. Marker-less articulated motion tracking

In this Section we present the 3D human body model and
its parameterization. Then we describe the optimization al-
gorithm that is used to achieve 3D motion tracking. After-
wards, the ingredients of the objective function are shown.

2.1. 3D human body model

The human body can be represented by a 3D articulated
model formed by 11 segments imitating the main parts of
the body. The structural model of the human body is in the
form of a kinematic chain in which the connections of body
parts comprise a parent-child relationship, see Fig. 1. The
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Figure 1. 3D human body model. The main 11 body parts (left),
hierarchical structure (right).

pelvis being the root node in the kinematic chain is the par-
ent of the upper legs, which are in turn the parents of the
lower legs. Thus, the position of a body limb depends par-
tially on the position of its parent body part and partially on
its own pose parameters. This way, the pose parameters of
each child body part are described with respect to the local
coordinate frame determined by its parent. The 3D geomet-
ric model is employed to simulate the human motion and
to provide the estimates of the current position, orientation
and joint angles. The kinematics of the motion of each body
part can be described by a locomotion model.

Although typical human bodies can be represented by
such a coarse model, individuals have different body part
sizes, limb lengths, and exhibit different ranges of motion.
To achieve better precision of tracking the parameters are
pre-specified for each individual. For every degree of free-
dom (DoF) there exists a physical constraint beyond which
movement is not allowed. The model is constructed from
truncated cones. In human motion simulation it is used to



generate contours that are projected to 2D plane and then
matched with the edges on the image. The configuration of
the body is parameterized by the position and the orientation
of the pelvis in the global coordinate system and the angles
between the connected limbs. The number of degrees for
each body part of our model can be found on Fig. 1. As we
can see, the complete model has 26 degrees of freedom.

2.2. Articulated motion tracking

3D motion tracking can be perceived as dynamic opti-
mization problem. In such an approach, in each frame, the
object state is determined using an objective function ex-
pressing the matching between the projected 3D model and
the image features. Recently, particle swarm optimization
(PSO) [6] has been successfully applied in full body motion
tracking [18, 7]. In such an approach each particle repre-
sents a hypothesis about the current object state. The par-
ticles follow simple position and velocity update rules and
they are evaluated on the basis of a fitness function. The
fitness function is utilized in the evaluation of the degree
of similarity between the real and the hypothesized pose.
Motion tracking can be achieved by a sequence of static
PSO-based optimizations, followed by re-diversification of
the particles to cover the possible poses in the next time
step. Typically, the particles are propagated according to
weak transition model with parameters allowing them to
cover possible state changes between consecutive images.
Estimating the 3D pose in each frame is non-linear, high-
dimensional optimization problem.

In this work the tracking of human motion is achieved
using the Annealed Particle Swarm Optimization (APSO)
[7]. In the APSO algorithm the objective function is an-
nealed and then it undergoes a quantization. Thanks to such
an operation the similar function values are clustered. That
means that in every iteration the algorithm determines the
set of the best particles. The swarm selects the global best
location from a set of candidate best locations.

Since the motion tracking can be cast as dynamic op-
timization problem, the tracking can be obtained by a se-
quence of static PSO-based optimizations, followed by re-
diversification of the particles to cover the potential poses
that can arise in the next time step. The re-diversification
of the particle ¢ can be achieved on the basis of normal dis-
tribution, which is concentrated around the state estimate
&1 in time ¢t — 1: ot «— N(#;_1,%), where ¥ denotes
the covariance matrix of the Gaussian distribution, whose
diagonal elements were determined experimentally.

2.3. Fitness function

The fitness function expresses the degree of similarity
between the real and the estimated human pose. The 3D
model in a candidate pose is projected into 2D image plane.

Given the projected model, for each camera two fitness val-
ues are calculated. The first value depends on the overlap
with the current silhouette, whereas the second one reflects
a match between the model edges and the closest edges in
the image, see Fig. 2.
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Figure 2. Determining the fitness function.

Figure 3 depicts calculation of the edge distance map,
which is used in matching the edges. The person is seg-
mented using a background subtraction algorithm. The bi-
nary mask representing the extracted person is morphologi-
cally dilated and then used to suppress edges not belonging
to person. The edges are extracted using the Sobel operator.
The masked gradient image, see image after the block and
on Fig. 3, is used in extraction of the edge distance map.

Figure 3. Determining the edge distance map.

The objective function for camera j is calculated on the
basis of following expression: fU)(z) = 1 — (fi(x)* -
fa(x)“2), where z stands for the state (pose), whereas w
denotes weighting coefficients that were determined exper-
imentally. The function f; () reflects the degree of overlap
between the extracted body and the projected 3D model into
2D image. The function fy(x) reflects the edge distance
map-based fitness. The objective function for all four cam-
eras is determined according to the following expression:
@)= 5305 fO().

The calculation of the objective function is the most con-
suming operation. Moreover, in multiview tracking the 3D
model is projected and then rendered in each camera’s view.



Thus, in our approach the objective function is calculated by
OpenMP threads, which communicate via the shared mem-
ory. Each core calculates the fitness score for single camera
and every PSO thread has access to the shared memory with
the objective function values.

3. Gait characterization and recognition

The marker-less motion tracking was achieved using
color images of size 960 x 540, which were acquired at
25 fps by four synchronized and calibrated cameras. Each
pair of the cameras is approximately perpendicular to the
other camera pair. A commercial motion capture system
from Vicon Nexus was employed to provide the ground
truth data. The system uses reflective markers and sixteen
cameras to recover the 3D location of such markers. The
data are delivered with rate of 100 Hz and the synchro-
nization between the MoCap and multi-camera system is
achieved using hardware from Vicon Giganet Lab.

A set of M = 39 markers was attached to main body
parts. From the above set of markers, 4 markers were placed
on the head, 7 markers on each arm, 12 on the legs, 5 on the
torso and 4 markers were attached to the pelvis. Given such
a placement of the markers on the human body and the es-
timated human pose, the corresponding positions of virtual
markers on the body model were determined. Figure 4 illus-
trates the distances between ankles, which were determined
by our marker-less motion tracking algorithm and the Mo-
Cap system. High overlap between both curves formulates
a rationale for the usage of the marker-less motion tracking
to achieve view-independent gait recognition. In particular,
as we can observe, the gait cycle and the stride length can
be calculated with sufficient precision.
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Figure 4. Distance between ankles during walking in sequences
P1 (straight and diagonal) and P2 (straight and diagonal).

Figure 5 illustrates components of a typical model-based
system for gait recognition. Given a gallery database, con-

sisting of gait patterns from a set of known subjects, the
objective of the gait recognition system is to determine the
identity of the probe samples. In this work we treat each
gait cycle as a data sample, which is represented by a third
order tensor. A tensor is a multidimensional object, whose
elements are addressed by indices. The number of indices
determines the order of the tensor, whereas each index de-
fines one of the tensor modes [9].
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Figure 5. A typical model-based gait recognition system.

The data extracted by the motion tracking algorithm
were stored in ASF/AMC data format. For a single gait cy-
cle consisting of two strides a third order tensor 30 x 11 x 3
was calculated. Before feeding the gait samples to dimen-
sionality reduction, the tensorial inputs need to be normal-
ized to the same dimension in each mode. The number of
frames in each gait sample has some variation and therefore
the number of frames in each gait sample was normalized.
The normalized time mode dimension was chosen to be 30,
which was roughly the average number of frames in each
gait sample. The second dimension of the tensor is equal
to the number of bones (excluding pelvis), i.e. 10 plus one
element in which the distance between ankles and person
height are stored. The third dimension accounts for three
angles, except the eleventh vector that contains distance be-
tween ankles and person’s height. Such a gait signature was
then reduced using Multilinear Principal Components Anal-
ysis (MPCA) algorithm [9].

MPCA is a multilinear extension of Principal Compo-
nent Analysis (PCA) algorithm, which is commonly utilized
for dimension reduction in analysis of high-dimensional
data. In attempting to preserve the data structure, MPCA
seeks for low-dimensional projections and, thereby, de-
creases dimensionality more efficiently than PCA. Thus,
the MPCA transformation aims to capture as high a vari-
ance as possible, accounting for as much of the variability
in the data as possible, subject to the constraint of mode-
wise orthogonality. There is one orthogonal transformation
for each dimension (mode). MPCA determines a tensor-to-
tensor projection that captures most of the signal variation
present in the original tensorial representation.

4. Experimental results

The marker-less motion tracking system was evaluated
on video sequences with 22 walking individuals. In each



image sequence the same actor performed two walks, con-
sisting in following a virtual line joining two opposite cam-
eras and following a virtual line joining two nonconsecu-
tive laboratory corners. The first subsequence is referred to
as ‘straight’, whereas the second one is called ‘diagonal’.
Given the determined pose estimate, the model was over-
laid on the images. Figure 6 depicts some results which
were obtained for person 1 in a diagonal walk. The degree
of overlap of the projected 3D body model with the per-
former’s silhouette reflects the tracking accuracy.
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Figure 6. Articulated 3D human body tracking in sequence P1D.
Shown are results in frames #20, 40, 60, 80, 100, 120 (from left to
right and from top to bottom). The left sub-images are seen from
view 1, whereas the right ones are seen from view 2.

In Fig. 7 are shown some motion tracking results that
were obtained in the same image sequence, but with the
performer following a virtual line connecting two opposite
cameras. The body model is overlaid on the images from
the right profile view and the frontal view. The discussed
results were obtained in 20 iterations per frame using the
APSO algorithm consisting of 300 particles.

Figure 7. Articulated 3D human body tracking in sequence P1S.
Shown are results in frames #20, 40, 60, 80, 100, 120.

The plots shown in Fig. 8 illustrate the accuracy of mo-
tion estimation for some joints. As we can observe, the av-
erage tracking error of both legs is about 50 mm and the
maximal error does not exceed 100 mm. As we can see on
Fig. 8 the error for the right hand is somewhat larger in com-
parison to errors of the remaining body parts. Such errors
arise because of the similar color distribution of the wooden
parquet with the skin color distribution. The errors can be
reduced through more sophisticated image processing.

In Tab. 1 are presented some quantitative results that
were obtained in the sequence P1 (P1S and P1D). The
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Figure 8. Tracking errors [mm] vs. frame number in seq. P1D.

errors were calculated on the basis of 39 markers. For each
frame they were computed as average Euclidean distance
between individual markers and the recovered 3D joint lo-
cations [14].

Table 1. Average errors in sequence P1 (P1S and P1D). The
images from seq. P1S are shown on Fig. 7, whereas the images
from seq. P1D are depicted on Fig. 6.

Seq. P1S | Seq. P1D

#particles it. error [mm] | error [mm]

100 10 64.44+35.6 | 56.3+£30.2

PSO 100 20 55.0429.4 | 56.1+32.7
300 10 57.2430.8 | 55.7+34.7

300 20 54.64+30.3 | 50.0+27.6

100 10 5324289 | 49.1+244

APSO 100 20 49.7428.1 | 45.0£23.6
300 10 49.3+£26.3 | 44.9+22.0

300 20 45.6+24.6 | 41.6+21.1

Table 2 shows the average errors, which were obtained
on images from another sequence, called P2 (P2S and
P2D). For each evaluated sequence Pxx the depicted er-
rors are the result of the averaging over ten runs of the
PSO/APSO with unlike initializations.

Table 2. Average errors in a sequence P2 (P2S and P2D).

Seq. P2S | Seq. P2D

#particles it. error [mm] | error [mm]

100 10 56.1430.7 | 47.44+25.0

APSO 100 20 53.5430.2 | 43.6+22.1
300 10 54.0429.2 | 43.2422.0

300 20 52.9429.5 | 40.8+19.9

Table 3 illustrates the recognition accuracy that was ob-
tained on 88 image sequences, each containing both straight



and diagonal walks, which were performed by a sole actor.
Each sequence consisted of 2 or 3 full gait cycles. Given
such a collection of sequences, we obtained a database with
230 gait cycles. 10-fold cross-validation was used to eval-
uate the performance of the proposed algorithm. The data
obtained by motion capture were smoothed by a filter with
temporal window of size 9.

Table 3. Identification accuracy [%].
Naive Bayes MLP

Q A |Rank 1 |Rank 2|Rank 3 |Rank 1|Rank 2 |Rank 3
0.60 1 | 487 | 68.7 | 81.7 | 387 | 59.6 | 77.8
0.70 2 | 604 | 804 | 89.1 | 535 | 752 | 86.1
0.80 4 | 60.0 | 80.9 | 87.8 | 552 | 80.0 | 86.5
0.90 12 | 76,5 | 86.5 | 93.0 | 69.1 80.0 | 87.4

0.95 32 | 774 | 89.6 | 943 | 735 | 87.0 | 92,6
0.97 40 | 787 | 89.6 | 939 | 73.5 | 86.5 | 90.0
0.98 60 | 787 | 86.1 | 922 | 756 | 85.6 | 91.7
0.99 | 120 843 | 909 | 939 | 89.6 | 943 | 97.0

In the person identification we employed Naive Bayes
(NB) and multilayer perceptron (MLP) classifiers. The pa-
rameter () denotes the ratio of variations in the MPCA,
which should be kept in each mode, whereas A denotes the
number of the attributes corresponding to given ). In prac-
tical recognition tasks, @) is commonly set to a large value
to capture most of the variation. As one can observe, for
A = 120 attributes the MLP classifier achieves 90% recog-
nition accuracy (rank 1), whereas the NB gives almost 85%
recognition accuracy. The results show that using 3D gait
data from our marker-less motion capture can lead to high
identification accuracy.

The complete human motion capture system was written
in C/C++. The evaluation of the identification accuracy was
performed using WEKA software.

5. Conclusions

‘We have presented a view-independent algorithm for gait
recognition. The recognition is done using 3D gait data
obtained by our marker-less human motion tracking algo-
rithm. We demonstrated the tracking performance of the
algorithm using the MoCap data as ground-truth. High-
dimensional tensor data were reduced by the MPCA algo-
rithm and subsequently classified. Experiments on mul-
tiview video sequences demonstrated that the algorithm
achieves high recognition accuracy. The identification ac-
curacy (rank 1) on 230 gait cycles performed by 22 persons
is equal to 90%.
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