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Abstract— Analysis and recognition of motion patterns from 

data acquired by body-worn inertial sensors is an emerging 

technology in sports. In this paper we propose an effective 

method for recognition of fencing footwork using a single body-

worn accelerometer. We present a challenging dataset consisting 

of six actions, which were performed by ten persons and repeated 

ten times by each of them. We propose a segment-based SVM for 

time-series classification together with a set of informative 

features. We demonstrate that the method is competitive with 1-

NN DTW in terms of classification accuracy. The proposed 

method achieves classification accuracy slightly better than 70% 

on the fencing footwork dataset.  

Keywords— Activity recognition, sport sciences, time series, 

signal processing, fencing 

I.  INTRODUCTION 

The use of technology in sport is rapidly increasing and 
biomechanical analysis in most sports is routine at the elite 
level these days. Sports biomechanics allows detailed analysis 
of sports movements to allow better sports performance and/or 
less injury risk [1]. Since the very beginning of sports, training 
methodology has been improved in order to achieve better 
results in shorter time [2]. Each sports discipline developed a 
set of exercises aimed at perfecting particular skills. Recent 
advances in technology allow enhancing the training process, 
in particular by providing tools for analysis of performed 
actions.  

One of the major aims of sports data analysis is to provide 
assistance for training. Object or motion tracking is one of the 
most frequently used techniques in sports analysis. It has been 
used in visual tracking of balls, players, referees, etc. [3]. As 
demonstrated in [4], video recording of an action may provide 
valuable feedback for the athlete. RGB videos are used for 
tracking players in team sports [4] as well as in motion 
analysis of particular action [5]. Motion-capture  systems  are  
employed  frequently in applications requiring more precise 
measurements [6, 20].  

Numerous  studies  have  demonstrated  that  inertial 
measurement units (IMUs) have considerable potential in 
sports performance analysis [7]. The advantage of such 
sensors is that they can be easy installed. They provide high 
accuracy measurements with relatively low cost. The 
usefulness of inertial sensors for sports analysis has been 
shown in several papers [8]. In [20] an inertial device 
consisting an accelerometer and a gyroscope has been 
employed for monitoring of athletics sprint performance. The 

experimental results demonstrated the IMU device has the 
ability to determine the sprint start. However, because the 
sprint start is a highly explosive movement, the 50th Hz  
sampling rate of the utilized IMU has proved to be insufficient 
for precise determination of the sprinter's start. In human 
action recognition the reconstruction of joints position is often 
not necessary since the acceleration itself can provide relevant 
information. For instance, in [9] a single accelerometer is 
utilized for classification of sports activities. 

While a considerable research has been done in the area of 
golf [10], other sports seem to receive less attention. In 
particular, in the area of fencing very limited research has 
been done until now. Analysis of biomechanics and 
performance of lunge is provided in [11], [12], whereas in [13] 
a motion capture system has been utilized in classification of 
movements of the sword arm.  

In this work we propose a single accelerometer-based 
method for classification of basic footwork in fencing. Having 
on regard that all actions in fencing are strictly associated with 
footwork we claim that it is an important step towards creating 
a full system for analysis of both technique and tactics. We 
perform analysis of acceleration data by extracting a set of 
informative features. The classification of motion data is 
performed using Support Vector Machine (SVM) and 
Dynamic Time Warping (DTW). Our experimental results 
indicate that a single accelerometer may be a valuable tool in 
analysis of footwork in fencing, providing quantitative 
evidence of its significance for dynamical motion analysis. 

II. METHOD FRAMEWORK 

A. Footwork in fencing 

Fencing position is standing sideways, with sword arm 
directed towards the opponent, see Fig. 1 (left). We can 
distinguish the front leg and the back leg (also called lunging 
leg). The most basic footwork includes steps and lunges.  
 

 

Fig. 1 Fencing position (left) and fencing lunge (right) 



step forward is performed by moving the front leg forwards 
and then moving the back leg and thus returning to the basic 
position. A step backward is similar, but initiated by the back 
leg. A lunge is performed by lifting the front leg and then 
making a dynamic push-off with the back leg. Once the lunge 
is finished fencer stands with the front leg bend about 90 
degrees in the knee joint and back leg straight, see Fig. 1 
(right). Return to the fencing position is usually done by 
bending the knee of the back leg and moving the front leg 
backwards. Typical footwork of a fencer includes moving 
forward and backward in order to keep proper distance to the 
opponent and performing a lunge during an offensive action. 

Lunges can vary in speed, acceleration and length. 
According to prof. Czajkowski, one of the inventors of 
modern theory of fencing, there are four basic types of lunges 
[14]: 

• rapid - fastest possible lunge, with relatively short 
distance, intended to surprise the opponent,  

• with increasing speed - started slowly and finished 
quickly, intended for feint attacks,  

• with waiting - with a short pause after lifting the front 
leg, intended to wait for the opponent to react and 
perform a counter-action 

• jumping-sliding - longest possible lunge, using 
maximum leg force fencer actually jumps forward, 
sliding the back leg on the floor.  

Automatic recognition of such actions is challenging due 
to strong similarity between some of them. For instance, lunge 
with increasing speed may be similar to lunge with waiting or 
jumping-sliding lunge. It is worth noting that even fencing 
experts can have difficulties in visual distinguishing among 
some actions, particularly when they are performed not fully 
correctly, which is often the case. Thus, our work differs 
significantly from the work carried out in the area on 
wearable-device based action recognition in that we classify 
similar motion patterns, whereas in typical approaches to 
action recognition meaningfully different activities like 
walking, jogging, sitting, standing, lying etc., are typically 
classified [15]. 

B. Database 

The aim of this work is to classify 6 basic footwork 
movements, as described in previous section, namely: step 
forward, step backward and four types of lunges (rapid, with 
increasing speed, with waiting, jumping-sliding). Since there 
are no publicly available databases with such data, we 
recorded a dataset consisting of synchronized inertial and 
RGB-D data. The data was gathered due to courtesy of Aramis 
Fencing School, one of the biggest fencing institutions in 
Poland. We recorded 10 fencers, with various fencing 
experience - from intermediate to professional level.  

The recordings were conducted in the following manner. 
Each person was asked to attach an inertial sensor to his/her 
knee and then to perform specific actions on a command. Each 
action was repeated 10 times. Every action was saved as a 
separate data sample. We used an x-IMU sensor, which 

provides 9 axes inertial data (accelerometer, gyroscope, 
magnetometer) with frequency of 256 Hz, and a custom made 
recording software, which saves the data in Matlab format in 
order to facilitate further processing. Together with the inertial 
data we recorded the video as well. In this work we focus on 
the accelerometer measurements. The motivation of such an 
approach is our desire to construct a low-cost system, which 
could provide support for both the fencing coaches as well as 
the fencers.  

III. PROPOSED METHOD 

A. Data Features 

A range of different approaches has been developed so far 
to obtain features from accelerometer data. The features can 
be derived from the time-varying signal, through frequency 
analysis or wavelet analysis that allows deriving the so-called 
time-frequency features [15].  

 In order to analyze the motion data we calculated a 
number of different features, which were used to discriminate 
between six classes of the footwork. In a preprocessing step, 
we performed spline interpolation in order to ensure equal 
length of each sample. Having on regard that each action takes 
about two seconds and the frequency of recording is 256 Hz, 
we interpolated each data sample to 512 data points.  

 

Fig. 2 Data sample (acc x,y,z in time) divided into 7 overlapping windows 

Given samples with normalized length we divided the data 
sample into equi-sized segments with 50% overlap, see Fig. 2. 
Owing to dividing the window into equal-length segments and 
then extracting the features of data samples that fall within 
each segment we obtained a possibility to model how the 
actions are being done with relationship to time. In the next 
section we will demonstrate the efficiency of segment-based 
method via extensive experiments based on features extracted 
both in the whole-sequences and subsequences. In the 
experiments we examined different segment sizes (32, 64, 
128, 256). Since the best results were achieved using segments 
of size 128 we decided to employ such a segment size in the 
experimental evaluation of the algorithm. The signal in each 
segment has been filtered with a highpass filter with stopband 
frequency at 0.4 and passband frequency at 0.8. In each 
window a number of features has been computed. The final set 
of features was selected based on manual and automatic 
feature selection. We considered three types of features: 

• Time-domain features. Using the filtered signal, the 
difference between the original and the filtered signal 



and the first derivative of the filtered signal, in the 
segments we computed the following features: mean 
value for each axis, root mean square (RMS) value for 
each axis, mean value of magnitude, RMS of 
magnitude. This resulted in total of 24 features per 
segment. 

• Frequency-domain features. We performed short-time 
Fourier transform in each window, for the filtered 
signal, difference between the original and the filtered 
signal and the first derivative of the filtered signal, then 
we computed RMS and mean values of magnitudes for 
each axis. This resulted in total of 18 features per 
segment. 

• Wavelet features. Using the Daubechies 3 wavelet 
mother, we computed multilevel wavelet 
decomposition coefficients for both the original and the 
filtered signal. Then, for each axis, we computed sum 
of normalized absolute differences of coefficients for 
the original and the filtered signal. By using sums for 
the levels 3,4,5,6, we obtained 12 features per segment.  

The experimental results demonstrated that the time-
domain features provide the most efficient recognition. 
Therefore, results presented in this work include only the 
time-domain features. It is worth noting, that for comparison 
we also conducted experiments with gyroscope data using all 
of the abovementioned features. However, the results were not 
significantly better in comparison to the results obtained on 
the basis of the accelerometer.  

B. Classification 

The classification of the footwork has been achieved using 
Dynamic Time Warping (DTW) and Support Vector Machine 
(SVM). Dynamic time warping is a well-known technique to 
find optimal alignment between two given time-series [16]. 
The time-dependent sequences are warped in a nonlinear 
fashion to match each other using Dynamic Programming. 
These sequences may be discrete signals (time-series) or 
feature sequences sampled at equidistant points in time. 
Various modifications of DTW have been proposed to speed 
up the computations as well as to better manipulate the 
possible routes of the paths. It has been successfully applied in 
several domains including speech recognition and aligning 
biometric data, such as gait [17]. The disadvantage of DTW is 
heavy computational burden required to obtain the optimal 
time alignment path. A DTW introduced in [16] approximates 
a time series by dividing it into equal-length segments and 
calculating the mean value of the data points that fall within 
each segment. The alignments of the modified DTW are very 
similar to those produced by classic DTW, whereas the 
speedup is one to three orders of magnitude, with no 
significant loss of accuracy for classification tasks.  

In this work we consider DTW-feat, a modification of 
DTW which compares series of features, computed in time 
windows, rather than raw signals. The features are not limited 
to mean value, but may include any of the features discussed 
in the previous subsection. Both DTW and DTW-feat employ 
1-Nearest-Neighbour (1-NN) for final step of classification. 

SVM is primarily a classification algorithm that performs 
classification tasks by constructing hyperplanes in a 
multidimensional space to separate data examples of different 
class labels [18]. The data separation is achieved by the 
hyperplane that has the largest distance to the nearest training- 
data point of any class. In general, the larger the margin the 
lower the generalization error of the classifier. However, the 
use of standard SVM can lead to poorly fit models if any 
examples are mislabeled or extremely unusual. To account for 
this, the idea of a soft margin SVM has been introduced to 
permit some examples to be placed on the wrong side of the 
margin. The C parameter trades off misclassification of 
training examples against simplicity of the decision surface, 
that is the ability to generalize the classifier to unseen data. It 
controls the tradeoff between the overfitting (the model is too 
complex and it fits the data as well as the noise) and 
underfitting (the model is not complex enough to fit the data). 
If the values of  C are not properly tuned the SVM can have 
poor predictive accuracy.  

In addition to performing linear classification the SVM can 
efficiently carry out a non-linear classification using the kernel 
trick, which implicitly allows mapping the data into high- 
dimensional feature spaces. The most commonly used kernel 
is RBF (Radial Basis Function). For the RBF kernel, the γ 
parameter controls the width of the radial basis function. 
When gamma is too small, the model can be too constrained 
and cannot capture the complexity of the data. Although basic 
SVM is a binary classifier, it can be easily extended for more 
classes by training multiple one-vs-all binary classifiers. In 
this work we employ a multi-class SVM classifier with both 
linear and RBF kernels. 

IV. EXPERIMENTS AND RESULTS 

We have used our dataset to evaluate the proposed method 
for accelerometer-based classification of basic footwork in 
fencing. In this section we present and discuss results 
computed with different classifiers - DTW, DTW-feat, linear 
SVM and SVM-RBF. All experiments were conducted in two 
modes: for each performer separately (Person Dependent - 
PD) and for the whole dataset (Person Independent - PI) using 
five-fold cross-validation and leave-one-out, respectively.   

A. DTW classification 

We have implemented DTW classifier for the proposed 
classification task. With regard to local path restrictions we 
evaluated typical approaches. We found that a path in 3 
directions in the distance matrix to directly adjacent data 
points with the lowest local distance is the most versatile and 
thus it was employed in the evaluation of DTW classification 
accuracy on fencing footwork dataset. The DTW classifier 
was used directly with the accelerometer signal normalized to 
zero mean and unit variance. 

The experimental results are shown in Table I. As we can 
observe, the classification accuracy of actions of particular 
person (PD) is much better on average to classification 
accuracy, which has been obtained on the whole fencing 
footwork dataset (PI). This means that DTW does not 
generalize well among the actions performed by different 
performers. As we can notice in the discussed table, the 



accuracy of DTW-feat, which has been determined on features 
computed on segments of size equal to 16, is only slightly 
worse. It is worth noting, that processing time required for the 
DTW-feat classifier is considerably lower than for the basic 
DTW classifier. 

TABLE I.  ACCURACY [%] OF DTW ON FENCING FOOTWORK DATASET 

(PD - PERSON DEPENDENT, PI - PERSON INDEPENDENT) 

 DTW DTW-feat 

PD 98,18 96,51 

PI 56,75 56,15 

Table II shows the confusion matrix which has been 
obtained by DTW for the PD case. The meaning of the 
acronyms used in the table is as follows: IS - incremental 
speed lunge, JS - jumping- sliding lunge, R - rapid lunge, 
W/W - lunge with waiting, SF - step forward, SB - step 
backward. Sample videos illustrating the  considered  actions  
can  be  downloaded  from: http://home.agh.edu.pl/~fmal/spa/. 
As we can notice, we obtained perfect classification accuracy 
for step forward and step backward actions, i.e. the actions 
that differ significantly among themselves, as well as differ 
with the remaining actions. The results were obtained with 
five-fold cross-validation. 

TABLE II.  CONFUSION MATRIX (%), DTW CLASSIFIER, PERSON 

DEPENDENT (PD) 

 R IS W/W JS SF SB 

R 99,1 - 0,9 - - - 

IS 1,8 97,3 0,9 - - - 

W/W 0,9 4,4 94,7 - - - 

JS - 1,8 - 98,2 - - 

SF - - - - 100 - 

SB - - - - - 100 

 

B. SVM classification 

The classification accuracy obtained by linear SVM is 
shown in Table III. As we can notice, the classification 
accuracy that has been obtained for each performer is slightly 
worse in comparison to classification accuracy obtained by 
DTW. The classification accuracy obtained by the SVMs on 
the whole dataset is far better in comparison to accuracy 
obtained by the DTW. The classification accuracy on this 
challenging dataset that was obtained by SVMs with the 
proposed set of features is very promising. The results were 
achieved using linear SVM with C set to 1 and SVM-RBF 
with C = 100 and γ = 0.01. 

TABLE III.  ACCURACY [%] OF SVM-LINEAR ON FENCING FOOTWORK 

DATASET (PD - PERSON DEPENDENT, PI - PERSON INDEPENDENT) 

 SVM linear SVM-RBF 

PD 93,88 94,21 

PI 70,71 70,71 

 

Table IV shows the confusion matrix which has been 
obtained by linear SVM on the fencing footwork dataset. As 
we can notice very good classification accuracy has been 
obtained for step forward (SF) and step backward (SB). The 
classification accuracies are slightly worse in comparison to 
DTW accuracies obtained for the performers and then 
averaged over persons. The smallest accuracy has been 
obtained for incremental speed lunge (IS) action. As we 
already mentioned, this action is not easily distinguishable 
from the rapid lunge (R), lunge with waiting (W/W) and 
jumping-sliding lunge (JS) actions, and even fencing experts 
sometimes have troubles with the correct classification of 
these actions. 

By comparing the results presented in tables I-II and III-IV 
one can conclude that the SVMs built on the proposed set of 
features have better generalization capability in comparison to 
DTW. Moreover, the SVM-based classifiers have far smaller 
computational requirements. In time series classification, the 
combination of 1-Nearest-Neighbor classifier with the DTW 
has been proven exceptionally hard to beat [19]. However, as 
the experimental results demonstrated, the SVM built on 
properly selected and normalized features can be competitive 
with DTW both in terms of accuracy and processing speed. 
Proper modeling of motion patterns with relationship to time 
is the most important issue in obtaining high classification 
accuracy. In this work we achieved this by extracting the 
informative features on several overlapping segments. The 
resulting segment-based SVM for time-series showed better 
classification accuracy and generalization performance over 
single DTW on the challenging fencing footwork dataset. 
Despite their simplicity, segment-level-based representation of 
motion patterns and the resulting segment-based SVM are 
powerful. 

TABLE IV.  CONFUSION MATRIX (%), SVM LINEAR CLASSIFIER, PERSON 

INDEPENDENT (PI) 

 R IS W/W JS SF SB 

R 75 7,4 - 17,6 - - 

IS 17,1 46 9 27,9 - - 

W/W - 19,2 59,7 21,1 - - 

JS 15,6 23,8 10,1 50,5 - - 

SF 0,9 0,9 - - 98,2 - 

SB 1,9 - - - 1,8 96,3 

 

Table V illustrates confusion matrices for PD and PI, 
which were obtained by the linear SVM. The symbol L stands 
for lunge and it represents actions denoted by R, IS, W/W and 
JS. As we can observe, in the case of different actions, i.e. a 
scenario that is typically considered in work devoted to 
accelerometer-based activity recognition, the proposed method 
achieves promising results. For instance, UCI HAR Dataset 
contains data for walking, walking upstairs, walking 
downstairs, sitting, standing, laying, which were recorded at a 
constant rate of 50 Hz by a smartphone (Samsung Galaxy S 
II). It is worth noting that our dataset was recorded at 256 Hz, 



and this in turn allowed us examine several advanced digital 
signal processing techniques. 

TABLE V.  CONFUSION MATRIX, SINGLE CLASS FOR ALL LUNGE (L) 
ACTIONS, ACC FEATURES, SVM CLASSIFIER, PD (LEFT), PI (RIGHT) 

 L SF SB  L SF SB 

L 1 - -  1 - - 

SF - 0,99 0,01 
 

0,02 0,98 - 

SB - - 1 
 

0,04 - 0,96 

 

The results presented above were obtained on the features, 
which were selected from a larger pool of features and gave 
the best results. We considered several feature set, which were 
chosen both manually as well as using AdaBoost. The feature 
pool included features described in Section III A. For instance, 
for the wavelet features we obtained accuracy for the PD and 
PI cases equal to 92,07% and 69,35%, respectively, cf. results 
in Table III. 

The data processing has been done in MATLAB. The 
classification has been realized using WEKA. We utilized own 
implementation of DTW as well as AdaBoost for feature 
selection.  

V. CONCLUSIONS 

In this work we proposed an effective method for 
recognition of fencing footwork using a single body-worn 
accelerometer. We recorded a challenging dataset and as far as 
we know, this is the first dataset for fencing footwork 
recognition. Moreover, this dataset differs from other 
accelerometer-based activity recognition databases as it 
contains highly dynamic and similar actions. We proposed a 
segment-based SVM for time-series classification together 
with a set of informative features. We demonstrated 
experimentally that the proposed method is competitive with 
1-NN DTW in terms of classification accuracy, which is state-
of-the-art method for time-series classification. The proposed 
method demonstrated its effectiveness by achieving the 
classification accuracy slightly better than 70% on the fencing 
footwork dataset consisting of six actions, done by ten 
performers and repeated ten times. Regarding the complexity 
of the actions the results that were achieved in this work are 
very promising. As future work we will investigate new 
spatio-temporal features. Another direction that will be 
explored is developing mechanisms for DTW to provide better 
generalization among different realizations of the same action.  
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