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Abstract

Since falls are a major cause of harm to older people, there is considerable demand for low-cost fall detection systems. To meet
demands of the end-users we propose a new architecture for low cost and reliable fall detection, where an accelerometer is used to
indicate a potential fall and the Kinect sensor is used to authenticate the eventual fall alert. In consequence, the depth maps are not
processed frame-by-frame, but instead we download from a circular buffer a sequence of depth maps acquired prior to the fall and
then process them to authenticate fall event. We determine features both in the depth maps and point clouds to extract discriminative
fall descriptors. Since people typically follow typical motion patterns related to specific locations in home or typical daily activities,
we propose to utilize k-nn classifier to implement an exemplar-based fall detector. We show that such a classifier is competitive
on our publicly available URFD dataset in terms of sensitivity and specificity while being much more simple to implement on an
embedded platform.
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1. Introduction

People are living longer, and many forecasts make it clear
that elderly people will have to live independently in their own
homes for as long as possible. One of the highest risks of loss
of independence for elderly persons living alone or spending
much time alone is falling down [1]. Moreover, the risk of falls
increases markedly with age, slower reaction and balance, and
reduced muscle strength. Thus, approximately one out of ev-
ery three seniors falls in any given year, and these sudden falls
are the most common cause of injury and hospital admissions
among this age group.

To extend the possibilities for independent living of the se-
niors, several smart home technologies [2] and smart cameras
[3] have been proposed until now. In context of prolonged in-
dependent living, fall detection is an important task [1]. Medi-
cal alert systems with fall detection include simple push-button
devices and accelerometer-based wearable systems. However,
their applicability is restricted to limited markets like nursing
homes rather than the broader aged communities. In context
of independent living, currently available wearable systems are
not acceptable by primary end-users, especially those who are
not impaired. One of the most common reasons for disal-
lowance of accelerometer-based assistive devices is their high
false alarm ratio. This means that some daily activities are
wrongly reported as falls, which in turn leads to frustration of
the users.

A recent survey [4] demonstrates that the Kinect sensor can
be very useful in detecting falls. However, the available al-
gorithms for fall detection are not robust and do not exhibit
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Figure 1: Proposed architecture for reliable fall detection.

both high sensitivity and specificity. Moreover, since such sys-
tems process, frame-by-frame, the depth maps acquired by the
Kinect, they typically require a considerable processing power,
and thus they usually need a PC or notebook computer. In or-
der to keep low the number of false alarms as well as to reduce
the computational burden we propose a novel architecture for
fall detection, see Fig. 1. In our approach, the depth maps are
stored in a circular buffer for an authentication of the fall if
needed, whereas a threshold-based accelerometer module re-
leases a depth map-based verification of the hypothesis about
a potential fall. In contrast to the existing approaches [4], we
extract the features not only in depth maps but we also pro-
cess point clouds to extract very discriminative fall descriptor.
Since people typically follow individual and distinctive at the
same time motion patterns, related to specific locations in home
or typical daily activities, we propose to utilize k-nn classifier
to implement an exemplar-based fall detector.

The rest of the paper is organized as follows. In Section 2 we
discuss related work that was accomplished in the area of fall
detection. Section 3 is devoted to presentation of our embed-
ded system for fall detection. In Section 4 we detail real-time
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and energy efficient data processing. The descriptors for distin-
guishing between fall and daily activities are discussed in Sec-
tion 5. In Section 6 we present our URFD dataset as well as we
discuss the classifier for distinguishing between daily activities
and falls. The experimental results are discussed in Section 7.
Section 8 provides some concluding remarks.

2. Relevant work

A range of body-attached sensors including goniometers,
accelerometers, gyroscopes, pedometers, and actometers have
been used to capture and analyze human movement [1]. Ac-
celerometers offer a number of advantages in monitoring of
physical human movements. Advantages of such sensors in-
clude a high accuracy even in noisy measurements as well as
acceleration measurement down to zero Hertz. Rapid develop-
ment in Micro-Electro-Mechanical Systems (MEMS) resulted
in miniaturized and low cost accelerometers. These features
have made possible development of small, lightweight, portable
smart devices that can be worn without hindering physical ac-
tivity. The smartphones and smartwatches are examples of
mobile devices, which are equipped with accelerometers and
which can be used to perform unobtrusive fall detection.

Majority of the accelerometer-based fall detection systems
that were developed in the past investigates the use of a body-
worn tri-axial accelerometer with a threshold algorithm [5].
A recent study [6] conducted by an international team of re-
searchers evaluated the effectiveness of these algorithms to de-
tect fall events within a database of real falls. The database
contains accelerometer measures that capture the movements
of participants, each for a period of two days. In all, it stores
data from 29 real falls. Thirteen different algorithms were in-
vestigated to see if they were able to identify the real falls. Un-
fortunately, none of the investigated algorithms scored suffi-
ciently high in both sensitivity (the ability to properly recog-
nize falls that in reality occurred) and specificity (the capabil-
ity to correctly identify a movement as a non-fall). Two al-
gorithms achieved good scores on both of these measures, but
each would create too many false alarms if employed as an au-
tomated fall detector. One of the main reasons for high false
ratio of accelerometer-based systems is the lack of adaptabil-
ity together with insufficient capabilities of context understand-
ing. In consequence, they have difficulties in distinguishing fall
events from typical daily activities, for example, lying down on
the couch to relax, bending down to play with a pet, bending
to pick up an object from the floor, or even just lying down to
sleep.

Video monitoring systems use cameras that attempt to de-
tect a fall acting on image-processing algorithms, which are
designed to identify unusual activities. The main advantage of
such systems is that the person does not need to wear any spe-
cial device. However, this type of fall-monitoring is both the
most expensive and most intrusive form of fall detection due to
the fear of intrusion of privacy. Although many solutions for
preserving privacy have been developed, people in monitored
rooms still experience the feeling of being-watched, thus mak-
ing the ordinary CCD cameras unacceptable in most cases, and
especially in the bedroom and the bathroom. Moreover, while
CCD-camera based techniques might work well in controlled

environments, in order to be practically applied they ought to
be adapted to non-controlled environments in which neither the
lighting nor the resident tracking is fully controlled. Thus, such
devices can not work in nightlight or low light conditions. Ad-
ditionally, the lack of depth information might lead to lots of
false alarms. Nevertheless, due to recent developments in smart
camera [3] and smart home [7] technology, the CCD camera-
based solutions have some potential to be utilized in smart fall
detectors.

As demonstrated several years ago, the cameras delivering
in real-time the depth information can be very helpful in de-
tecting and tracking faces and heads [8]. The head trajectory
is a very useful source of information for behavior recognition
and can be greatly advantageous for video surveillance appli-
cations, especially for fall detection [9]. Another promising
research direction in this domain is the use of multiple omni-
directional cameras to observe and to track the inhabitants of a
room [10]. Overall, the omnidirectional cameras are very use-
ful in areas where large visual field coverage is needed, whereas
stereo-pairs deliver very advantageous 3D information. Ther-
mal imaging cameras, also called infrared cameras, which de-
tect the heat given off by an object or human can also deliver
very valuable source of information for detecting falls [11].

Recently, Kinect’s depth camera has been proposed to be uti-
lized in fall detection [12] [13]. As demonstrated in the dis-
cussed work, depth information is sufficient to detect person
undergoing monitoring. Since Kinect uses infrared light sen-
sors to illuminate the objects in front of it and an infrared cam-
era to observe them in invisible light, the fall detection can be
done any time. In contrast to the discussed work, the algo-
rithms presented in [14][15] rely on the 3D skeleton, which is
automatically extracted by Kinect for Windows SDK/OpenNI-
NITE framework. However, given that a person can be in any
pose prior to a fall, it is very likely that the skeleton extraction
may fail to acquire the skeletal model, or be unreliable in the
period of the fall motion [16]. In [17] a network of multiple
Kinect sensors is installed in different areas of a house moni-
toring the individual. However, it is unclear how a collabora-
tion between the cameras under the communication and latency
constraints, which is an important problem in camera networks
[3], has been solved in the discussed work.

One way to improve the reliability of detection of emergency
situations is to combine video/depth and accelerometer signals,
as proposed recently [18] [13] [19]. Recent work [20][21]
demonstrates that combining the depth with inertial sensors im-
proves the human activity recognition. In this work, we demon-
strate that the thresholded accelerometer signal can be used
to reduce the computational overheads, whereas the combined
data from the accelerometer and the depth sensor allows us to
obtain lower false alarm ratio. We also propose a very discrim-
inative fall descriptor and show that a k-nn classifier achieves
very good results on our publicly available URFD dataset1. The
system has been designed to consume least amount energy to
achieve reliable fall detection.

1http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
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3. The system

Having on regard that the system for fall detection should
be inexpensive, we developed an energy-efficient data process-
ing architecture, see Fig. 1, and implemented the algorithms on
a low-cost PandaBoard ES, which is a development platform
for mobile applications. It features a dual-core 1 GHz ARM
Cortex-A9 MPcore processor with Symmetric Multiprocessing
(SMP) and a programmable C64x DSP. The board contains 1
GB of DDR2 SDRAM, dual USB 2.0 ports as well as wired
10/100 Ethernet along with wireless Ethernet and Bluetooth
connectivity. It supports various Linux-based operating sys-
tems such as Android, Chrome and Linux Ubuntu, which can
be bootloaded from a SD memory card.

The fall detection is done on the basis of body worn ac-
celerometer, which wirelessly transmits the motion data to the
embedded system, and processing of the depth maps, which
are acquired by a Kinect sensor directed towards the monitor-
ing area. The person movement is sensed by an x-IMU iner-
tial device [22], which contains triple axis 12-bit accelerome-
ter. The motion data are acquired with 256 Hz and transmitted
wirelessly via Bluetooth to the processing device, whereas the
Kinect sensor is connected to it via USB, see Fig. 2. The depth
images are acquired using OpenNI (Open Natural Interaction)
library.

Figure 2: Data acquisition, processing and communication in the embedded
system for fall detection.

The fall detection application runs under Linux and inherits
all advantages of Unix-like operating systems. It consists of
five main concurrent processes that communicate via message
queues, see also Fig. 2. They supply an asynchronous com-
munication protocol, meaning that the sender and receiver of
the message do not need to interact with the message queue at
the same time. The messages placed onto the queue are stored
until the receiver retrieves them. The first process is account-
able for acquiring data delivered by the wearable device, the
second one acquires depth data from the Kinect sensor, third
process continuously updates the depth reference image, fourth
one is responsible for data processing and feature extraction,
whereas the fifth process is in charge for data classification and
alarm triggering. The dual-core processor permits parallel ex-
ecution of data acquisition and processing processes. The per-
son is extracted on the basis of the depth reference maps since
he/she can be delineated reliably with relatively low computa-
tional cost [19].

The Kinect sensor consists of three main ingredients,
namely, a color camera, an IR laser emitter, and another IR
camera. The IR laser emitter and IR camera are utilized to cre-
ate a depth map on the basis of a structured light technique.

The laser emits a known pseudorandom dot pattern, which is
then observed by the IR camera. The detected dots are com-
pared against the known pattern. This is analogous to how a
stereo-camera system works, but with one of the cameras re-
placed with a static virtual image of the dot pattern. Because
the IR camera has a certain horizontal shift from the IR emitter,
the projected dots will end up at miscellaneous image locations
depending on the depth. The baseline of such a stereo-pair
is approximately 75 mm. The angular field of view is fifty-
seven degrees horizontally and forty-three degrees vertically.
The minimum range for the Kinect is about 0.6 m and the max-
imum range is somewhere between 4-5 m. Pixels in the pro-
vided depth images indicate the calibrated depth in the scene.
The depth resolution is about 1 cm at 2 m distance. The depth
is supplied on 11 bits in maps with 640×480 resolution. Owing
to the Kinect’s ability to extract the depth images in unlit room
and since we process only depth maps, our system is capable of
detecting falls any time, i.e. it works on a 24/7 hours and days
basis.

The fall event is identified using a k-nn classifier that takes
decisions acting on a pool of representative examples, which
had been collected in advance, see Fig. 3. The pool of ex-
amples representing typical activities of daily living (ADLs)
and falls was extracted on the basis of human activities from
our URFD dataset. Each example is a five dimensional vec-
tor and stores the activity/fall descriptors, which we discuss in
Section 5. The activity/fall descriptors are extracted by the data
processing module, which is discussed in detail in the subse-
quent Section.

During the algorithm evaluation or in on-line mode, see
Fig. 3 and part of the figure on the right side of the dotted line,
the system processes sequences of the depth maps. In this mode
of the system we employ both the accelerometric and depth
data. The motion data are thresholded to decide if the extraction
of activity descriptors is needed, see also Fig. 1. If yes, the algo-
rithm downloads from the circular buffer the recent depth map
in order to extract the person and then to calculate the activity
descriptors. In the training phase the motion data are not used
since the activity exemplars are extracted on the basis of a col-
lection of labeled human activities, see Fig. 3 and block known

human activities. In the evaluation/on-line mode of fall de-
tection we utilize a sequence of known activities to evaluate the
detection performance of the system, see block sequence of

known human activities on the discussed figure, or depth
sequences acquired with 30 Hz by the Kinect sensor, see also
block sequence of unknown activities.

4. Data processing

At the beginning of this Section we discuss how the accelero-
metric data are employed to trigger the processing of the depth
maps. Afterwards, we present processing of depth data.

4.1. Triggering the processing of depth images

On the basis of the data acquired by the IMU (Inertial Mea-
surement Unit) device the algorithm indicates a potential fall.
In the flow chart of the algorithm depicted on Fig. 5, a block
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Figure 3: Extraction of k-nn decision rules (part of figure on the left side of the
vertical line) and evaluation/on-line fall detection (right part of the figure).

SVtotal > threshold, see also Fig. 3, represents the detec-
tion of the potential fall using data from the inertial device. The
value of S Vtotal has been calculated in the following manner:

S Vtotal(t) =

√
A2

x(t) + A2
y(t) + A2

z (t) (1)

where Ax(t), Ay(t), Az(t) is the acceleration in the x−, y−, and
z−axes at time t, respectively. The S Vtotal contains both the dy-
namic and static acceleration components, and thus it is equal
to 1 g for standing, see also plots of acceleration change curves
on Fig. 4. The discussed figure depicts sample plots of the ac-
celeration for falling along with daily activities like going down
the stairs, picking up an object, and sitting down – standing up.
The sensor signals were acquired at a frequency of 256 Hz and
resolution of 12 bits.

Figure 4: Acceleration over time for walking downstairs, picking up an object,
sitting down, standing up and falling.

As we can observe on the discussed plots, during the falling
phase the acceleration attained the value of 6 g, whereas during
walking downstairs it attained the value of 2.7 g. It is worth
noting that the data were acquired by x-IMU device [22], which

was worn by a middle aged person. Such placement of the
inertial device has been chosen since this body part represents
the major component of body mass and undergoes movement
in most activities.

In practice, it is not easy to construct a reliable fall detector
with almost null false alarms ratio using the inertial data only.
Thus, our system employs a simple threshold-based detection
of falls, which are then verified on the basis of analysis of the
depth images. The critical issue in threshold-based approach is
the selection of a appropriate threshold since if the value is too
high the system (having sensitivity < 100%) might miss some
real falls but never triggers false alarms (with 100% specificity),
while if the threshold value is too low the system will detect all
actual falls (100% sensitivity) but, at the same time, it may trig-
ger some false alarms (specificity < 100%). Thus, choosing the
threshold for accelerometric data to be utilized in a fall detec-
tor is a compromise between sensitivity and specificity. In our
approach, if the value of S Vtotal is greater than 3 g then the sys-
tem starts the extraction of the person and then executes the
classifier responsible for the final decision about the fall, see
also Fig. 5.

Figure 5: Flow chart of the algorithm for fall detection.

It is worth mentioning that in opposition to threshold-based
accelerometer fall detectors [6][5], the change in some range
of the threshold value does not have considerable influence on
the specificity and sensitivity of our system. For instance, if
we select a lower value of the threshold, say 2.7, the system
will consider more typical ADLs as potential falls, and in con-
sequence the processing overheads connected with fall authen-
tication will be larger. As pointed out in [5], the trunk fall data
has a large spread of UPVs (signal upper peak values), ranging
from 3.5 to 12 g, whereas some ADL peak values of UPV are
close to exceeding the 3.5 g threshold. In consequence, in real
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conditions such threshold-based algorithms generate consider-
able number of false alarms [6]. Moreover, our research find-
ings reveal that the UPVs strongly depend not only on fall di-
rection, type of substrate (wet/dry, parquet, carpet), or whether
in proximity of the individual is an object or not, but primarily
they depend on the way how a falling person is trying to save
or to minimize the fall consequences. However, such state tran-
sitions are highly unpredictable and thus there is considerable
overlap between the UPV values of ADLs and falls. This moti-
vated our research on combining accelerometric and depth data
to achieve reliable fall detection in home [13]. Moreover, early
approaches to fall detection using Kinect assumed the use of
simple cues [4], like distance of the person’s gravity center to
the floor [12], and in consequence they generate too much false
alarms. The research results presented in [16] indicate that the
body velocity prior to the occlusion, which was utilized in the
discussed work of Rougier et al., can trigger a huge number of
false alarms (on the order of 20 per day) for people walking out
of the scene. They also showed that after disabling the velocity
component, the discussed algorithm triggered a large number
of false alarms at low detection rates. False alarms were caused
by a variety of everyday occurrences, including pets moving
on the floor, items dropped or moved on the floor, and resi-
dents and visitors lying or playing on the floor. Such everyday
occurrences are filtered reliably by our algorithm at low com-
putational cost.

4.2. Processing of depth data

The depth maps acquired by the Kinect sensor are stored in
a circular buffer. In the current implementation, the size of the
circular buffer is set to 15. The depth sequence is utilized to
extract a depth reference image, which is in turn employed to
delineate the person. The extraction of the person is achieved
through differencing the current depth map from such a depth
reference image. As we can observe on Fig. 5, the extraction
of the person is executed only when the condition SVtotal >

threshold is true. After the person extraction, the floor equa-
tion coefficients are uploaded to extract descriptors of the ac-
tivities. The descriptors are then employed to take decision if a
fall occurred. If the S Vtotal is smaller or equal to the assumed
threshold then new data from the accelerometer is acquired.

In the current implementation the depth reference map is up-
dated on-line, see also Fig. 5 and the block reference image

update, which makes possible to utilize the fall detection sys-
tem in a wide range of scenarios. In the depth reference image
each pixel assumes the median value of several pixels values
from the past images. In the set-up stage we collect a number
of the depth images, and for each pixel we assemble a list of the
pixel values from the former images, which is then sorted in or-
der to determine the median. Given the sorted lists of pixels
the depth reference image can be updated quickly by removing
the oldest pixels and updating the sorted lists with the pixels
from the current depth image and then extracting the median
value. We found that for typical human motions, satisfactory
results can be obtained using 15 depth images. For the Kinect
sensor acquiring the images at 30 Hz we take every fifteenth
depth map. This means that when the person is in motion, the
reference image is updated at 2 Hz. On the basis of the refer-
ence image accommodated with such a frequency, the person

is extracted at 30 Hz, see also the connection of the circular
buffer with blocks extraction of the depth reference

map and person extraction. As we already mentioned, in
order to preserve the privacy of the user as well as to make the
system ready to work any time, the RGB images corresponding
to the depth maps are not acquired by our fall detection system.

In order to prevent disappearance of the person (on the bi-
nary image indicating the foreground objects) if he/she is not
in motion for a while, i.e. to avoid assigning the person to be
extracted to the depth reference image, we perform updating of
the depth reference map only when the person is in motion, see
Fig. 5 and the block person in motion. If the person is not at
rest during an assumed in advance period of time, the algorithm
extracts the foreground and then it determines the connected
components to decide if a scene change took place, see Fig. 5
and the block scene change. If no substantial scene change
is detected then there is no necessity to update the scene refer-
ence depth map, and in such a case the algorithm acquires from
the Kinect a new depth map. It is worth noting that the block
called extraction of the depth reference map can be
replaced by other algorithm for person delineation, for instance,
through a block based on the well known Gaussian Mixture
Models, which are frequently used in the background subtrac-
tion. The scene change can be inferred on the basis of energy
maps [19], or eventually on the basis of differencing the con-
secutive depth maps, which is in fact the simplest method of
motion detection. Since the person is the most important sub-
ject in the fall detection, we consider also motion data from the
accelerometer to sense the person’s state and scene changes.

Figure 6 demonstrates a situation when in addition to the
monitored person an additional object, i.e. a moved chair, com-
pare also color images #610 and 810, appears in the binary im-
age indicating the extracted objects. As we can observe on im-
age #1010, after a while the chair is included into the depth
reference map of the observed scene and the only delineated
object in the binary image is the person undergoing monitor-
ing. A sporadic appearance of items other than the observed
person on the binary images does not degrade the performance
of our algorithms since they typically appear for a few seconds.
In such a period of time the accelerometer allows us to filter
out such situations, including situations reported in [16], which
degraded the performance of the algorithm proposed in [12].

5. Descriptors

At the beginning we explain the extraction of the person in
the depth maps. In the next subsection we discuss how points
belonging to floor are determined. Then we show the equation
describing the floor. The next subsection is devoted to depth
features, whereas the last one is devoted to a description of the
proposed fall descriptor.

5.1. Person extraction
The person undergoing monitoring is extracted through dif-

ferencing the current depth map from the depth reference im-
age, see Fig. 5. As illustrated on the discussed figure, optionally
he/she can be delineated on the basis of relevant background
subtraction-like algorithms. Fig. 7 depicts some example bi-
nary images with the extracted person. In the middle column
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#610 810 1010

Figure 6: Accommodation of the depth reference image to scene change. RGB
images (upper row), depth (middle row) and binary images depicting the delin-
eated person (bottom row).

there are example raw depth maps, whereas in the left one there
are the corresponding RGB images. The RGB images are not
processed by our system and they are only depicted for illus-
trative purposes. It is well known that the precision of Kinect
measurements decreases in strong sunlight. In order to inves-
tigate the influence of sunlight on the performance of fall de-
tection we analyzed the person extraction in the depth maps
acquired in strong sunlight. We found that the in-home depth
measurements on a person being in sunlight, i.e. in sunlight
that passes a closed window, can be made with limited compli-
cations. Despite that some body parts of a person in sunlight
may not return measurements, the most of the body gives the
depth measurements and the performance of the fall detection
does not degrade noticeably.

Figure 7: Delineation of person using depth reference image. RGB images
(left), depth (middle) and binary images depicting the delineated person (right).

5.2. Ground plane extraction

After the transformation of the depth pixels to the 3D points
cloud, the ground plane described by the equation ax + by +

cx + d = 0 was recovered. Assuming that the optical axis
of the Kinect camera is almost parallel to the floor, a subset
of the points with the lowest altitude has been selected from
the entire points cloud and then utilized in the estimation. For

non-parallel Kinect set-up a method for extracting the points
belonging to the floor can be used instead [9][19]. The param-
eters a, b, c and d were estimated using the RANdom SAmple
Consensus (RANSAC) algorithm. RANSAC is an iterative al-
gorithm for estimating the parameters of a mathematical model
from a set of observed data, which contains outliers [23]. The
distance to the ground plane from the 3D centroid of points
cloud corresponding to the segmented person has been deter-
mined on the basis of the following equation:

D =
|aXc + bYc + cZc + d|
√

a2 + b2 + c2
(2)

where Xc,Yc,Zc stand for the coordinates of the person’s cen-
troid. The parameters should be re-estimated subsequent to
each change of the Kinect location or orientation.

5.3. Depth features

The following features were extracted in a collection of the
depth images in order to authenticate the fall hypotheses, which
are altered by the threshold-based procedure:

• H/W - a ratio of width to height of the person’s bounding
box in the depth maps

• H/Hmax - a proportion expressing the height of the per-
son’s surrounding box in the current frame to the physical
height of the person, projected onto the depth map

• D - the distance of the person’s centroid to the floor

• max(σx, σz) - standard deviation from the centroid for the
abscissa and the applicate, respectively.

Given the delineated person in the depth image along with the
automatically extracted parameters of the equation describing
the floor, the aforementioned features are easy to calculate.

Figure 8 depicts a person in depth images together with the
H/W and H/Hmax features. As we can observe on the discussed
depth maps with graphically marked features, the depth fea-
tures assume quite different values during an example fall event
and typical daily activities like walking and sitting on a chair.

Figure 8: Person on depth images with the marked H/W and H/Hmax features.

Figure 9 shows bar plots of the utilized depth features for dis-
crimination between ADLs and fall events. As we can observe,
the depth features are quite discriminative on the considered
events. However, very rarely, such bag of features can have
insufficient discrimination power. For instance, for a standing
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man with outstretched arms the H/W feature can assume differ-
ent values in comparison to normal standing position. There-
fore, we developed a very discriminative feature, which further
diminishes the number of false alarms.

Figure 9: Depth features for isolation of fall events from ADLs.

5.4. The proposed descriptor to identify fall events

The proposed P40 descriptor is calculated on 3D point
clouds. On the basis of the extracted person in the depth map a
corresponding person’s point cloud is determined in 3D space,
see Fig. 10. Afterwards, a ratio of the number of the point
clouds belonging to the cuboid of 40 cm height and placed on
the floor to the number of the point clouds belonging to the
cuboid of height equal to person’s physical height is calculated.
The distance of each point to the floor is calculated on the basis
of (2). The 40 cm height of the cuboid has been chosen exper-
imentally to include all 3D points belonging to a lying person
on the floor.

Figure 10: Proposed P40 descriptor.

6. The classifier for fall detection

At the beginning of this Section we discuss the dataset that
was recorded in order to extract the features for constructing as
well as evaluating the fall classifiers. After that, we overview
the k-nn classifier for separating in real-time the ADLs from
fall events.

6.1. The dataset

A dataset consisting of depth maps with typical activities like
walking, sitting down, crouching down and lying has been com-
posed in order to construct the classifiers responsible for exam-
ination whether a person is lying on the floor and to evaluate
their detection performance. In total 2395 images were selected
from our UR Fall Detection Dataset (URFD) and other image

sequences, which were recorded in typical rooms, like office,
classroom, etc. The selected image set consists of 1492 images
with typical ADLs, whereas 903 images depict a person lying
on the floor. The aforementioned depth images were employed
to determine the features discussed in Subsection 5.3 and 5.4.

The URFD dataset consists of thirty image/acceleration se-
quences with falls, thirty image/acceleration sequences with
typical ADLs like sitting down, crouching down, picking-up
an object from the floor, and ten sequences with fall-like activi-
ties as quick lying on the floor and lying on the bed/couch. The
number of images in the sequences with falls is equal to 3000,
whereas the number of images from sequences with ADLs is
equal to 10000. Two kinds of falls were performed by five per-
sons, namely from standing position and from sitting on the
chair. The data were acquired at a sampling rate of 30 Hz.
All RGB and depth images are synchronized with motion data,
which were acquired by the x-IMU inertial device. The mo-
tion data contains the acceleration over time in the x−, y−, and
z−axes together with the precalculated S Vtotal values.

6.2. k-nn classifier
The k-Nearest Neighbor (k-nn) classifier is a very simple

classifier that works well on many classification problems. De-
spite its simplicity, the k-nn has been found to be successful in a
large number of classification and regression problems, includ-
ing biometrics, handwritten digits recognition or fall detection
[24]. Being a non-parametric method, it is very useful in clas-
sification tasks, where the decision boundary is very irregular.
The principle behind k-nn methods is to find a predefined num-
ber of training samples closest in a distance to the classified ex-
ample, and then to predict the label from these. No model needs
to be built, i.e. k-nn does not learn anything from the training
data and simply uses the training data itself for the classifica-
tion. Thus, the cost of the learning process is equal zero and
all the cost is dedicated to determining the decision. The deci-
sion is the most common label among the k closest neighboring
points. The parameters of the algorithm are the number k of
neighbors and the procedure for combining the predictions of
the k examples. Changing k can alter the decision of the classi-
fier. The most naive neighbor search implementation involves
the brute-force computation of distances between the current
example and all instances in the dataset. To cope with the com-
putational inefficiencies of the brute-force neighbor search, the
kd-tree data structure has been used to store the ADL and fall
examples, see also Fig. 3. Once constructed, the nearest neigh-
bor of an example in question can be determined with only
O(log(N)) distance computations. The utilized features were
scaled to have the same range of values.

7. Experimental results

We evaluated the k-nn classifier and compared it with a
SVM classifier. The classifiers were evaluated in 10-fold cross-
validation. To examine the classification performance we cal-
culated the sensitivity, specificity, precision and classification
accuracy. The sensitivity is the number of true positive (TP)
responses divided by the number of actual positive cases (num-
ber of false negatives (FN) plus number of TP). It is the like-
lihood of fall, given that a fall took place, and hence it is the
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Table 1: Performance of lying pose classification using H/W, H/Hmax, D, max(σx, σz) and P40 descriptors.

True
Fall No Fall

E
st

im
at

ed k-nn, SVM Fall 903 0
Accuracy=100%
Precision=100%No fall 0 1492

Sens.=100% Spec.=100%

classifier’s capability of recognizing the considered occurrence
properly. The specificity is the number of true negative (TN)
decisions divided by the number of actual negative cases (num-
ber of false positives (FP) plus number of TN). It is the like-
lihood of non-fall, given that a non-fall ADL occurred, and in
consequence it demonstrates how good a classifier is at avoid-
ing the false alarms. The classification accuracy is the number
of correct decisions divided by the full amount number of the
cases, i.e. the amount of true positives plus sum of true nega-
tives divided by total number of instances in the population. In
other words, the accuracy is the ratio of true results (both TP
and TN) in the population. The precision or positive predictive
value (PPV) is equal to true positives divided by sum of true
positives and false positives. Therefore, it illustrates how many
of the positively classified falls were relevant.

In Tab. 1 are presented experimental results that were ob-
tained in 10-fold cross-validation by classifiers responsible for
the lying pose detection on image set discussed in Subsec-
tion 6.1. They were obtained using c = 1 in the linear SVM
classifier and 3, 5, 7 and 9 neighbors in the k-nn classifier. As
we can see, both specificity and precision are equal to 100%,
i.e. the ability of the classifier to avoid false alarms and its ex-
actness assume perfect values. The results were obtained using
H/W, H/Hmax, D, max(σx, σz) and P40 descriptors.

Table 2 shows the performance of fall detection that was
obtained by k-nn with 3 and 5 neighbors as well as by the
linear SVM with c set to 1, and which operated on H/W,
H/Hmax, D and max(σx, σz) descriptors. As we can observe, on
the discussed features the linear SVM classifier [25] achieves
worse results than the k-nn with three neighbors since four false
alarms are generated. The results achieved by the k-nn with five
neighbors are slightly worse since two false alarms are gener-
ated and additionally two falls are not altered. Comparing the
experimental results in Tab. 1 and 2 we see that the proposed
P40 fall descriptor allows us to identify the fall events with bet-
ter accuracy and the classifiers using it have better sensitivity.
The features used by both classifiers were scaled to have the
same range of values between zero and one. To avoid square
root computation and thus to accelerate the k-nn we calculated
squared Euclidean distances.

Table 3 shows results that were obtained in 10-fold cross-
validation on depth image sequences from the URFD dataset. It
demonstrates the performance of fall detection for S Vtotal equal
to 3, three neighbors in the k-nn and c = 1 in the SVM clas-
sifiers, which were selected in hyperparameter tuning. The re-
sults were obtained on thirty image/acceleration sequences with
falls and forty image/acceleration sequences with typical ADLs

like sitting down, crouching down, picking-up an object from
the floor and lying on the sofa. That means that they were ob-
tained on 30 data sequences with falls and 40 data sequences
with ADLs, i.e. 13000 data examples. In the case of incorrect
response of the system the remaining part of the sequence has
been omitted. This means that the detection scores were deter-
mined on the basis of the number of the correctly/incorrectly
classified sequences. As we can observe, the k-nn algorithm
using both motion data from accelerometer and depth maps for
verification of IMU-based alarms achieves better performance
in comparison to SVM. In [24], where a ceiling-mounted depth
sensor has been utilized in fall detection, the k-nn also achieved
superior results over a SVM classifier.

In Tab. 4 are presented results, which were obtained on inde-
pendent test data set with k set to 3 in the k-nn and c = 1 in the
linear SVM. The data were split into two sets, one for model
building and one for model validation. Due to limited training
data the data sequences were split in proportion 66% and 33%.
As we can observe, the performance of the SVM classifier is
slightly worse in comparison to performance from Tab. 3. The
experimental results reported in Tab. 3 and 4 were obtained
using H/W, H/Hmax, D, max(σx, σz) and P40 descriptors.

The algorithms for fall detection that were evaluated in such
a way have been implemented in C/C++ on the PandaBoard-
ES platform. The code profiler reported about 50% utilization
of the CPU power by the module responsible for update of the
depth reference map. The SVM classifier has been trained off-
line on a PC using LIBSVM software. The SVM model ob-
tained in such a way has been used to implement the fall pre-
dictor, executed on the PandaBoard.

Five volunteers with age over 26 years attended in an eval-
uation of the developed algorithm and the embedded system
for fall detection in real-time. Intentional falls were performed
in an office by five persons towards a carpet with thickness
of about 2 cm. The x-IMU device was worn near the pelvis.
Each individual performed three types of falls, namely forward,
backward and lateral at least three times. Each individual per-
formed also ADLs like walking, sitting, crouching down, lean-
ing down/picking up objects from the floor, as well as lying on a
settee. All intentional falls have been detected appropriately. In
particular, quick sitting down, which is not easily distinguish-
able ADL from an intentional fall when only an accelerometer
is used, has been correctly classified as an ADL. It has been
observed that while performing such activities, the acceleration
value equal to 3 g, which is often used in accelerometer-based
algorithms has been exceeded several times. We noticed, that
different locations of the accelerometer, for instance on chest or
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Table 2: Performance of lying pose classification using H/W, H/Hmax, D and max(σx, σz) descriptors.

True
Fall No Fall

E
st

im
at

ed
k-nn (3) Fall 901 0

Accuracy=99.92%
Precision=100%No fall 2 1492

Sens.=99.78% Spec.=100%

k-nn (5) Fall 901 2
Accuracy=99.83%
Precision=99.78%No fall 2 1490

Sens.=99.78% Spec.=99.87%

SVM Fall 903 4
Accuracy=99.83%
Precision=99.56%No fall 0 1488

Sens.=100% Spec.=99.73%

Table 3: Performance of fall detection on URFD data sequences.

Method
k-nn + acc. SVM + acc.

R
es

ul
ts

Accuracy 95.71% 94.28%
Precision 90.90% 88.24%

Sensitivity 100.00% 100.00%
Specificity 92.50% 90.00%

Table 4: Performance of fall detection on independent test data set.

Method
k-nn + acc. SVM + acc.

R
es

ul
ts

Accuracy 95.83% 91.67%
Precision 90.91% 83.33%

Sensitivity 100.00% 100.00%
Specificity 92.86% 85.71%

back do not diminish noticeably the detection performance.

8. Conclusions

In this paper we presented how to improve fall detection
by the use of depth and accelerometric data. In the proposed
architecture an accelerometer is utilized to indicate an even-
tual fall and the Kinect sensor is used to authenticate the fall.
We demonstrated that through the thresholding of acceleromet-
ric signal we can filter out a considerable number of non-fall
events. We then showed that a depth sensor can reliably dis-
tinguish between such filtered events and the falls. We then
demonstrated that owing to thresholding of the motion data we
can considerably reduce the computing overheads for process-

ing the depth data. In consequence, the depth maps are not pro-
cessed frame-by-frame, but instead a circular buffer is used to
store the depth maps for processing them in the case of possible
fall. We demonstrated that on our publicly available dataset for
evaluation of fall detection, the k-nn classifier achieves better
classification performance in comparison to linear SVM. We
also demonstrated that the proposed fall descriptor contributed
towards better fall detection performance. The presented em-
bedded system works 24/7 hours and days, permits reliable and
unobtrusive fall detection as well as preserves privacy of the
user.
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