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Abstract— Previous work demonstrated that Kinect sensor
can be very useful for fall detection. In this work we present
a novel approach to fall detection that allows us to achieve
reliable fall detection in larger areas through person detection
and tracking in dense depth map sequences acquired by an
active pan-tilt 3D camera. We demonstrate that both high
sensitivity and specificity can be obtained using dense depth
images acquired by a ceiling mounted Kinect and executing
the proposed algorithms for lying pose detection and motion
analysis. The person is extracted using depth region growing
and person detection.

I. INTRODUCTION

Falls are the considerable cause of injury death among
people 65 years and over and are one of the most common
cause of hospital admissions for traumatic injuries and loss of
independence. More than half of all falls occur within home
environment and significant percentage of them happens at
nighttime [9]. An injured elderly may be lying on the ground
for several hours or even days after a fall incident has
occurred. Thus, various kinds of sensors were applied in fall
detectors to investigate their sensing properties [3].

Very often fall detection devices use accelerometers and
gyroscopes to sense sudden changes in movements. However,
detectors based only on inertial sensors often fail to separate
accidental falls from ordinary activities such as sitting on a
chair, lying down on a bed, or any kind of sudden move-
ments. What’s more, they generate too much false alarms.
This means that some activities of daily living (ADLs)
are erroneously reported as falls, which in turn leads to
considerable frustration of the seniors. A robust fall detector
ought to classify falls as falls (sensitivity) and the non-falls
as non-falls (specificity) under all real life conditions [3].

Vision systems, like other non intrusive methods, are often
utilized in prototype systems for fall detection. Moreover,
due to widespread availability of webcams the number of
studies in vision-based systems for fall detection is still
increasing. The rapid development of CCD sensors, cameras,
and computer technologies make such systems feasible.
However, continuous monitoring through a vision system
introduces some ethical issues concerning the respect of
intimacy and privacy, especially in the bedroom and the
bathroom. What’s more, the existing video-based devices
for fall detection cannot work in nightlight or low light
conditions. Additionally, the lack of 3D information can lead
to a lot of false alarms.
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Recently, Kinect sensor was proposed for fall detection
[6], [5]. If the detection is done on depth maps only, the
system preserves privacy. More recent work demonstrated
that reliable fall detection can be obtained through the use
of a ceiling-mounted Kinect [4]. However, the observation
area in such a sensor setup is quite limited. As indicated in
[4], for an overhead Kinect mounted on the height of 2.6 m
from the floor the observation area is about 5.5 m2. To extend
the observation area as well as to increase the functionality
of the overhead camera based fall detection, we propose to
utilize a pan-tilt head for pursuing a moving subject in larger
areas. To achieve such aim we propose reliable algorithms for
person detection and tracking as well as a robust algorithm
for fall detection under real life conditions. A dataset with
both RGBD image sequences and accelerometric data for
training as well as evaluating the fall detection algorithms has
been developed and made publicly available 1. The proposed
algorithms achieve both very high sensitivity and specificity.

II. DATASET
Two datasets in indoor environment were recorded using

both an accelerometer and Kinect sensor. The first dataset
has been taken with ceiling-mounted, stationary Kinect,
whereas the second one has been taken with overhead pan-tilt
Kinect. They consist of sixty RGBD image sequences and
the corresponding accelerometric data. The RGB and depth
images were recorded by Kinect XBOX 360 with 25 frames
per second, whereas the accelerometric data was recorded
by x-IMU device with 256 Hz. All sequences contain falls
of which half of them concerns falling from sitting on a
chair. Figure 1 illustrates depth maps based person tracking
in varying illumination conditions with active depth sensor.

a) b)

c) d)

e)

Fig. 1. Person tracking using depth maps acquired by active camera. a-b) -
depth images, c-d) - corresponding RGB images, e) acceleration over time.

1UR Fall Detect. Dataset http://fenix.univ.rzeszow.pl/˜mkepski

http://fenix.univ.rzeszow.pl/%7Emkepski


III. METHOD

A. Overview of the method

The algorithm begins with nearest neighbor interpolation
to fill the holes in the depth map and to get the map
with meaningful values for all pixels. The median filter
with a 5 × 5 window on the depth array is executed to
make the data smooth, see Fig. 2. To simplify the person
extraction the algorithm extracts the floor and then removes
their corresponding pixels from the depth map. Given the
extracted person in the last depth frame, the region growing
is executed to delineate the person in the current frame.
A Support Vector Machine (SVM) based person finder is
utilized then to confirm the presence of the tracked subject
as well as to give his/her head location. On the basis of the
person’s centroid the pan-tilt head rotates the camera to keep
his/her head in the central part of the depth map. Given the
delineated person, a cascade classifier consisting of lying
pose detector and dynamic transition detector is executed.
Optionally, if an accelerometer is used, the cascade classifier
is triggered only in the case of potential fall, see Fig. 2.

B. Human detection in depth sequences from active camera

The pursuing a moving person is achieved by a series
of saccades of the pan-tilt head to keep the detected object
in central part of the depth maps. The object position is
expressed as the centroid of the delineated area. Below we
detail the depth region growing that delineates the person
undergoing tracking in maps acquired by an active camera.
We also present an algorithm that supports locating the
person’s head in case of region chaining.

1) Delineation of person using region growing: The per-
son is delineated assuming that he/she occupies an integrated
region in 3D space. Owing to extracting the floor in advance,
we avoid incorporating of the neighboring pixels from the
floor into the person region. The developed depth region
growing starts with selecting a seed point in a current frame.
Assuming that there is a common depth region between
regions belonging to a person in two consecutive frames,
such seed region is determined using the and operator
between the previously delineated depth region belonging to
person and the current depth map. Afterwards, the algorithm
repeatedly seeks all neighboring pixels of the current region.
The selected pixels are sorted according to their depth
similarities and are stored in a list of candidate pixels. The
depth similarity is the Euclidean distance between the depth
values of a pixel from such a list and its closest pixel from
the current region. It is employed in order to verify if a

neighboring pixel around a region pixel is allowed to be
merged with the region.

2) Finding human in depth maps: Ordinary region grow-
ing algorithms suffer from the problem of region chaining
(overspill), which occurs when two regions are grown into
one region while they are actually separated from each other.
In order to improve the delineation of the person in such
situations as well as to improve the pursuing of the person
by the active camera, we execute a person detector operating
on window surrounding the segmented region. The detector
permits also automatic initialization of person tracking. The
person detection is done by a SVM for linear classification
that is built on Histogram of Oriented Depths (HOD) features
[7]. The HOD descriptors locally encode the orientation of
depth changes and in our person finder they are calculated in
sub-windows, which are scaled according to their distances to
the camera. The scaling is according to the distance between
the camera and the closest pixels from the sub-window. Such
sub-windows of fixed size are then subdivided into cells. The
descriptors are calculated for each cell and then the oriented
depth gradients are collected into 1D histograms.

C. Fall indicating using body-worn accelerometer

Compared to vision-based motion analysis systems, wear-
able sensors offer several advantages, particularly in terms
of cost, ease of use and, most importantly, portability. They
are the only sensors that are used in real fall detection
systems and outside laboratories. However, despite many
advantages, the inertial sensors-based technology does not
meet the seniors’ needs, because some activities of daily
living are erroneously reported as falls. The smartphones
serve not only as communication and computing devices, but
they also come with a rich set of embedded sensors, such
as accelerometer, gyroscope and digital compass. Therefore,
increasing interest on using this technology for fall detection
is observed and the number of relevant papers grows consid-
erably. Being aware of shortcomings of current solutions we
believe that such technology will be significantly enhanced
and in combination with small devices like smart watches it
will be very usefull in fall detection. Thus, our system can
optionally take data from wireless accelerometer.

A lot of different techniques for inertial sensors were
proposed to achieve reliable fall detection [1]. Frequently,
a single body-worn sensor (tri-axial accelerometer or gyro-
scope, or both embedded in an IMU) is used to indicate
person fall. Tri-axial accelerometer is the most used device.
The accelerometer-based algorithms raise the alarm when
the signal reaches a certain threshold value. In [2] an

Fig. 2. Block diagram of fall detection system.



accelerometer-based algorithm, relying on change in body
orientation has been proposed. It signals a potential fall if the
root sum vector of the three squared accelerometer outputs
exceeds an assumed threshold value.

In our algorithm a fall is indicated if the signal upper
peak value (UPV) from the accelerometer is greater than
2.5 g. A survey of the relevant literature reveals that for a
single inertial device the most valuable information can be
obtained for devices attached near the centre of subject mass.
Therefore, the accelerometer was attached near the spine on
the lower back using an elastic belt around the waist.

D. Lying pose recognition
The lying pose has been distinguished from ADLs us-

ing classifiers trained on features representing the extracted
person in the depth maps. We selected 214 maps from UR
Fall Detection Dataset with normal activities like walking,
sitting down on a chair, taking or putting an object from
floor, bending right. Such representative images were then
used to train a k-NN classifier and a linear SVM classifier
responsible for checking whether a person is lying on the
floor. Both classifiers have been trained on three features [4]:
(i) H/Hmax - a ratio of head-floor distance to the height of
the person, (ii) area - a ratio expressing the person’s area
in the image to the area at assumed distance to the camera,
(iii) l/w - a ratio of major length to major width of a blob
representing the person on the depth image.

E. Dynamic transitions for fall detection
Person fall entails an abrupt and significant change of

head-floor distance with accompanying change from a ver-
tical orientation to a horizontal one. The distance of the
person’s centroid to the floor also changes significantly
and rapidly during the accidental fall period. In the images
acquired from a ceiling mounted camera the area ratio also
changes considerably in the case of the fall. Thus, through
an analysis of the cues above mentioned we can determine
whether a transition of the body is intentional or not.

The ratio H(t)/H(t − ∆T ), where H(t) is determined
in the moment of the impact, and H(t − ∆T ) is calcu-
lated ∆T before the fall, quite reliably characterizes the
dynamics of the fall using a ceiling mounted Kinect. In
depth images acquired by an overhead camera the peak
value of H(t)/H(t − ∆T ) is far below one. The ratio
H(t)/H(t − ∆T ) can also be determined through analysis
of depth image pairs. However, the use of accelerometer as
indicator of the potential fall simplifies calculation of this
ratio since the time t can be determined easily and with low
computational cost.

IV. EXPERIMENTAL RESULTS

In order to be accepted by seniors, a fall detection system
should be unobtrusive and cheap, and particularly it should
exhibit both high sensitivity and specificity as well as should
preserve user’s privacy. The proposed algorithm has been
designed with regard to such factors through sedulous choice
of its ingredients as well as arrangement of scenarios for
training and evaluation. Below we discuss evaluation results.

A. Evaluation of the fall detector

In order to be accepted by seniors the fall detectors should
be accurate and reliable. The accelerometers are the only
sensors that acknowledged their effectiveness in long-time
evaluations, conducted outside of the laboratory. Thus, our
system can be configured to utilize both accelerometric and
depth data or depth data only. In the case of using the
accelerometer for signaling the potential fall, the impact is
detected reliably and with low computational cost. In such
a configuration the depth analysis is used to verify the fall
hypothesis. Moreover, the depth map analysis is done only
in the case of signaling a potential fall. The use of the
accelerometer as indicator of the potential fall simplifies also
the extracting of the dynamic features since the moment of
the impact can be determined easily.

At the beginning of the evaluation we judged the useful-
ness of the accelerometer as an indicator of potential fall.
The actors performed typical daily activities consisting in
walking, taking or putting an object from floor, bending
right or left to lift an object, sitting down on a chair,
tying laces, crouching down and lying. For the carried out
activities during half an hour experiment the acceleration
values 2.5 − 3g were exceeded several times. This means
that within such a relatively short period of time of typical
human activity, a significant number of false alarms would be
generated if the fall detection was carried out only on the ba-
sis of the acceleration data. In particular, we noticed that all
fall-like activities were indicated properly. In consequence,
the chosen accelerometer acknowledged his usefulness as
reliable indicator of the person impact.

The algorithm for lying pose recognition has been evalu-
ated on 351 representative images from UR Fall Detection
Dataset of which 61% were training examples. A linear SVM
and k-NN with 5 neighbors have been trained on features
discussed in Section III-D to classify falls and ADLs. As we
can notice in Tab. I the lying pose detector achieves very
promising results. In particular, accuracy and sensitivity are
higher than 99%.

TABLE I
PERFORMANCE OF LYING POSE DETECTION [%].

accuracy precision sensitivity specificity
SVM 98.29 97.13 99.41 97.24
k-NN 99.15 98.83 99.41 98.90

In order to diminish the ratio of false alarms, and in
particular, to distinguish the intentional lying on the floor
from the accidental falling, we evaluated the usefulness of
the dynamic feature. Figure 3 demonstrates the plots of
H(t)/H(t−∆T ) for accidental fall and intentional lying on
the floor. As we can observe, for ∆T equal to 600 ms the
threshold that is set to 0.6 has been exceeded for the fall. Our
evaluation demonstrated that a cascade classifier consisting
of lying pose detector and dynamic transition detector has
almost null ratio of false alarms. Very rarely the classifier



can generate false alarm, mainly, due to imperfect detection
of the moment of the body impact on the basis of only vision
techniques. A cascade classifier extended about additional
block signaling a potential fall on the basis of accelerometric
data demonstrated null false alarm. In particular, all falls
were detected properly on images from UR fall dataset.

Fig. 3. H(t)/H(t− ∆T ) vs. time for fall and intentional lying pose.

B. Evaluation of person detector and tracker

The performance of the fall detection depends strongly
on the robustness of person detection and tracking. There-
fore, a considerable attention has been paid to such issues.
In particular, a hand-made two degrees-of-freedom pan-tilt
head has been employed in the experiments to extend the
usability of the fall detector. Thanks to pan-tilt capabilities
the monitoring area of the system is extended considerably.

The region growing has been evaluated on the first dataset.
The persons were extracted manually in the images starting
the subsequences for the person segmentation. In all images
including maps with falls all main body parts were extracted.
The region growing has also been evaluated in experiments
with active camera, where the aim was not only to extract in
real-time the person but also to keep he/she in the central part
of the depth maps. In particular, the person was extracted
with sufficient precision on all images from the second
dataset. Figure 4 depicts some results with delineated person,
which were obtained on depth images acquired by the active
camera.

Fig. 4. Person delineation on depth maps using region growing.

The person detector has been evaluated on 254 positive
samples and 638 negative samples of which 60% were used
for training. The images with delineated person were scaled
according to distance of his/her head to the camera. They
were also rotated to a canonical pose using the axis of the
person’s blob. Table II illustrates results that were obtained

using the detector discussed in Section III-B.2. As we can
observe, the results are better if the silhouettes are rotated
to the canonical pose. On the other hand, the difference is
not considerable, and this means that the algorithm is quite
resistant to various poses. This is because the gradients on
the head in depth images seen from an overhead camera form
elliptical like structures.

TABLE II
PERFORMANCE OF PERSON DETECTION [%].

accuracy precision sensitivity specificity
rotat. 99.45 98.21 100.0 99.22

no rotat. 98.91 98.18 98.18 99.22

The discussed results were obtained for HOD cell size
equal to 8 × 8. The results are better than those presented
in [8]. The system was implemented in C/C++ and runs at
30 fps on 2.4 GHz I7 (4 cores, Hyper-Threading) notebook,
powered by Windows.

V. CONCLUSIONS
In this work we presented a novel approach to fall de-

tection. Through introducing a ceiling-mounted depth sensor
that is driven by a pan-tilt unit we extended the monitoring
area. The proposed algorithms for real-time person detection
and tracking on the basis of depth maps acquired by the
active camera allow us to achieve both high sensitivity
and specificity of fall detection in poor lighting conditions.
Very promising results were obtained on long depth map
sequences using the proposed lying pose detector together
with dynamic transitions analysis. The system can optionally
use an accelerometer to indicate the potential fall. In such a
configuration the dynamic features can be determined more
precisely and in consequence the possibility of false alarm
is smaller. Thanks to the use of depth maps only, the system
preserves the user privacy.
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