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Abstract. In the presented system to person fall detection a body-worn
accelerometer is used to indicate a potential fall and a ceiling-mounted
depth sensor is utilized to authenticate fall alert. In order to expand
the observation area the depth sensor has been mounted on a pan-tilt
motorized head. If the person acceleration is above a preset threshold
the system uses a lying pose detector as well as examines a dynamic
feature to authenticate the fall. Thus, more costly fall authentication is
not executed frame-by-frame, but instead we fetch from a circular buffer
a sequence of depth maps acquired prior to the fall and then process
them to confirm fall alert. We show that promising results in terms of
sensitivity and specificity can be obtained on publicly available UR Fall
Detection dataset.
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1 Introduction

The main goal of user-centered ubiquitous computing is to sense changes in hu-
man environments in order to provide effective personal assistance. It is expected
that the use of ubiquitous computing and ambient intelligence can help to meet
the societal challenges posed by aging of population [1]. Smart home technology
[2] is considered as important part of the ubiquitous computing. One of the most
critical factors limiting the realization of ambient intelligence in broader scale is
limited number of cost-effective and energy-efficient devices for human activity
monitoring and/or power saving modules for ubiquitous computing. One of the
most promising areas of applications of the embedded vision is healthcare [3].
Particularly, embedded vision technology has strong potential to considerably
change the healthcare at home, for example through mobile phone applications
that monitor the user’s state of health and report it to a medical center.

With the aim to enable prolonged independent living in a safe and homely en-
vironment, automatic fall detection is an important task [4]. Inertial sensors such
as accelerometers and gyroscopes have proven to be very useful in the analysis of
motion patterns [5]. Compared to vision sensors, wearable inertial sensors offer
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advantages in terms of size, weight, ease of use and, most importantly, power
consumption and costs of use. They permit data collection outside of laboratory
environments and are considered as one of the best sensors for ubiquitous health
monitoring [3]. In context-aware systems various kinds of sensors are usually de-
ployed in the environment in order to detect falls. The most common sensors are
cameras, microphones, floor sensors and pressure sensors. One of their advan-
tages is that the person undergoing monitoring does not need to wear any special
device. A short time ago the Kinect’s sensor has been proposed to be employed
in fall detection [6][7][4]. As demonstrated in [6][7], the depth maps delivered by
Kinect are sufficient to delineate the person from the background. Moreover, due
to using speckle pattern of infrared laser light to estimate the dense depth maps,
the object detection can be done any time. A recent survey [4] discusses several
approaches to Kinect-based fall detection. However, the available algorithms do
not achieve both high sensitivity and specificity. By combining video or depth
maps and acceleration data, the detection of emergency situations [8][7] as well
as activity recognition [9] can be improved greatly.

2 Embedded system for fall detection

The system detects fall events on the basis of depth maps acquired by a ceiling-
mounted Kinect sensor as well as motion data, which is acquired by a body-
worn accelerometer. To expand the observation area a pan-tilt head is used to
rotate the Kinect and to follow a moving person. Initially, a nearest neighbor
interpolation is executed to fill the holes in the depth map and to get the map
with meaningful values for all pixels. The interpolation is based on the median
filter with a 5×5 window. To improve the delineation of the person in the depth
maps the algorithm extracts the floor and then removes their corresponding
pixels from the depth map. Given the extracted person’s blob in the last depth
map, the algorithm uses it as seed region in the subsequent region growing, which
is responsible for delineation of the person from the background depth map in
the current frame. Afterwards, a Support Vector Machine (SVM) is utilized
optionally to acknowledge the person presence within the depth blob. Then, the
center of gravity of the blob is determined. Finally, given the person’s centroid,
the pan-tilt head rotates the Kinect to keep the target in the central part of
the depth maps. Given the delineated person, lying pose and dynamic transition
classifiers are executed to raise alarm in case of fall event. The features describing
the dynamic transitions are calculated using depth maps, which are continuously
stored in a circular buffer. Thanks to the use of the accelerometer, the cascade
classifier responsible for fall detection is not executed frame-by-frame, but is
triggered only if a person acceleration is above a preset threshold, see Fig. 1.

A system for fall detection should to be as cheap as possible in order to
be affordable for the elderly. It should also be easy-to-install and consume least
amount energy. Hence, our system consists of inexpensive sensing devices such as
Kinect, an accelerometer worn on human body, a low-cost pan-tilt unit, and low-
cost PandaBoard at which the algorithms are executed. The PandaBoard was



Fig. 1. Block diagram of the embedded system for fall detection using depth maps and
body-worn accelerometer.

selected for the implementation of the application since it offers high performance
at a low cost with only 3.5 Watt power consumption under full load. The data
from the accelerometer are transmitted wirelessly to the processing unit. The
Kinect sensor (Asus Xtion Pro Live) is connected to the board via USB. The
microcontroller of the head is connected with the PandaBoard through I2C bus.

Figure 2 depicts sample images, which were captured by ceiling-mounted
Kinect. As we can observe, thanks to the pan-tilt head the observation area is
broaden. For the Kinect sensor mounted on the height of 2.6 m from the floor,
the observation area is about 5.5 m2. Owing to the use of the pan-tilt unit, the
Kinect is able to examine a room of average size, say 15-20 m2. The RGB images
are not processed and they are used only for visualization purposes.

Fig. 2. Example top-view images captured by Kinect mounted on pan-tilt head, RGB
images (top row), depth images (bottom row).

3 Person delineation using active pan-tilt depth sensor

The pursuing a moving person is achieved by a series of saccades of the pan-tilt
head to keep the detected object in central part of permanently acquired depth
maps. The object position is expressed as the centroid of the delineated area.
Below we detail the depth region growing that delineates the person undergoing
tracking in maps acquired by an active camera. We also present an algorithm
that supports locating the person’s head in case of region chaining.

3.1 Delineation of person using region growing

The person is delineated from the background assuming that he/she occupies an
integrated region in 3D space. Owing to extracting the floor in advance, we avoid



incorporating of the neighboring pixels from the floor into the person region. The
developed depth region growing starts with selecting a seed point in a current
frame. Assuming that there is a common depth region between regions belonging
to a person in two consecutive frames, such seed region is determined using
the and operator between the previously delineated depth region belonging to
person and the current depth map. Afterwards, the algorithm repeatedly seeks all
neighboring pixels of the current region. The selected pixels are sorted according
to their depth similarities and then they are stored in a list of candidate pixels.
The depth similarity is the Euclidean distance between the depth values of a
pixel from such a list and its closest pixel from the current region. It is employed
in order to verify if a neighboring pixel around a region pixel is allowed to be
merged with the region.

3.2 Finding human in depth maps

Ordinary region growing algorithms suffer from the problem of region chaining
(overspill), which occurs when two regions are grown into one region while they
are actually separated from each other, see also Fig. 3a. In order to improve
the delineation of the person in such situations as well as to improve the pur-
suing of the person by the active camera, we execute a person detector. The
detector permits also automatic initialization of person tracking. The person de-
tection is done by a SVM for linear classification that is built on Histogram of
Oriented Depths (HOD) features [10]. The HOD descriptors locally encode the
orientation of depth changes, see Fig. 3c. In our approach they are calculated in
sub-windows, which are scaled according to their distances to the camera. The
scaling is according to the distance between the camera and the closest pixels
from the sub-window. Such sub-windows of fixed size are then subdivided into
cells. The descriptors are calculated for each cell and then the oriented depth
gradients are collected into 1D histograms.

a) b) c)

Fig. 3. Illustrative oversegmentation of the person blob a), extracted head b) and
corresponding HOD c).

4 Feature extraction

At the beginning of this Section we show how we indicate falls on the basis
of motion data. Afterwards, we discuss lying pose recognition in depth maps



acquired by the overhead depth sensor. Finally, we present features describing
dynamic transitions.

4.1 Fall indicating using body-worn accelerometer

Compared to vision-based motion analysis systems, wearable sensors offer sev-
eral advantages, particularly in terms of cost, ease of use and, most importantly,
portability. They are the only sensors that are used in real fall detection systems
as well as outside of laboratory. However, despite many advantages, the inertial
sensors-based technology does not meet the seniors’ needs, because some activ-
ities of daily living are erroneously reported as falls. Present smartphones serve
not only as communication and computing devices, but they also come with a
rich set of embedded sensors, such as accelerometer, gyroscope and digital com-
pass. Therefore, increasing interest on using this technology for fall detection is
observed and the number of relevant papers grows considerably. Being aware of
shortcomings of current solutions we believe that such technology will be sig-
nificantly enhanced and in combination with small devices like smart watches
it will be very useful in fall detection. Thus, our system processes data from a
wireless body-worn accelerometer.

A lot of different techniques for inertial sensors were proposed to achieve reli-
able fall detection [5]. Frequently, a single body-worn sensor (tri-axial accelerom-
eter or gyroscope, or both embedded in an IMU) is used to indicate person fall.
Tri-axial accelerometer is the most commonly used device. The accelerometer-
based algorithms raise the alarm when the signal reaches a certain threshold
value. In [11] an accelerometer-based algorithm, relying on change in body ori-
entation has been proposed. It signals potential fall if the root sum vector of the
three squared accelerometer outputs exceeds an assumed threshold.

In our algorithm a fall is indicated if the Total Sum Vector SVtotal is greater
than 2.5 g. The value of SVtotal has been calculated in the following manner:

SVtotal(t) =
√
A2

x(t) +A2
y(t) +A2

z(t) (1)

where Ax(t), Ay(t), Az(t) is the acceleration in the x−, y−, and z−axes at time
t, respectively. The SVtotal contains both the dynamic and static acceleration
components, and thus it is equal to 1 g for standing. The sensor signals were
acquired at a frequency of 256 Hz and resolution of 12 bits. A survey of the
relevant literature reveals that for a single inertial device the most valuable
information can be obtained for devices attached near the centre of subject
mass. Therefore, the accelerometer was attached near the spine on the lower
back using an elastic belt around the waist.

4.2 Lying pose recognition

The lying pose has been distinguished from ADLs using classifiers trained on fea-
tures representing the extracted person in the depth maps. We selected 214 maps
from UR Fall Detection (URFD) dataset1 with normal activities like walking,

1 http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
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sitting down on a chair, taking or putting an object from floor, bending right.
Such representative images were then used to train a k-NN classifier and a linear
SVM classifier responsible for checking whether a person is lying on the floor.
Both classifiers have been trained on three features:

– H/Hmax - a ratio of head-floor distance to the height of the person

– area - a ratio expressing the person’s area in the image to the area of the blob
at assumed distance to the camera, representing a top-view of the person

– l/w - a ratio of major length to major width of a blob representing the person
on the depth image.

4.3 Dynamic transitions for fall detection

Person fall entails an abrupt and significant change of head-floor distance with
accompanying change from a vertical orientation to horizontal one. The distance
of the person’s centroid to the floor also changes significantly and rapidly during
the accidental fall period. In the images acquired from a ceiling-mounted camera
the area ratio also changes considerably in the case of the fall. Thus, through
analysis of the cues above mentioned we can determine whether a transition of
the body is intentional or not.

In order to incorporate the information about the speed of the head towards
the floor we utilize the following ratio:

h(t) =
H(t)

H(t−∆T )
(2)

where H(t) is determined in the moment of the impact, and H(t − ∆T ) is
calculated ∆T before the fall. It quite reliably characterizes the dynamics of
the fall using a ceiling-mounted Kinect. In the depth images from an overhead
camera the peak value of H(t)/H(t−∆T ) is far below one. The ratio H(t)/H(t−
∆T ) can also be determined by analysis of depth image pairs and searching for
some local minima, which are below a threshold value. However, the use of
accelerometer as indicator of the potential fall simplifies calculation of this ratio
since the time t can be determined easily and with low computational cost.
Figure 4 demonstrates sample plots of H(t)/H(t −∆T ) for accidental fall and
intentional lying on the floor. As we can observe, for ∆T equal to 600 ms the
Threshold that is set to 0.6 has been exceeded for the fall.

If the lying pose classifier has decided that person is lying on the floor, the
threshold-based classifier is executed to examine if the dynamic transition of the
head in the depth maps is smaller than 0.6. Thus, the final decision about the
fall is taken by the chain of the classifiers. The discussed chain of the classifiers
consists of accelerometer based classifier deciding about the potential fall, as
well as lying pose and dynamic transition classifiers, which take decisions on the
basis of the depth maps. The resulting fall detection classifier has lower false
positive rate.



Fig. 4. H(t)/H(t−∆T ) vs. time for fall and intentional lying pose.

5 Real-time data processing

The fall detection system runs under Linux operating system. The application
executes five main concurrent processes that communicate via message queues.
The message queues provide asynchronous communication between processes.
The first process is accountable for acquiring motion data from the wearable
device, the second one acquires depth maps from the Kinect, third process is
responsible for preprocessing inertial and depth data, fourth one is accountable
for person tracking and camera control, whereas the fifth process is responsible
for data classification and triggering the fall alarm. The dual-core processor of
the utilized PandaBoard allows parallel execution of acquisition and processing
processes. The motion data are acquired with 256 Hz and transmitted wirelessly
via Bluetooth to the processing device. The depth images are acquired using
OpenNI (Open Natural Interaction) library with a frame rate up to 30 fps.

The region growing is executed in 37 ms, on average. This means that the
person detection and tracking can be done with 25 Hz. The SVM-based classifier
for distinguishing between falls and non-falls has been trained off-line on a PC.
It has been trained using LIBSVM software [12]. The SVM model obtained
in such a way has been used to implement the fall predictor, executed on the
PandaBoard. The principle behind k-NN methods is to seek a predefined number
of training samples closest in a distance to the classified example, and then to
predict the label from these. This means that the k-NN algorithm does not learn
anything from the training data and just utilizes the training data itself for the
classification. As a result, there is no learning cost and all the cost is dedicated
to determining the decision. A naive neighbor search implementation involves
the brute-force computation of distances in D dimensions between the current
example and all instances in the dataset. To handle computational burden of
the brute-force neighbor search, the kd-tree data structure has been used to
store the ADL and fall examples. Given such a data structure determined in
advance during training, the nearest neighbor of an example in question can be
determined with only O(log(N)) distance computations.



6 Experimental results

A system for fall detection should be inexpensive, ought to preserve user’s pri-
vacy, work any time, and in particular it should exhibit both high sensitivity
and specificity. The discussed system has been designed to fulfill the require-
ments mentioned above. A high detection accuracy has been achieved through
scrupulous selection of the ingredients of the system as well as arrangement of
scenarios for training and evaluation. In the subsequent subsections we present
the dataset, evaluation results of the fall detector, and performance of person
detector and tracker.

6.1 Fall detection dataset

The fall detector has been trained and evaluated on image sequences from URFD
dataset. The dataset contains both depth images and acceleration data acquired
by body-worn accelerometer [13]. The depth data were acquired by a ceiling-
mounted Kinect Xbox 360 with 30 fps, whereas the motion data were acquired
by x-IMU device with sampling rate of 256 Hz. The motion data contains the
acceleration over time in the x−, y−, and z−axes together with the precalculated
SVtotal values. The x-IMU device was worn near the pelvis. All depth images
are synchronized with motion data. Thirty simulated falls were recorded by
two static Kinect devices. The first Kinect was situated in front of the scene
and placed at the height of about 1 m, whereas the second ceiling-mounted
Kinect was placed at the height of 2.6 m. The dataset recorded by the ceiling-
mounted Kinect contains thirty image/acceleration sequences with 30 falls. The
total number of the frames amounts to 3000. Two kinds of falls were simulated
by five persons, namely from standing position and from sitting on the chair. The
part of dataset, which was recorded by the frontal Kinect additionally contains 40
image/acceleration sequences with typical ADLs sitting down, crouching down,
picking-up an object from the floor, and ten sequences with fall-like activities as
quick lying on the floor and lying on the bed/couch.

6.2 Evaluation of the fall detector

The fall detection system can be configured to utilize both accelerometric and
depth data or depth data only. When the accelerometer is involved at indicating
that the person’s movement is above some preset threshold, the impact can be
detected more reliably in comparison to configuration using only depth data.
The results are better since the depth map analysis is used to confirm the fall
detection hypothesis indicated on the basis of examination of acceleration data
from body-worn device. The use of the accelerometer as an indicator of the
potential fall simplifies also the extracting of the dynamic features since the
time of the impact can be determined easily, see also (2).

At the beginning we conducted experiments to determine acceleration thresh-
olds for fall detection, using accelerometric measurements. Two voluntary sub-
jects performed typical daily activities consisting in walking, taking or putting



Table 1. Performance of lying pose detection on depth maps from URFD dataset [%].

True

Fall No Fall

E
st

im
a
te

d
SVM

Fall 244 9
Accuracy=97.52%
Precision=96.44%No fall 4 268

Sens.= 98.39% Spec.= 96.75%

k-NN
Fall 244 10

Accuracy=97.33%
Precision=96.06%No fall 4 267

Sens.= 98.39% Spec.= 96.39%

an object from floor, bending right or left to lift an object, sitting down on a
chair, tying laces, crouching down and lying. Simulated falls (forward, backward,
and lateral) were performed in an office towards a carpet with thickness of about
2 cm. The accelerometer was worn near the spine on the lower back using an
elastic belt around the waist. For the carried out daily activities during half an
hour experiment the acceleration values 2.5 − 3g were exceeded several times.
Hence, large amounts of false alarms would be triggered if the fall detection was
carried out only on the basis of the acceleration data. One of the conclusions from
the discussed experiments is that the acceleration threshold set to 2.5 allows us
to indicate all fall and fall-like activities as non-ADLs.

The algorithm for lying pose recognition has been evaluated on 875 repre-
sentative images from UR Fall Detection Dataset of which 60% were training
examples. Since the discussed sequences were recorded using the static sensor,
the person has been delineated through the differencing the current depth map
from the depth reference map [7]. The depth reference maps were extracted in ad-
vance. A linear SVM and a k-NN with 5 neighbors classifiers have been trained
on features discussed in Section 4.2 to discriminate between falls and ADLs.
In Tab. 1 are shown results, which were obtained by the classifiers mentioned
above. As we can notice, the results achieved by k-NN and SVM-based lying
pose detectors are identical. They are promising in terms of both sensitivity and
accuracy.

Afterwards, we evaluated the usefulness of the dynamic feature. The experi-
ments aimed at improving the distinguishing between the intentional lying on the
floor from the accidental falling. At the beginning we investigated the classifica-
tion accuracy with regard to decision criterions. Figure 5 depicts the receiver op-
erating characteristic (ROC) curve for the dynamic feature, which illustrates the
performance of a binary classifier for varying discrimination threshold. The best
classification accuracy has been obtained for ∆T=500 ms and Threshold=0.525.
Two students attending in the evaluations found that a cascade classifier con-
sisting of lying pose detector and dynamic transition detector has almost null
ratio of false alarms. They found that the main reason of the false alarms is



imperfect detection of the moment of the body impact. The cascade classifier
combined with the accelerometer demonstrated null false alarm. In particular,
all falls were detected properly on the images from URFD dataset.

Fig. 5. Receiver operating characteristic (ROC) for dynamic feature.

6.3 Evaluation of person detector and tracker

When a static ceiling-mounted camera is used, the person can be extracted
reliably and with low computational burden through differencing the current
depth map from the accommodated on-line depth reference map of the scene [7].
On the basis of such a depth reference map the person can be extracted in about
50 ms. However, as mentioned previously, the observation area of ceiling-mounted
Kinect is quite small. Thanks to pan-tilt capabilities the monitoring area of the
system can be extended considerably. On the other hand, more sophisticated
and time consuming techniques are needed to delineate the person followed by
an active camera.

Initially, the region growing has been evaluated in depth maps from URFD
dataset. In all frames the person was extracted satisfactorily. Afterwards, the
region growing has been evaluated on five sequences acquired by the active cam-
era. In the discussed experiments with active camera, the aim was not only to
extract in real-time the person, but also to keep he/she in the central part of
the depth maps. Prior to the delineation of the subject using region growing,
the camera was static for a while, and he/she was initially extracted through
differencing the current depth map from the depth reference map of the scene. In
all frames from the utilized sequences, including maps with intentional falls, all
main body parts were extracted. Figure 6 depicts some results with delineated
person, which were obtained on depth images acquired by the active camera. As
we already mentioned, on the PandaBoard the average time of person delineation
using region growing is from 35 ms to 40 ms depending on the blob size. Sample
video illustrating person tracking with the pan-tilt depth camera can be found
at the following url: http://fenix.univ.rzeszow.pl/~mkepski/demo/act.mp4.

http://fenix.univ.rzeszow.pl/~mkepski/demo/act.mp4


Fig. 6. Region growing - based person delineation on depth maps.

The person detector has been evaluated on 254 positive samples and 638 neg-
ative samples of which 60% were used for training. The images with delineated
person were scaled according to distance of his/her head to the camera. They
were also rotated to a canonical pose using the axis of the person’s blob. Table 2
shows results that were obtained using the detector discussed in Section 3.2. As
we can observe, the results are better if the silhouettes are rotated to the canon-
ical pose. On the other hand, the difference is not significant, and this means
that the algorithm is quite resistant to various head poses. This is because the
gradients on the head in depth images seen from an overhead camera form ellip-
tical like structures. The discussed results were obtained for HOD cell size equal
to 8 × 8. On the PandaBoard a single person detection can be done in 41 ms.

Table 2. Performance of person detection [%].

accuracy precision sensitiv. specificity

rotat. 99.45 98.21 100.0 99.22

no rotat. 98.91 98.18 98.18 99.22

As we mentioned in Subsection 3.2, in some circumstances, during person
extraction on the basis of the region growing a person oversegmentation can
take place. In such situations the person detector has been found to be useful
since it helps to authenticate location of the person in such oversegmented depth
maps. Let us consider a fall scenario, where a person is seating at the chair and
is oversegmented as demonstrated on Fig. 3a. After the fall we have time t that
is indicated by the threshold-based trigger. We then fetch a depth image from
the circular buffer, which had been acquired 600 ms earlier. For simplicity, let
us assume that this is image depicted on Fig. 3a. Given such a depth image,
we execute HOG-SVM head detector to determine the location of the centroid
of the head blob. After a while, i.e. max after a few seconds, we can determine
H(t)/H(t − ∆T ). Even if after the fall the person is still oversegmented, we
can determine H(t) easily because a lying person occupies areas below 40 cm
from the ground. This way, we avoid to perform fall detection on features not
belonging to person undergoing monitoring.



7 Conclusions

In this paper we presented an embedded system for fall detection using a ceiling-
mounted depth sensor. In the proposed architecture a body-worn accelerometer
is utilized to indicate an eventual fall, whereas the Kinect sensor is used to
authenticate it. In order to expand the observation area the Kinect has been
mounted on a pan-tilt head. We demonstrated that owing to thresholding of the
motion data we can considerably reduce the computing overheads for processing
the depth data. We then showed that a depth sensor can reliably distinguish
between such filtered events and the falls. In consequence, the depth maps are
not processed frame-by-frame, but instead a circular buffer is used to store the
depth maps for processing them in the case of possible fall. The detection per-
formance of the system has been evaluated on UR Fall Detection dataset. The
presented embedded system works 365/7/24 days and hours, permits reliable
and unobtrusive fall detection as well as preserves privacy of the user.
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