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Abstract

In this paper we present a new approach for reliable fall detection. The fuzzy system consists of two input Mamdani
engines and a triggering alert Sugeno engine. The output of the first Mamdani engine is a fuzzy set, which assigns
grades of membership to the possible values of dynamic transitions, whereas the output of the second one is another
fuzzy set assigning membership grades to possible body poses. Since Mamdani engines perform fuzzy reasoning on
disjoint subsets of the linguistic variables, the total number of the fuzzy rules needed for input-output mapping is far
smaller. The person pose is determined on the basis of depth maps, whereas the pose transitions are inferred using
both depth maps and the accelerations acquired by a body worn inertial sensor. In case of potential fall a threshold-
based algorithm launches the fuzzy system to authenticate the fall event. Using the accelerometric data we determine
the moment of the impact, which in turn helps us to calculate the pose transitions. To the best of our knowledge, this
is a new application of fuzzy logic in a novel approach to modeling and reliable low cost detecting of falls.
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1. Introduction

Human behavior understanding is becoming one of
the most active and extensive research topics in artifi-
cial intelligence and cognitive sciences. Automatic ac-
tivity recognition is a process the objective of which is
to interpret the behavior of the observed entities in or-
der to generate a description of the recognized events
or to raise an alarm. The capture of data associated to
these entities can be achieved by sensors such as cam-
eras that collect images of a specific scene, or inertial
sensors that measure physical quantities of the moving
object regardless of illumination or scene clutter. One
of the biggest challenges in decision making about the
alarm on the basis of such sensor readings is to cope
with uncertainty, complexity, unpredictability and am-
biguity [1][2].

Traditional machine learning techniques pose some
limitations in modeling human behavior due to the lack
of any reference to the inherent uncertainty that human
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decision-making has. On the other hand, fuzzy logic
poses the ability to imitate the human way of thinking
to effectively utilize modes of reasoning that are rough
rather than exact. With fuzzy logic we can indicate map-
ping rules in terms of linguistically understandable vari-
ables rather than numbers. Processing the words gives
us the opportunity to express imprecision, uncertainty,
partial truth and tolerance [3]. In consequence, fuzzy
logic-based inference engines are capable of achieving
robustness and close resemblance with human-like de-
cision making in ambiguous situations.

Recognition and monitoring of Activities of Daily
Living (ADLs) is important ingredient of human be-
havior understanding [4] [5][6]. Several approaches
have been proposed to distinguish between activities of
daily living and falls [7][8][9][10]. Falls are a major
health risk and a significant obstacle to independent liv-
ing of the seniors and therefore significant work has
been devoted to ensure robustness of assistive devices
[11]. However, regardless of a lot of efforts undertaken
to obtain reliable and unobtrusive fall detection, current
technology does not meet the seniors’ needs. The main
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cause for not accepting of currently available technol-
ogy by elderly is that the existing devices generate too
much false alarms. In consequence, some ADLs are
mistakenly indicated as falls, which in turn leads to sub-
stantial frustration of the users of such devices.

The most common method for fall detection consists
in using a body-worn tri-axial accelerometer and prov-
ing whether acceleration’s amplitude crosses a fixed
threshold [12]. Typically, such algorithms distinguish
poorly between activities of daily living and falls, and
none of which is commonly accepted by elderly. The
main reason of poor separability and high false ratio of
devices using only accelerators is lack of adaptability
together with insufficient capabilities of context under-
standing. In order to improve the recognition perfor-
mance the use of both accelerometer and gyroscope has
been investigated by several research groups [13][14].
However, it is not easy to achieve low false alarm ratio
since several ADLs like quickly lying down on a bed
share similar kinematic motion patterns together with
real falls. It is worth noting that despite of several short-
comings of the wearable devices for fall detection, the
discussed technology has a great potential to provide
support for seniors. It is also the only technology that
was successfully used in large scale collection of motion
patterns for research in the field of fall detection. Nowa-
days wearable devices like smart watches, which are
frequently equipped with miniature inertial sensors, are
unobtrusive and can deliver motion data during dressing
up, bath as well as standing up the bed, i.e. during criti-
cal phases, in which considerable number of accidental
falls and injuries take place.

Several methods have been developed so far to detect
falls using various kinds of video cameras [15][2][16].
In general, video-based fall detection systems show
some potential and reliability in detecting falls in pub-
lic places. However, in home environments the RGB
cameras are less useful since they do not preserve pri-
vacy. Moreover, video camera-based algorithms can-
not extract the object of interest all time of the day, es-
pecially in dark rooms. As indicated in [2], such al-
gorithms only work in normal illumination conditions,
whereas the fall risk of adults is much larger in low
lighting conditions. For that reason, in [15][2] in order
to recognize different activities in various environments,
both controlled as well as unstructured, an infrared illu-
mination was utilized to enable the web cameras to de-
liver images of sufficient quality in poor lighting condi-
tions. It is also worth noting that the currently available
prototype devices require time for installation, camera
calibration and they are not cheap since a considerable
computational power is needed to execute in real-time

the time consuming algorithms. While these techniques
might give good results in several scenarios, in order
to be practically applied they must be adapted to non-
controlled environments in which neither the lighting
nor the subject undergoing tracking is under full super-
vision. Additionally, the lack of depth information can
lead to lots of false alarms.

Recently, Microsoft introduced the Kinect sensor,
which delivers dense depth maps under difficult light-
ing conditions. This motion sensing device features an
RGB camera and depth sensor, which consists of an in-
frared projector combined with a monochrome CMOS
sensor capturing 3D data under any ambient light con-
ditions with not direct natural illumination. The depth
information is then utilized to estimate a skeletal model
of any humans in Kinect’s view using a Random Forest
classifier, which assigns each pixel as being a body part
or background [17]. The RGB camera data is not used
for this due to its high variability in poor lighting condi-
tions. Pixels corresponding to each body part are then
clustered and fitted to a skeletal model on a frame-by-
frame basis. The Kinect has strong potential in human
behavior recognition in a wide range of illuminations,
which occur during a typical 24-hour day-night cycle.
Depth information is very important cue since the enti-
ties may not have consistent color and texture but they
must occupy an integrated region in the 3D space. In
particular, owing to this property the person can be reli-
ably extracted at low computational cost.

In the area of fall detection, the Kinect sensor has
been introduced quite recently [18][14][10]. In [18], an
overall fall detection success rate of 98.7% has been ob-
tained using the distance of gravity center to floor level
and velocity of a moving body. In [14], we presented
a method for fusing the features extracted on the depth
maps with data from inertial sensors. A Takagi–Sugeno
(TS) fuzzy inference system has been used to trigger a
fall alarm using the information about person’s motion
and the distance of gravity center to the floor. The dis-
cussed methods are resistant to changes of light condi-
tions since they utilize the center of the gravity, which
is extracted on depth maps only. As demonstrated in re-
cent work, fusion of depth camera and body-worn iner-
tial sensors can improve recognition of human activities
[19] as well as detection of nocturnal epileptic seizure
[20]. However, as indicated in [21], although there al-
ready exist several methods to detect human activities
based either on wearable sensors or on cameras, there is
little work that is devoted to combining the two modal-
ities. In [22], a two-stage system is used for fall detec-
tion. The first stage is responsible for characterizing the
vertical state of a segmented 3D object for individual
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frames, and events through a temporal segmentation of
the vertical state time series of the tracked 3D objects.
In the second stage the system employs an ensemble
of decision trees and the features extracted from an on
ground event to acknowledge belief that a fall preceded
it. Overall, the depth information is very advantageous
in real-time tracking of human faces [23], since the head
trajectories resulting from the tracking are very useful in
behavior recognition, particularly in fall detection [24].

In our previous work [14], the acceleration data from
the accelerometer, the angular velocity data from the gy-
roscope, and the center of gravity data of a moving per-
son that was determined on the basis of Kinect depth
maps were used as inputs in a fuzzy inference module
to fuse information and then to generate alarms when
falls occurred. The work described in here builds on that
previous research by rebuilding the fuzzy engine and ex-
tending it about new modules. The system uses an ac-
celerometer and depth data. Instead of using a single in-
ference module, we utilize two input fuzzy inference en-
gines, which are responsible for inferring separately the
static poses and dynamic transitions, and which outputs
are used by the output fuzzy engine, enhancing the con-
fidence of the inference. In consequence, multiple inde-
pendent measurements and the corresponding features
are authenticated by the measurements of the another
sensor as well as different features. This way a coop-
erative arrangement emerges and confidence of the fall
alert is enhanced. This is because static actions such as
lying on the floor are different from dynamic transitions,
and in particular different measurements are needed to
describe them. As a result, considerably smaller number
of rules is required to describe how the Fuzzy Inference
System (FIS) should make a decision regarding classi-
fying the input data.

To overcome difficulties related to the high dimen-
sional input spaces, an idea of hierarchical fuzzy sys-
tems has been proposed in [25]. Based on discussed lin-
ear hierarchical structure, in which the number of the
rules increases linearly with the number of the input
variables, it has been proven in [26] that hierarchical
fuzzy systems are universal approximators. However,
such hierarchical fuzzy structures can become universal
approximators only when there is sufficient number of
free parameters. In [27] it has been proven that univer-
sal approximation property can be obtained by increas-
ing the number of hierarchical levels. Our approach dif-
fers from the above approaches since in the input level
we utilize fuzzy reasoning on disjoint subsets of the lin-
guistic variables, which express different modalities of
the observations. In contrast to these hierarchical mod-
els as well as hierarchical structure of rules [28], our

output engine does not operate on raw input variable(s),
but it only operates on fuzzy sets and the membership
grades inferred at the preceding level of knowledge ex-
traction.

The next contribution of this paper is employing the
information about the time of impact to extract very
informative temporal features. Thanks to relatively
high sampling rate of the accelerometer the system pre-
cisely determines the time instants characterizing the
fall, which are then used to calculate depth map-based
temporal features. We demonstrate experimentally that
such features are very informative as well as that fu-
sion and manipulation of linguistic variables and rules
is easy. Our modular system reduces cost and has flexi-
bility, increased system reliability and good scalability.
The subsequent contribution is our fuzzy architecture
with reduced power consumption. Owing to combina-
tion of crisp and fuzzy relations, i.e. alerts produced
by the accelerometer in case of rapid motion, there is
no need to perform fuzzy inference frame-by-frame. In-
stead, we collect the depth maps in a circular buffer and
process them if there is evidence of a fall. Reduced
power consumption was a key feature to be incorporated
into the system design. The resulting easy-to-install fall
detection system is unobtrusive and preserves privacy,
and operates all time of the day.

The contribution of this work is a fuzzy inference
system consisting of fuzzy inference subsystems, which
are responsible for drawing conclusions about the static
poses and dynamic transitions. The accelerometer fil-
ters at low computational cost slow motions and gives
time stamps at which depth-based features describing
rapid motion should be calculated. The proposed lin-
guistically understandable classifiers can be generalized
to other applications especially when sensor fusion is
involved. The proposed method is general and can be
used to fuse heterogeneous sensors.

Surprisingly from our findings, there is very minimal
or almost no research that had tackled the problem of
activity recognition on the basis of different modalities
using the fuzzy approach. Fuzzy logic has been used
in several systems for human fall detection. In [29], a
fuzzy logic-based posture recognition method identifies
four static postures with an accuracy of 74.29% on 62
video sequences. The algorithms can detect emergency
situations such as a fall within a health smart home. An
approach [30] uses fuzzy logic to generate on ground,
in between, and upright state confidences from the body
orientation and the spine height features. The confi-
dences are then thresholded to trigger a fall alarm. With
one false alarm the fall detection accuracy of 98.6% was
reported on a set of 40 falls and 32 non-falls collected
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in a laboratory setting. The method relies on skeletal
joint data, which can be extracted by Microsoft Kinect
SDK/OpenNI. However, as indicated in [22], the soft-
ware for skeleton extraction has a limited range of the
skeletal tracking, approximately 1.5 to 4 meters from
the motion sensor. Such range is insufficient to cap-
ture falls in many areas of typical senior rooms. More-
over, in many typical ADLs the Kinect has difficulties
in tracking all joints [31]. Thus, recent systems for re-
liable fall detection [14][2][32] do not take into account
the Kinect RGB images and only rely on depth maps to
delineate the person(s).

The remaining part of this paper is organized as fol-
lows. In Section 2 we outline the architecture and main
ingredients of the fuzzy system. Section 3 is devoted to
presentation of data processing. In Section 4 we discuss
descriptors that are used to distinguish between falls and
daily activities. Section 5 presents the fuzzy system.
Experimental results are discussed in Section 6. Sec-
tion 7 provides concluding remarks.

2. Architecture and Main Ingredients of the System

Although fuzzy inference has already been used to
provide reliable representation of person falls, our ap-
proach differs significantly from the most significant
work in this area [33][2] in several aspects. First of
all, the final decision is taken on the basis of reason-
ing from a fuzzy knowledge and two linguistic vari-
ables, which are described by fuzzy sets, provided by
two Mamdani-type fuzzy engines. Each engine is re-
sponsible for extracting different kinds of knowledge
for later reasoning by a Sugeno-type fuzzy inference
engine, which provides a crisp decision on either fall
on no-fall. The first fuzzy engine performs reasoning
about human pose, whereas the second one is responsi-
ble for reasoning about motion of the person. Secondly,
two different sensors providing necessary redundancy
are fused using fuzzy rules. Thirdly, the reasoning is
done not for every frame, but it is executed only in case
of a possible fall, which is detected with low compu-
tational cost through thresholding of the accelerometric
data, see Fig. 1. The data needed to perform the infer-
ence about the speed of the pose transition are stored
in a circular buffer, which delivers them to authenticate
a possible fall event if necessary. Thanks to use of the
disjoint linguistic variables in the first stage we reduced
the computational overheads. Such a processing archi-
tecture has been designed to consume least amount en-
ergy while achieving reliable fall detection in real-time.

Figure 1: Diagram of the fuzzy system for reliable fall detection.

3. Data Processing

At the beginning of this Section we discuss how the
accelerometric data are used to trigger the processing of
the depth maps. Afterwards, we present processing of
depth data.

3.1. Triggering the Processing of Depth Images

On the basis of the data acquired by the IMU (Iner-
tial Measurement Unit) device the algorithm indicates a
potential fall. The decision is taken on the basis of the
thresholded total sum vector S Vtotal, which is calculated
from the sampled data in the following manner:

S Vtotal(t) =

√
A2

x(t) + A2
y(t) + A2

z (t) (1)

where Ax(t), Ay(t), Az(t) is the acceleration in reference
to the local x−, y−, and z−axes at time t, respectively. It
contains both the dynamic and static acceleration com-
ponents, and thus it is equal to 1 g for standing.

Figure 2 illustrates sample plots of acceleration
change curves for falling along with daily activities like
going down the stairs, picking up an object, and sit-
ting down – standing up. As we can observe on the
discussed plots, during the falling phase the accelera-
tion attained the value of 6 g, whereas during walking
downstairs it attained the value of 3 g. As we already
mentioned, it is equal to 1 g for standing. The sensor
signals were acquired at a frequency of 256 Hz and res-
olution of 12 bits. The data were acquired by x-IMU
device [34], which was worn near the pelvis by a mid-
dle aged person. Such placement of the inertial device
has been chosen since this body part represents the ma-
jor component of body mass and undergoes movement
in most activities.

In practice, it is not easy to construct a reliable fall
detector with almost null false alarms ratio using the
inertial data only. Thus, our system employs a simple
threshold-based detection of falls, which are then veri-
fied through fuzzy inference on both depth and accelero-
metric data. The critical issue in threshold-based ap-
proach is the selection of a appropriate threshold since
if the value is too high the system (having sensitivity
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Figure 2: Acceleration over time for walking downstairs, picking up
an object, sitting down - standing up and falling.

< 100%) might miss some real falls but never triggers
false alarms (with 100% specificity), while if the thresh-
old value is too low the system will detect all actual falls
(100% sensitivity) but, at the same time, it may trigger
some false alarms (specificity < 100%). Thus, choos-
ing the threshold for accelerometric data to be utilized
in a fall detector is a compromise between sensitivity
and specificity. In our approach, if the value of S Vtotal

is greater than 3 g then the system begins the extraction
of the person and then executes fuzzy inference engine
responsible for the final decision about the fall. Since
the smallest acceleration measured from a fall is about
3 g [35], the assumed threshold allows us to filter all
falls for further depth-based authentication.

3.2. Processing of Depth Data

The depth maps acquired by the Kinect sensor are
continuously stored in a circular buffer. In a basic mode
of person extraction, the depth image sequence from the
circular buffer is utilized to extract a depth reference im-
age, which is in turn employed to delineate the person.
The extraction of the person is achieved through differ-
encing the current depth image from such a depth ref-
erence image. In the current implementation the depth
reference image is updated on-line, which makes possi-
ble to perform fall detection in dynamic scenes. Each
pixel in the depth reference image assumes a temporal
median value of the past depth values from the circular
buffer. In the initialization stage the system collects a
number of the depth images, and for each pixel it assem-
bles a list of the pixel values from the former images,
which is then sorted in order to determine the tempo-
ral median. Given the sorted lists of pixels the depth

reference image of the scene can be updated quickly by
removing the oldest pixels and updating the sorted lists
with the pixels from the current depth image and then
extracting the median value. For typical human mo-
tions and typical scene modifications, for instance, as
a result of a movement of a chair, satisfactory results
can be attained on the basis of fifteen depth maps. In
order to avoid enclosure of the person into depth ref-
erence image, for example, if he/she is at standstill for
a while, we take every fifteenth depth image acquired
by the Kinect sensor. This means that for Kinect sen-
sor acquiring the images at 30 Hz, the depth reference
image is entirely refreshed in 7.5 seconds. The person
is extracted with 30 fps through differencing the current
depth image from the depth reference image updated in
such a way.

In the basic mode of person extraction, in order to
prevent disappearance of the person (on the binary im-
age indicating the foreground objects) if he/she is not
in motion for a while, i.e. to avoid assigning the per-
son to the depth reference map, we perform updating of
the depth reference image only when the person is in
motion. The scene change can be inferred on the basis
of differencing the consecutive depth maps, which is in
fact the simplest method of motion detection.

Since the person is the most important subject in the
fall detection, we consider also motion data from the ac-
celerometer to sense the person’s movement and scene
changes. When the person is at rest, the algorithm ac-
quires new data. If the person is not at rest during
assumed in advance period of time, the algorithm ex-
tracts the foreground and then it determines the con-
nected components to decide if a scene change took
place. In the case of the scene change, for example,
if a new object appears in the scene, the algorithm up-
dates the depth reference image. We assume that the
scene change takes place, when two or more blobs of
sufficient area appear in the foreground image. If no
substantial scene change is detected then there is no ne-
cessity to update the scene reference depth map, and in
such a case the algorithm acquires a new depth map.
As mentioned in the previous subsection, the person is
detected on the basis of depth images updated in such
a way only if S Vtotal exceeds the threshold. Prior to the
person detection the system examines if the depth image
has been updated on the basis of minimum ten consec-
utive images acquired before the fall, i.e. whether the
depth image has been refreshed for the duration of five
seconds preceding the beginning of fall. If not, the sys-
tem takes the depth images from the circular buffer and
updates the depth reference map. In order to cope with
such circumstances we continuously store in the circu-
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lar buffer 150 depth images. If the depth image has not
been properly refreshed just before the fall the alarm is
triggered with the delay.

It is worth noting that the procedure responsible for
extraction of the depth reference map can be replaced
by a block executing another algorithm, for instance re-
lying on the well-known mixture of distributions [36],
which were recently used to delineate the person in a
system for fall detection [22]. Figure 3 depicts sample
depth maps and binary images with the extracted per-
son. As already mentioned, in order to preserve the pri-
vacy of the user as well as to make the system ready to
work any time, the RGB images corresponding to the
depth maps are not acquired by our fall detection sys-
tem.

Figure 3: Delineation of person using depth reference image. RGB
images (left), depth (middle) and binary images depicting the delin-
eated person (right).

As illustrated on Fig. 4, in certain circumstances the
algorithm presented above can oversegment the person.
When the algorithm detects such an oversegmentation
it switches from the basic mode of person extraction to
region growing based person extraction. Algorithm 1
presents the person extraction in the second mode. The
input of the function PersonExRG is current depth im-
age Dxy, a depth reference image Bxy and a circular
buffer Qxyz. At the beginning, in the first call of the func-
tion, the algorithm determines the seed region for the
region growing through differencing Bxy from the pre-
vious depth map, i.e. depth image acquired just before
the person oversegmentation. A roi region surrounding
the person and the segmented object is determined as
well in order to restrict the processing area of the depth
maps. In each call of the function, it extracts foreground
Fxy and updates the roi. Afterwards, starting from the
seed, it delineates the person blob and stores it in the im-
age Pxy. The growing of the person region is executed
until the blob area is smaller than a prespecified value or
the depth/distance values are within a predefined range
from the seed region. The values used in the stop con-

dition are scaled regarding to the distance of the seed
to the camera. Finally, given the delineated person, the
discussed algorithm updates the seed region for the next
call of the RegionGrowing.

Figure 4: Delineation of person on dynamic scene. RGB images
(left), depth (middle) and binary images depicting the delineated per-
son (right).

Algorithm 1 Person extraction using region growing

Precondition: roi and seed are declared as static vari-
ables

1: function Pxy = PersonExRG(Dxy, Bxy,Qxyz)
2: [roi, seed] = init(Qxyz, Bxy) . called only once
3: Fxy = |Dxy − Bxy|

4: roi = ROI(Fxy, roi)
5: Pxy = RegionGrowing(Dxy, roi, seed)
6: seed = UpdateSeed(Pxy)
7: end function

As already mentioned, in the basic mode of per-
son detection, the depth reference image is entirely re-
freshed in 7.5 seconds. When the person delineation
is done in the second mode the depth image should be
updated as fast as possible. This has been achieved
through updating the depth reference image in roi re-
gion on the basis of person-free areas. Such person-free
areas can be calculated straightforwardly through dif-
ferencing the maps Pxy with the extracted person from
the current depth image Dxy, see 3rd line in Alg. 2.
Such maps, where the areas belonging to person as-
sume zero values, are then pushed on the stack, see
call of Sadd function. The function LastPixel extracts
the most recent non-person pixel in the roi area. Af-
ter the switch from the region growing-based person
detection to the basic mode, the depth reference im-
age in the roi area is replaced by the Bxy map. A
sample movie at http://fenix.univ.rzeszow.pl/
~mkepski/demo/personseg.mp4 compares the per-
son extraction in both modes.
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Algorithm 2 Update of the depth reference map

Require: S xy is declared as static variable

1: function [Bxy,D′xy] =

UDRM(Dxy, Bxy,Qxyz, Pxy, roi)
2: S xy = init(Qxyz) . called only once
3: D′xy = Dxy(roi) − Pxy(roi)
4: S xy = Sadd(D′xy, roi)
5: Bxy = LastPixel(S xy, roi)
6: end function

The switch from the basic mode of the person ex-
traction to the mode based on the region growing is
realized on the basis of the value of binary variable
regionGrMode, see Alg. 3. The simplest way to de-
tect a connection of the person blob with another blob,
i.e. to detect a situation in which the algorithm should
switch from the basic mode to the second mode, is to
compare the area of the current foreground with the area
of the foreground in the previous map, see call of func-
tion Thresh. The region growing based mode should be
finished if all pixels in the depth reference image Bxy are
updated. This is achieved through summing the values
of person-free areas D′xy in a binary image Lxy, see 7th
line in Alg. 3. Having on regard that in D′xy image the
pixels belonging to person areas assume the value 0, the
algorithm switches to the basic mode of person detec-
tion if all Lxy pixels in the roi area have depth values
different from zero.

Algorithm 3 Setting conditional variable
regionGrMode

Require: Lxy and F′xy are declared as static variables

1: function regionGrMode = RGM(Dxy, Bxy)
2: F′xy = init( ) . called only once
3: Fxy = |Dxy − Bxy|

4: regionGrMode = Thresh(Fxy, F′xy)
5: F′xy = Fxy

6: end function

7: function regionGrMode = updateRGM(D′xy, roi)
8: Lxy = init( ) . called only once
9: Lxy = OR(Lxy,D′xy(roi))

10: regionGrMode = IFstop(Lxy)
11: end function

The extraction of the person is executed only when
the condition S Vtotal > threshold is true. After the
person extraction, the floor equation coefficients are up-

loaded to delineate the ground in the point cloud and
then to extract features describing the activities. In par-
ticular, thanks to the floor extracted in advance, some
point cloud features are extracted with regard to the
floor. The depth and point cloud features are then em-
ployed to decide if a fall occurred. If the S Vtotal is
smaller or equal to the assumed threshold then new data
from the accelerometer is acquired.

4. Descriptors of the human activities

In this Section we explain the extraction of the ground
plane that is used in calculating the fall descriptors. The
descriptors are discussed in the second part of the Sec-
tion.

4.1. Ground Plane Extraction
After the transformation of the depth pixels to the 3D

point cloud, the ground plane described by the equation
ax + by + cx + d = 0 was recovered. Assuming that the
optical axis of the Kinect camera is almost parallel to
the floor, a subset of the points with the lowest altitude
has been selected from the entire point cloud and then
utilized in the plane estimation. The parameters a, b, c
and d were estimated using the RANdom SAmple Con-
sensus (RANSAC) algorithm. RANSAC is an iterative
algorithm for estimating the parameters of a mathemat-
ical model from a set of observed data, which contains
outliers [37]. The distance to the ground plane from
the 3D centroid of point cloud corresponding to the seg-
mented person has been determined on the basis of an
expression for point–plane distance:

D(t) =
|axc(t) + byc(t) + czc(t) + d|

√
a2 + b2 + c2

(2)

where xc, yc, zc stand for the coordinates of the person’s
centroid. The parameters should be re-estimated subse-
quent to each change of the Kinect location or orienta-
tion.

4.2. Depth Features
The following features are extracted on the depth im-

ages in order to authenticate the fall hypotheses, and
which are calculated if person’s acceleration is above
the preset threshold:

• H/W - a ratio of height to width of the person’s
bounding box in the depth maps

• H/Hmax - a proportion expressing the height of the
person’s surrounding box in the current frame to
the physical height of the person, projected onto
the depth image
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• D - the distance of the person’s centroid to the floor

• max(σx, σz) - largest standard deviation from the
centroid for the abscissa and the applicate, respec-
tively.

Given the delineated person in the depth image along
with the automatically extracted parameters of the equa-
tion describing the floor, the aforementioned features
are easy to calculate.

Figure 5 depicts a person in depth images together
with the H/W and H/Hmax features. In order to deter-
mine the box enclosing the person the algorithm seeks
for the largest blob in the binary image representing the
foreground objects. As we can observe on the discussed
depth maps with graphically marked features, the depth
features assume quite different values during an exam-
ple fall event and typical daily activities like walking
and sitting on a chair.

Figure 5: Person on depth maps with the marked H/W and H/Hmax
features.

The P40 descriptor is calculated on 3D point clouds.
On the basis of the extracted person in the depth image a
corresponding person’s point cloud is determined in 3D
space, see Fig. 6. Afterwards, a cuboid surrounding the
person’s point cloud is determined. Then, a sub-cuboid
of 40 cm height and placed on the floor is extracted
within such a cuboid. Finally, a ratio of the number of
the points contained within the cuboid of 40 cm height
to the number of the points being within the surround-
ing cuboid is calculated. The distance of each point to
the floor is calculated on the basis of (2). The 40 cm
height of the cuboid has been chosen experimentally to
include all 3D points belonging to a lying person on the
floor.

5. Proposed Fuzzy Inference Engine

At the beginning of this sections we outline Mamdani
and Takagi-Sugeno fuzzy modeling. Then we justify

Figure 6: Determining the P40 descriptor in the points cloud.

reasons why we use fuzzy reasoning to discriminate be-
tween daily activities and falls. Afterwards, we discuss
the proposed fuzzy engine.

5.1. Mamdani and Takagi-Sugeno Fuzzy Models

Fuzzy inference systems have become one of the
most well-known applications of fuzzy logic. One of
the reasons for significant interest on fuzzy inference
systems is the ability to express the behavior of the sys-
tem in an interpretable way for humans as well as to
incorporate human expert knowledge and intuition with
all its nuances, since domain experts are able to deter-
mine the main trends of the most influential variables
in the system. This is because expert rules are based
on evidence from data, a priori knowledge as well as
intuition along with large experience and expertise. In
consequence, typically they present a high level of gen-
eralization. Moreover, such a representation is highly
interpretable. Assuming there are enough rules, a col-
lection of fuzzy rules can accurately represent arbitrary
input–output mappings [38]. In general, as the com-
plexity of a system increases, the usefulness of fuzzy
logic as a modeling tool increases.

A fuzzy inference system consists of three compo-
nents: a rule-base, which contains a pool of fuzzy rules;
a database of the membership functions used in the
fuzzy rules; and a reasoning mechanism, which per-
forms the inference. Two main types of fuzzy modeling
schemes are the Mamdani and Takagi-Sugeno model
[39]. In the Mamdani scheme each rule is represented
by i f − then conditional propositions [40]. A fuzzy sys-
tem with two inputs x1 and x2 (antecedents) and one
output y (consequent) is described by a collection of r
conditional i f − then propositions in the form:

if x1 is Ak
1 and x2 is Ak

2 then yk is Bk, for k = 1, 2, . . . , r
(3)

where Ak
1 and Ak

2 are fuzzy sets representing the kth an-
tecedent pairs and Bk is fuzzy set representing the kth
consequent. If we adopt max and min as our choice for
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the T–conorm and T–norm operators, respectively, and
use max–min composition, the aggregated output for the
r rules is given as follows:

µBk (y) = max
k

[min[µAk
1
(in(i)), µAk

2
(in( j))]], k = 1, 2, . . . , r

(4)
For max – product (or correlation–product) implication
technique, the aggregated output for a set of disjunctive
rules can be determined in the following manner:

µBk (y) = max
k

[µAk
1
(in(i)) · µAk

2
(in( j))], k = 1, 2, . . . , r

(5)
where the inferred output of each rule is a fuzzy set
scaled down by its firing strength via algebraic product.
Such a truncation or scaling is conducted for each rule,
and then the truncated or scaled membership functions
from each rule are aggregated. In conjunctive system
of rules, the rules are connected by and connectives,
whereas in case of disjunctive system the rules are con-
nected by the or connectives. This kind of fuzzy sys-
tem is also called a linguistic model because both the
antecedents and the consequents are expressed as lin-
guistic constraints. As a consequence, the knowledge
base in Mamdani FIS is easy to understand and to main-
tain. The model structure is manually designed and the
final model is neither trained nor computationally opti-
mized, even though some heuristic tuning of the fuzzy
membership functions is common in practice. Mam-
dani’s model expresses the output using fuzzy terms
based on the provided rules. Since this approach is not
exclusively reliant on a dataset, a model that presents a
high level of generalization can be obtained even when
a small amount of experimental data is in disposal. All
the existing fuzzy systems that are used as universal ap-
proximators are Mamdani fuzzy systems.

Takagi-Sugeno (TSK) fuzzy model consists of i f −
then rules that embody the fuzzy antecedents, and a
mathematical function acting as the rule consequent
part. A typical rule in a TSK model with two inputs
x and y and output z, has the following form:

if x is A and y is B then z = f (x, y) (6)

where z = f (x, y) is a crisp function in the consequent.
Typically f (x, y) is a polynomial function in the inputs x
and y. In a TSK model each rule has a crisp output that
is given by a function. As a result the overall output is
determined via a weighted average defuzzification. It is
a data driven approach in which the membership func-
tions and rules are generated using an input–output data
set. The Takagi-Sugeno model is typically constructed
in two steps consisting of extracting the fuzzy rules and

then optimizing the parameters of the linear regression
models. The final output is a weighted average of a
set of crisp values. The main difference between the
two approaches lies in the consequent of fuzzy rules,
since Mamdani fuzzy systems utilize fuzzy sets as rule
consequent, whereas Takagi-Sugeno fuzzy systems em-
ploy linear functions of input variables as rule conse-
quent. The first two stages of the fuzzy inference pro-
cess, namely, fuzzification of the inputs and applying
the fuzzy operator, are exactly the same. The main dif-
ference between them is that the Sugeno output mem-
bership functions are either linear or constant. Such
a constant membership function gives us a zero–order
Sugeno fuzzy model that can be viewed as a special case
of the Mamdani FIS, in which each rule’s consequent is
specified by a fuzzy singleton.

5.2. Motivation
One of the main reason for choosing fuzzy infer-

ence was a desire to take the advantages of semantics
to model fall events using noisy fall descriptors, given
a limited dataset with simulated falls, which might dif-
fer from real-falls. As indicated in [41], in most cases,
stringent requirements on the quality of training dataset
are imposed in data-driven applications, including ap-
plications based of integration of ANN with fuzzy logic.

The goal of this work was to develop linguistically
understandable classifier permitting reliable fall detec-
tion on noisy or vague data. As demonstrated in [42],
fuzzy systems can give better results in comparison to
classical approaches, particularly when data are impre-
cise. There is no doubt that a reliable system for fall
detection should cope with such data, including occlu-
sions. It is well known that observations of real-world
fall events are inherently affected by uncertainty, vague-
ness, and imprecision. Very often in such real-world
scenarios the observation errors do not follow a sin-
gle probability distribution. In those cases, classical
stochastic models of the error present a limited applica-
bility. Moreover, our research findings reveal that state
transitions in real-falls are highly unpredictable and they
strongly depend not only on fall direction, type of sub-
strate (wet/dry, parquet, carpet), whether in proximity of
the individual is an object or not, but primary they de-
pend on the way how a falling person is trying to save or
to minimize the fall consequences. On the other hand,
the model parameters of the classical classifiers or the
automatically induced rules highly depend on the train-
ing set characteristics. Thus, in the case of insufficient
training data or lack of data from real-world falls events,
a considerable number of undesirable fall alerts can be
generated. Moreover, the available semantics allows us
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to perform further linguistic summarization of observa-
tions, and for instance, recognize motionless long lie.

5.3. Fuzzy Engine for Discrimination between ADLs
and Fall Events

As the number of fuzzy inputs and linguistic vari-
ables of each fuzzy set increases, the number of fuzzy
rules grows exponentially. For n variables each of which
can take m values, the number of rules is mn. Thus, for
the considered set of the fall descriptors, the number of
fuzzy rules to be created by an expert is far too large.
Having on regard that the lying pose and fall transitions
concern static and dynamic actions, which need totally
different observations to describe them, we developed a
two-level fuzzy engine, where two fuzzy sets describing
the lying pose and motion transitions are inferred first,
whereas the final decision is generated through reason-
ing on such fuzzy sets, see Fig. 7. Thanks to such a
structure optimization the number of fuzzy rules is far
smaller. We demonstrated how to avoid introducing
intermediate output variables with less or no physical
meaning that are typical for hierarchical fuzzy systems.
We proposed how to aggregate input variables and rules
into two groups describing human posture and motion,
which are close to human perception of the fall event.
Apart from the reduction of fuzzy rules quantity, our ap-
proach offers improved capability of understanding and
verification of such rules by a human expert. Due to the
disjoint linguistic variables the computation complexity
is reduced. Moreover, we obtained better flexibility and
scalability of the system.

Figure 7: Diagram of the fuzzy engine for discrimination between
ADLs and fall events.

The Sugeno FIS has smaller computational demands
in comparison to the Mamdani FIS because it does not
involve the computationally expensive defuzzification
process. Another rationale for choosing the Sugeno FIS
is that it always generates continuous surfaces. The con-
tinuity of the output surface is essential in the fall detec-
tion system since the existence of discontinuities might
result in substantially different outputs originating from
similar inputs. For that reason, the fall alert is triggered
by a Sugeno fuzzy inference system, see Fig. 7, which
operates on confidence membership grades, provided by

two Mamdani-type fuzzy inference systems. The output
of the first Mamdani engine is a fuzzy set, which assigns
grades of membership to the possible values of dynamic
transitions, whereas the output of the second one is an-
other fuzzy set assigning membership grades to possi-
ble body poses. As we can observe on Fig. 7, thanks
to making use of Mamdani fuzzy inference systems as
well as availability of the fuzzy sets and the member-
ship grades, no fuzzification of the inputs is needed in
the Sugeno inference system. Figure 8 illustrates the ly-
ing pose confidence membership function and the tran-
sition confidence membership function. The parameters
that define the fuzzy sets can be changed to focus more
on the selected modality.

Figure 8: Lying pose confidence membership function (left) and tran-
sition confidence membership function (right).

In Tab. 1, there are shown fuzzy rules for fall event
modeling. As we can see, the lying pose confidence
membership function, see also Fig. 8, is described by
three fuzzy sets: lying, maybe, not-lying, whereas the
transition confidence membership function is described
by the following fuzzy sets: fast, medium, slow. Thus,
the total number of fuzzy rules for fall modeling is equal
to nine. The Sugeno FIS outcomes of fuzzy rules are
characterized by yes and no crisp outputs. The Sugeno
FIS adopts probabilistic or as fuzzy operator, product
for implication, and weighted sum to aggregate all out-
puts.

The presented fuzzy rules for fall event modeling are
consistent with our intuition. They were designed to
prevent from undesirable generation of fall alarms. For
instance, if person is lying on the floor, but the preced-
ing person’s motion was slow, no fall alarm is triggered.
The slow motion means that the action has been per-
formed in time longer than 0.7 sec. It is worth not-
ing that the time interval between the loss of balance
during the quite upright stance and the impact with the
floor is longer than about 0.7 s [43]. The same decision
is taken when the system is not sure about the person
pose. Such a situation can take place in many every-
day occurrences, including occlusions. In consequence,
the everyday occurrences like lying or playing on the
floor will not cause undesirable false alarms. On the
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Table 1: Fuzzy Rules for Fall Event Modeling.

Rule

if

Pose Transition

then

Fall
1 lying medium yes
2 maybe medium yes
3 lying fast yes
4 maybe fast yes
5 not-lying fast no
6 maybe slow no
7 not-lying slow no
8 not-lying medium no
9 lying slow no

other hand, even if a movement preceding the fall was
fast, but a person is not in lying pose the alarm is not
triggered. Such a situation can happen in case of quick
sitting on a chair and in many similar occurrences.

5.4. Pose FIS

In order to describe various kinds of lying poses,
four linguistic variables corresponding to the descrip-
tors have been defined: H/W, H/Hmax, max(σx, σz)
and P40. They are described by three fuzzy sets: high,
medium, and low. Figure 9 depicts the plots of the
membership functions for the discussed linguistic vari-
ables. The lying pose confidence membership function
that is utilized in a Mamdani FIS is shown on Fig. 8. The
membership functions are described by Gaussian curve,
which has the advantage of being smooth and nonzero at
all points. The parameters of the membership functions
were manually tuned.

Table 2 shows the selected fuzzy rules that were used
for modeling of lying pose. In total, 81 fuzzy rules were
formulated to model such an event. The utilized de-
scriptors of falls with corresponding linguistic variables
pose sufficient redundancy to deal with person occlu-
sions and imperfect observations.

Figure 10 shows the input–output mapping for some
pairs of the linguistic variables. In the discussed surface
views the colors change according to the output values.
As we can observe, the surfaces are more or less irreg-
ular. The horizontal plateaus are due to flat areas on the
input sets, see for instance Fig. 9 and fuzzy set high of
the linguistic variable max(σx, σz).

Figure 9: Membership functions for the input linguistic variables
H/W, H/Hmax, max(σx, σz) and P40.

Table 2: Fuzzy Rules for Modeling of Lying Pose.

Rule

if

P40 H/W max(σx, σz) H/Hmax

then

Pose

1 low high low high not-lying

2 low high low medium not-lying

3 low high low low not-lying

4 low high medium high not-lying

5 low high medium medium not-lying

6 low high medium low not-lying

. . .

76 high low medium high maybe

77 high low medium medium lying

78 high low medium low lying

79 high low low high lying

80 high low low medium lying

81 high low low low lying

5.5. Transition FIS
Motion features extracted on the basis of video se-

quences are used quite rarely in fall detection algo-
rithms. On the other hand, the motion features are very
useful since fall is a dynamic action, which is accompa-
nied by changes of the person’s shape. In this work, the
motion features are utilized by a separate Mamdani-type
FIS, which delivers three fuzzy sets describing the tran-
sition linguistic terms, see also Fig. 7–8 and Tab. 1. Fig-
ure 11 depicts a sample plot of D(t) vs. frame number
during a person’s fall. The vertical red line denotes the
moment of the impact, which has been determined on
the basis of the thresholded S Vtotal. As expected, during
a typical fall there is a considerable change of D(t) in a
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Figure 10: Input-output mapping surface views for pairs of the lin-
guistic variables.

short time. On the basis of depth maps from our URFD
dataset 1 we prepared the plots of D(t) vs. time around
the moment of the impact and then analyzed them in
terms of determining the period of time in which a typi-
cal fall event takes place. After examining several such
plots we reached the conclusion that the time ∆t equal to
700 ms will be a good choose to describe the fall event.
The experimental results in [44] show that falls can be
detected with an average lead-time of 700 ms before the
impact occurs, with no false alarms and sensitivity of
95.2%.

Figure 11: D(t) vs. frame number during a fall. The vertical red line
denotes the moment of the impact.

Given the ∆t determined in such a way, we examined
several ratios of the features with values determined in
time t and t − ∆t. The analysis of such plots showed
that the features D(t)/D(t − ∆t) and H(t)/H(t − ∆t) have
the best discrimination power in distinguishing between
dynamic and slow body transitions. The discussed fea-

1http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html

tures together with S Vtotal signal from the accelerome-
ter were used to define three linguistic variables, which
in turn are described by two fuzzy sets: low and fast.
Figure 12 illustrates the partitioning of the transition do-
main into the discussed two fuzzy sets. As we see on the
discussed figure, the acceleration domain is divided into
three fuzzy sets, namely, low, medium and high. As we
can notice, the membership functions are described by
Gaussian curve. The depth based transition domain is
divided into two fuzzy sets due to possible imprecision
in observations of the body motion, for instance due to
occlusion, etc. The transition confidence membership
function that is utilized in a Mamdani FIS is shown on
Fig. 8.

Figure 12: Membership functions for the input linguistic variables
D(t)/D(t − ∆t), H(t)/H(t − ∆t) and S Vtotal.

Table 3 shows rules for modeling body transitions just
before the body impact. In total, twelve fuzzy rules were
formulated to model such body transitions. The data
delivered by two different sensors undergo fusion. On
the other hand, the depth data are processed in the con-
text, which is provided by accelerometric data. What’s
more, the fuzzy inference engine is executed only if the
thresholded S Vtotal is larger than a presumed threshold,
see Fig. 1. That means that such a binary rule is used to
decide if the fuzzy inference is needed to authenticate
the hypothesis. The discussed rules can deal with per-
son occlusions and imperfect observations. They allow
us to extract different kind of the knowledge in compar-
ison to the knowledge inferred by the pose FIS.

Figure 13 illustrates the input–output mapping for
some pairs of the linguistic variables, which are used in
reasoning by the transition FIS. The discussed surface
views result from a rule base with four and six rules,
respectively. As we can observe, the resulting surfaces
are relatively regular.
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Table 3: Fuzzy Rules for Modeling of Body Transitions.

Rule

if

H(t)
H(t−∆t)

D(t)
D(t−∆t) S Vtotal

then

Transition

1 low low low fast

2 low low medium fast

3 low low low medium

4 low high high fast

5 low high medium medium

6 low high low slow

7 high low high fast

8 high low medium medium

9 high low low slow

10 high high high medium

11 high high medium slow

12 high high low slow

Figure 13: Surface views of rule base in Tab. 3.

In Mamdani engines we selected max and algebraic
product for the T–norm and T–conorm operators and
employed max–product composition in the rule–base.

6. Experimental Results

The fuzzy system has been evaluated on our freely
available UR Fall Detection dataset. It consists of 30
image sequences with simulated falls, 30 sequences
with some daily activities like walking, sitting down,
crouching down, and 10 sequences with fall-like ac-
tivities as quick lying on the floor and lying on the
bed/couch. Two kinds of falls were performed by five
persons with different age, namely from standing posi-
tion and from sitting on the chair. The number of images
in the sequences with falls is equal to 3000, whereas the
number of images from sequences with ADLs is equal
to 10000. All RGB-D images are synchronized with
motion data, which were acquired by the x-IMU iner-
tial device. The sensing unit was worn near the spine
on the lower back using an elastic belt around the waist.
The motion data contains the acceleration over time in
the x−, y−, and z−axes together with the precalculated

S Vtotal values.
In order to evaluate the effectiveness of the pose FIS

as well as to assess the usefulness of the descriptors re-
sponsible for separation of the lying pose from typical
activities we added a defuzzification to the pose FIS and
evaluated it on a set of depth maps. In total 2395 images
were selected from our URFD dataset and other im-
age sequences, which were recorded in typical rooms,
like office, classroom, etc. The selected image set con-
sists of 1492 images with typical ADLs like walking,
sitting down and crouching down, whereas 903 images
depict a person lying on the floor. The aforementioned
depth maps collection was employed to determine the
features discussed in Subsection 4.2. Table 4 shows the
classification performance and the potential of the lying
pose descriptors. The discussed results were obtained
in 10-fold cross-validation [45]. It is worth noting that
the presented results concern crisp outputs, whereas in
our fuzzy system we utilize fuzzy sets and the inferred
membership grades. As we can observe, all fall events
were distinguished correctly, whereas some ADLs were
classified as falls. The role of the Sugeno engine, oper-
ating both on membership grades to possible body poses
and the membership grades to the possible values of dy-
namic transitions, is to reduce the number of such mis-
classifications.

Table 5 shows the performances of fall detection,
which were obtained by our fuzzy system operating
both on static and dynamic variables, a Mamdani FIS
with a center of gravity defuzzification and operating
on dynamic variables only, a fuzzy ANFIS [46], and a
linear SVM [47], respectively. Given limited amount of
the training data the SVM has been chosen as a repre-
sentative classifier since it performs structural risk min-
imization to achieve good generalization performance.
All features used to train and test the ANFIS and the
SVM classifiers were normalized to zero mean and unit
variance. As we see, our system achieves the best re-
sults in terms of accuracy, precision, sensitivity and
specificity. Three key performance metrics are sensi-
tivity, specificity and precision [45], because the accu-
racy always lies between the sensitivity and the speci-
ficity. All classifiers achieve 100% sensitivity and this
means that all falls are assigned to the fall class. A per-
fect specificity implies that no ADL may be erroneously
recognized as a fall event. The best 95% specificity is
achieved by our fuzzy system. This is relatively good
result given that the dataset contains ten hard sequences,
in which the actions were done quickly and which mo-
tion patterns are similar to fall ones. The precision is
defined as the ratio of true positives among all the pos-
itively labeled activities. On the utilized dataset we did
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Table 4: Performance of lying pose classification using static variables and Mamdani FIS with center-of-gravity defuzzification.

True

Fall Not Fall

E
st

im
at

ed Fall 903 19
Accuracy=99.22%
Precision=97.94%Not Fall 0 1503

Sens.=100% Spec.=98.75%

not notice statistically significant difference in the de-
tection performance between falls from upright position
and those from sitting position.

As we can notice in Tab. 5, the ANFIS and SVM
operating on seven features, i.e. H/W, H/Hmax,
max(σx, σz), P40, D(t)/D(t − ∆t), H(t)/H(t − ∆t) and
S Vtotal, achieve identical results. They are worse in
comparison to results achieved by our fuzzy system and
operating on seven linguistic variables. The classifiers
were trained on the collection of aforementioned col-
lection of depth maps. The number of rules utilized by
ANFIS is equal to 256. The rules are quite different
from the rules utilized by our system. Moreover, the in-
terpretation of such ANFIS rules is very hard. What’s
more, the membership grades inferred by our system
are connected with physical behavior of the observed
attributes and can be used at higher level of linguis-
tic summarization. If even in some real environments
the SVM may achieve better classification results, the
advantage of the proposed linguistically understandable
classifiers is that they are better suited to the summariza-
tion of human behaviors. As we can see in Tab. 5, the
Mamdani FIS operating on dynamic variables only, i.e.
on D(t)/D(t − ∆t), H(t)/H(t − ∆t) and S Vtotal achieves
quite good results. The presented results confirm the
importance of dynamic features in fall detection.

The system has been designed to consume least
amount energy while achieving reliable fall detection
in real-time. This aim has been achieved thanks to the
use of accelerometer to filter at low computational cost
most of the non-fall activities. The system has been
implemented on low-cost PandaBoard. Details about
communication between processes to achieve real-time
processing on an embedded platform are given in [48].

The system as well as the presented algorithms were
compared with relevant approaches. Another state-of-
the-art classifiers, including the k-nn classifier, provide
worse or at most the same results as SVM/ANFIS clas-
sifiers. A k-nn with 5 neighbors has been built on the
same set of identically scaled features. To the best
of our knowledge, the URFD dataset is the only pub-

licly available dataset for evaluation of the fall detec-
tion algorithms using depth and/or accelerometric data.
We also evaluated the performance of the fall detec-
tion using features, which were used in the relevant
work. However, the early approaches to fall detection
using Kinect used simple cues [10], like distance of the
person’s gravity center to the floor [18], and in conse-
quence they trigger too much false alarms. The research
results from [22] indicate that the body velocity prior
to the occlusion, which was employed in the work of
Rougier et al., can trigger a vast number of false alarms
(on the order of 20 per day) for a person walking out of
the scene. They also demonstrated that after disabling
the velocity component, the discussed algorithm trig-
gered a large number of false alarms at low detection
rates. The false alarms were caused by a variety of ev-
eryday occurrences, including pets moving on the floor,
items dropped or moved on the floor, and residents and
visitors lying or playing on the floor. Such typical ev-
eryday occurrences are filtered reliably by our algorithm
at low computational cost.

The performance of the fall detector achieved on
benchmark data is very important. Last but not least
is the architecture of the system. In our opinion, deci-
sions about the fall alarm should be made taking into
account the context of the situation. Our systems con-
siders the context of the situation, i.e. an alert is trig-
gered in the case of rapid movement proceeding the
body impact. The proposed architecture is flexible and
the system can be extended about additional contextual
inputs like sound and/or floor vibrations. One of the ma-
jor advantages of fuzzy logic over other existing fusion
methods is that it permits easy fusion by using linguis-
tic variables and the rules. It is worth noting that falls
are accidents, so it is not easy to collect data of real
falls, particularly of the elderly. As we already men-
tioned, since this approach is not exclusively reliant on
a dataset, a model with high level of generalization can
be obtained, even when a small amount of multimodal
data is in disposal.

One of the limitations of the utilized depth sensor is
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Table 5: Performance of fall detection on URFD data (sequences 1-70).

Method

Fuzzy Fuzzy Fuzzy SVM

static+dyn. var. dyn. var. ANFIS
R

es
ul

ts
Accuracy 97.14% 92.86% 95.71% 95.71%

Precision 93.75% 85.71% 90.90% 90.90%

Sensitivity 100.00% 100.00% 100.00% 100.00%

Specificity 95.00% 87.50% 92.50% 92.50%

relatively narrow field-of-view. However, as demon-
strated in [49], the observed area can be expanded by
the use of depth sensor mounted on a pan-tilt unit. Fu-
ture work includes further improvement of the person
extraction algorithm along with verification whether a
detected blob belongs to the person undergoing moni-
toring. Multiple depth sensors per room, including ToF
cameras will be utilized to improve dealing with occlu-
sions.

7. Conclusions

We have demonstrated a flexible framework for com-
bining different modalities in order to improve the fall
detection. The features are extracted on both depth
maps and accelerometric data and then used along with
fuzzy inference to determine the state of the resident.
In the proposed architecture an accelerometer is utilized
to indicate an eventual fall. A fall hypothesis is then
authenticated by a two-stage fuzzy system, which fuses
depth maps and accelerometric data. The aim of the first
stage, which is composed of two Mamdani engines, is to
infer separately the static pose and dynamic transition.
The second stage of Takagi-Sugeno engine provides a
crisp decision on either fall or no-fall. This resulted
in reduced computation complexity due to the disjoint
linguistic variables at the first stage, and reduced com-
putation cost due to extracting of the depth features
only when a fall is likely to have just happened as in-
dicated by the acceleration measurement values. The
proposed linguistically understandable classifier can be
generalized to other applications especially when sen-
sor fusion is involved or human activity summarization
is required. As demonstrated experimentally, it can be
particularly useful in fall detection since frequently a re-
duced amount of training data is in disposal. We showed
that fusion and manipulation of linguistic variables and
rules is easy. We demonstrated experimentally that

the proposed framework permits reliable and unobtru-
sive fall detection in real-time and at low computational
cost.
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