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Abstract. We present a view independent approach for 3D human gait
recognition. The identification of the person is done on the basis of mo-
tion estimated by our marker-less 3D motion tracking algorithm. We
show tracking performance using ground-truth data acquired by Vicon
motion capture system. The identification is achieved by dynamic time
warping using both joint angles and inter-joint distances. We show how
to calculate approximate Euclidean distance metric between two sets
of Euler angles. We compare the correctly classified ratio obtained by
DTW built on unit quaternion distance metric and such an Euler angle
distance metric. We then show that combining the rotation distances
with inter-ankle distances and other person attributes like height leads
to considerably better correctly classified ratio.

1 Introduction

Gait is an attractive biometric feature for human identification at a distance [2].
Compared with other biometric modalities, such as face or iris, gait has many
advantages since the identification techniques are non-contact, non-invasive, per-
ceivable at a larger distance and do not require cooperation of the individual.

The existing methods for gait recognition can be divided in two main cat-
egories: appearance-based (model-free) and model-based [9]. Appearance-based
gait recognition approaches consider gait as a holistic pattern, where the full-
body of a human subject is represented by silhouettes or contours. Model-based
approaches identify individuals on the basis of kinematic characteristics of the
walking manner. Model based approaches fit a model to human body and repre-
sent gait using the parameters of the model that are estimated over time. Model
based approaches are more complex and computationally more expensive than



model free approaches. Thus, the majority of the approaches are based on ap-
pearance and rely on analysis of image sequences acquired by a single camera.
The main limitation of such approaches is that they can perform the recognition
from a specific viewpoint. To achieve view-independent person identification,
Jean et al. [4] proposed an approach to determine view-normalized body part
trajectories. However, as reported by Yu et al. [15], the appearance-based meth-
ods are view dependent and perform best when a side view is used.

The use of 3D gait analysis dates back to the nineties of the last century
[1]. In 3D gait recognition the human body structures are modeled explicitly,
often with support of the gait biomechanics [14]. As a result, they are far more
resistant to view changes than 2D approaches. In [12] 3D markers locations
were used to extract joint-angle trajectories. The recognition was achieved using
dynamic time warping on the normalized joint-angle information and nearest
neighbor classifier with Euclidean distance. It was evaluated on two walking
databases of 18 people and over 150 walk instances. In [13], an approach relying
on matching 3D motion models to images, and then tracking and restoring the
motion parameters is proposed. The system was evaluated on datasets with four
people, i.e. 2 women and 2 men walking at 9 different speeds ranging from 3
to 7 km/h by increments of 0.5 km/h. The motion models were derived on the
basis of Vicon motion capture system (moCap). Recently, in [3] a multi-camera
based gait recognition method has been developed to overcome the non-frontal
pose problem. The recognition was done using the recovered 3D human joints.

Despite its attractive features, gait-based person identification is still far from
being ready to be deployed in practice. What limits the use of gait recognition
systems in real-world scenarios is the impact of lots of covariate factors, which
affect the dynamics of the gait. The most important covariate factors include
camera setup (viewpoint), lightning, walking surface, footwear and clothing, car-
rying conditions. Thus, most of gait analysis techniques, particularly neglecting
3D information, are unable to reliably match gait signatures from differing view-
points, but also in case of different walking surface, different clothing. Moreover,
they are also strongly dependant on the ability of the background segmentation
and require accurate delineation between the subject and the background.

In this work, 3D-joint angles and locations are estimated on the basis of
marker-less human motion tracking. They are inferred with the help of a 3D
human model. The estimation takes place on video sequences acquired by four
calibrated and synchronized cameras. We show the tracking performance of the
motion tracking algorithm using ground-truth data acquired by a commercial
motion capture system from Vicon Nexus. The person identification is done on
the basis of dynamic time warping (DTW) using both joint angles and inter-
joint distances. We show how to calculate approximate Euclidean distance met-
ric between two sets of Euler angles. We compare the correctly classified ratio
obtained by DTW built on unit quaternion distance metric and such an Eu-
ler angle distance metric. We then show that combining the rotation distances
with the inter-ankle distances and other person attributes like height leads to
considerably better correctly classified ratio of the person identification system.



2 Articulated Motion Tracking

The purpose of motion capture systems is to measure the motion of bony seg-
ments during various activities of the performer. Optical marker motion capture
(marker-based) relies on attaching reflective markers to be tracked using stan-
dard computer-vision techniques. One of the most popular commercially avail-
able systems is provided by Vicon. The Vicon system relies on infrared cameras
and artificial reflective markers. The markers are attached to predefined body
parts of a human subject. The markers reflect the light signal, which is emitted
and then registered by a set of infrared cameras surrounding the subject. The
data from each camera consisting of 2D coordinates of each recognized marker
position is matched and then used by the triangulation algorithm, which com-
putes the 3D position and the label of each visible marker. The motion data are
stored in the C3D format, in which each frame of information is represented as
a list consisting of Cartesian x, y, z coordinates for each marker. The motions
are stored in ASF/AMC format with 19 defined segments, see also the skeleton
on Fig. 1. They are calculated on the basis of 39 markers.

Most approaches for marker-less 3D motion tracking use a human body model
to guide the pose estimation process, as the use of a model greatly increases the
accuracy and robustness of the pose recovery. In our system [6], the articulated
model of the human body is built on kinematic chain with 11 segments. Such a
3D model consists of truncated cones that model the pelvis, torso/head, upper
and lower arm and legs, see Fig. 1. Its configuration is defined by 26 DOF and it
is determined by position and orientation of the pelvis in the global coordinate
system and the relative angles between the connected limbs. Each truncated
cone is projected into 2D image plane via perspective projection. In this way we
attain the image of the 3D model in a given configuration, which can then be
matched to the person extracted through image analysis. A modified Particle
Swarm Optimization (APSO) algorithm is used to estimate the 3D motion [5].
The motion is inferred using four calibrated and synchronized cameras.

Fig. 1. Human attributes and joints used in gait recognition.



3 DTW on Joint Rotations and Geometric Relations

Dynamic time warping (DTW) [10] is algorithm for assessment the similarity
between two temporal sequences, which may vary in time or speed. DTW is
often used in motion analysis [7]. The similarities in walking patterns could be
measured by DTW, even if one person was walking faster than the other, or if
there were accelerations and decelerations during the movements. It determines
an optimal match between two given sequences and returns distance-like measure
between sequences. The sequences are warped non-linearly in the time dimension
to match each other as closely as possible.

In the DTW algorithm, two motions R and R′ of length N and M frames,
respectively, are compared using local cost measure c. By evaluating c for all
possible pairs of data we get a cost matrix C of size N ×M , which contains the
matching costs. To find the best match between the given sequences we should
find a path through the grid, which minimizes the total distance between them.
The alignment minimizing the cost is represented by a so-called warping path,
which, under certain constraints, optimally allocates the frame indices of the
first motion with the frame indices of the second motion. Such optimal path can
be found in O(NM) using dynamic programming.

The natural way for representing human motion is to encode the rotations of
each bone around three axes. One possible alternative is to utilize unit quater-
nions for encoding joint rotations. Quaternion-based pose distance is often used
in DTW-based motion comparison [11]. However, quaternions can represent only
rotations around a line through the origin of the coordinate system. As pointed
out in [8], geometric relations between body key points are very important mo-
tion features. Thus, in our DTW-based algorithm for gait recognition we employ
both individual distances between corresponding joint rotations as well as geo-
metric relations between body parts.

Assume that B is a set of bones that are directed away from the root of the
kinematic chain. The minimum angle between two angles ∆(θ, θ′) was computed
as follows: ∆(θ, θ′) = π−||θ− θ′|−π|. The approximate measure of the distance
between the two joint rotations is the sum of each of the Euler angle differences:
ρθ =

√
∆(θ, θ′)2 +∆(φ, φ′)2 +∆(η, η′)2. The local cost measure is equal to sum

of the approximate distances between each two corresponding joint rotations:
cθ =

∑
b∈B ρθ(b). For DTW employing both individual distances between cor-

responding joint rotations, geometric relations between body parts, and other
body features, their weighted 3D Euclidean distance terms are included in the
objective function: cpose = w1cθ + w2(|h− h′|+ |AnkDist− AnkDist′|), where
h denotes persons’s height, AnkDist stands for inter-ankle distance, w1 = 57.3
and w2 = 1.7.

The quaternion based pose distance between two human poses has been cal-
culated as sum of terms expressing distances between unit quaternions: cquat =∑
b∈B 2/π arccos(〈qb, q′b〉), where 〈·, ·〉 stands for standard dot product in R4.

The term arccos(〈qb, q′b〉) is known as the geodesic distance of the real three-
dimensional projective space, which assumes it maximal value equal to π/2 for
the case that qb and q′b are orthogonal.



4 Experimental Results

The marker-less motion tracking system was evaluated on video sequences with
22 walking individuals. In each sequence the same actor performed two walks,
consisting in following a virtual line joining two opposite cameras and following a
virtual line joining two nonconsecutive laboratory corners. The first subsequence
is referred to as ‘straight’, whereas the second one is called ‘diagonal’. Given the
estimated pose, the model was projected to 2D plane and then overlaid on the
images. Figure 2 depicts some results that were obtained for person 1 in a straight
walk. The degree of overlap of the projected 3D body model with the performer’s
silhouette reflects the accuracy of motion tracking. The results were obtained by
APSO consisting of 300 particles and executing 20 iterations per frame.

Fig. 2. 3D human body tracking in sequence p1s2. Shown are results in frames #0, 20,
40, 60, 80, 100. The left sub-images are seen from view 1, the right ones - view 2.

In Table 1 are shown some quantitative results that were obtained using
the discussed image sequences. Given the human pose estimated by marker-less
system, as well as the locations of physical markers, the virtual markers were
generated on the 3D model utilized in marker-less moCap. The errors were cal-
culated using the locations of the markers recovered by marker-based moCap
system and locations of the virtual markers estimated by our marker-less mo-
Cap system. For each frame they were computed as average Euclidean distance
between corresponding physical and virtual markers. For each sequence they
were then averaged over ten runs of the APSO with unlike initializations.

Table 1. Average errors for M = 39 markers in four image sequences. The images
from sequence p1s2 are depicted on Fig. 2.

Seq. p1s1 Seq. p1s2 Seq. p2s1 Seq. p2s2

#particles it. error [mm] error [mm] error [mm] error [mm]

APSO

100 10 60.0±42.9 51.3±25.5 59.8±30.4 55.8±23.2

100 20 50.1±29.3 47.6±21.5 57.8±24.7 55.4±20.3

300 10 48.4±29.9 48.4±24.7 58.5±26.6 56.2±20.5

300 20 44.9±22.1 45.0±19.9 56.3±22.1 54.1±17.4



Table 2. CCR obtained by DTW built on angle distance metrics.

Rank 1 Rank 2 Rank 3

System Metrics CCR [%] CCR [%] CCR [%]

crossval

Motion

Euclid. 199 86.5 216 93.9 223 97.0

Manhattan 202 87.8 217 94.3 222 96.5

Quat. geod. 197 85.6 217 94.3 224 97.4

moCap

Euclid. 230 100 230 100 230 100

Manhattan 230 100 230 100 230 100

Quat. geod. 230 100 230 100 230 100

Table 2 presents correctly classified ratio (CCR) that was obtained by DTW
built on angle distance metrics only. It demonstrates the CCRs, which were
achieved using data from both maker-based and marker-less motion capture sys-
tems. At the beginning we evaluated CCR in 10-fold evaluation using approx-
imate Euclidean and Manhattan distance metrics between sets of Euler angles
as well as quaternion geodesic distance. As we can observe, the DTW built on
approximate Euclidean and Manhattan distances gave better CCR scores than
DTW operating on geodesic quaternion distances. The CCR that was obtained
using data from marker-based moCap is perfect.

Table 3 shows CCR that was obtained using 3-D joint angles, inter-ankle
distance and height, recovered by our marker-less moCap system. As we can
observe, the CCR ratio is much higher in comparison to CCR, which was ob-
tained by DTW operating on rotation information only. Thanks to the use of
the approximate angle metrics together with joint-to-joint distances and other
human attributes like height we achieved considerably better identification per-
formance. We calculated also CCR using separated test and validation data. As
we can notice, for marker-less system, the CCR obtained on separate test and
validation data is smaller in comparison to CCR, which was obtained in the
10-fold cross-validation.

Figure 3 depicts the confusion matrix both for DTW operating on rotation
data only and rotation data together with inter-ankle distances and height. As
we can see, the distance between joints as well as person attributes like height
lead to far better identification scores.Figure 4 illustrates the warping paths for LeftUpLeg joints as well as inter-
ankle distance, see Fig. 1, which were obtained for person 1 and 2. The discussed
figure demonstrates that both angles and inter-joints distances contribute to-
wards better identification performance.

5 Conclusions

In DTW-based comparison of motion sequences the standard approach consists
in the use of quaternions. However, the quaternions can not be utilized to mea-
sure the inter-joints distances. In order to comprise such inter-joints distances



Fig. 3. Confusion matrix for DTW operating on angles only (left), DTW built on
angles, inter-ankle distances, and height (right).

Fig. 4. Warping paths for a joint angle (left) and inter-ankle distance (right).

Table 3. CCR obtained by DTW using angle distance, inter-ankle distance and height.

Rank 1 Rank 2 Rank 3

System Metrics CCR [%] CCR [%] CCR [%]

crossval

Motion
Euclid. 222 96.5 229 99.6 230 100

Manhattan 223 97.0 227 98.7 230 100

moCap
Euclid. 230 100 230 100 230 100

Manhattan 230 100 230 100 230 100

sep. test/val

Motion
Euclid. 93 80.2 106 91.4 112 96.5

Manhattan 93 80.2 105 90.5 112 96.5

moCap
Euclid. 114 98.3 230 100 230 100

Manhattan 115 99.1 230 100 230 100



as well as other human attributes we proposed to use approximate Euclidean
distance metric between two sets of Euler angles in dynamic time warping. Ow-
ing to the use of such a metric we can combine the rotations with inter-joint
distances and other features. We demonstrated that the combined features allow
us to obtain better classification scores.
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