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Abstract: In this paper we present efficient and effective algorithms for fall detection on the basis
of sequences of depth maps and data from a wireless inertial sensor worn by a monitored person.
A set of descriptors is discussed to permit distinguishing between accidental falls and activities
of daily living. Experimental validation is carried out on freely available dataset consisting of
synchronized depth and accelerometric data. Extensive experiments are conducted in the scenario
with a static camera facing the scene and an active camera observing the same scene from above.
Several experiments consisting in person detection, tracking and fall detection in real-time are
carried out to show efficiency and reliability of the proposed solutions. The experimental results
show that the developed algorithms for fall detection have high sensitivity and specificity.

1. Introduction

With the rapidly growing aging population on a global scale, the need of improving elderly well-
being is getting crucial. Smart home technologies can be utilized as means to improve both the
quality of care and wellbeing of dependent people. Its form called assistive domotics focuses on
making it possible for seniors and people with disabilities to remain at home, safe and comfortable.
Smart home technologies are becoming a viable option for older adults who would prefer to stay
in the comfort of their homes in place of move to a retirement home or a healthcare facility [1].

The aim of user-centered ubiquitous computing is to develop solutions yielding personal assis-
tance, which at the same time sense variations in human environment and dynamically respond to
user needs. It is self-evident that such technology has strong potential to cope with major societal
challenges posed by aging society [2]. Such an increased level of intelligence has a potential to
provide improved quality of care in addition to helping elderly people access the knowledge re-
quired to offer better decisions when interacting with smart environments [3]. One of the crucial
factors that at present pose serious bottlenecks to augment people’s lives with ubiquitous comput-
ing in a broader scale is reduced number of affordable energy-saving devices for human activity
monitoring and/or energy-efficient units.

Falls are leading cause of morbidity from injury and mortality in the elderly. They are the
major reason of injury-related hospitalization in persons aged 65 years and over and account for
significant fraction of all hospital admissions in this age-group [4]. Even falls that do not lead to
physical injuries can result in the so called post-fall syndrome [5], which typically manifests itself
in loss of confidence, loss of muscle and control, problems with balance, and walking disorders
leading to loss of mobility and independence. Fear of falling has been identified as one of the key
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symptoms of this syndrome. The cause for this is that seniors are afraid to lie after the fall on the
floor in solitude and without help for a long time [6]. It has also been shown that getting up quickly
after the fall can reduce the risk of death even by 80% and the necessity of hospitalization by 26%
[7]. Thus, falls should be detected as early as possible. For this reason, assistive technologies have
strong potential not only to assist in daily activities, but they also have capabilities to reduce risks
of fall events.

With the goal to permit prolonged independent living in a secure and homely environment, reli-
able fall detection is a significant task in the area of Ambient Assisted Living (AAL) [8]. Medical
alert systems were introduced in the 1980s as uncomplicated push-button devices worn around the
neck. Afterwards, they were extended about accelerometer-based algorithms to automatically raise
an appropriate alert that a fall has occurred. One of the biggest limitations of such automatic fall
detection systems is occurrence of false alarm alerts. When such a device is used, the false alarm
could be triggered by an everyday activity such as quickly dropping into a seated position in a chair
or even by bending down.

The ambient device-based systems are capable of detecting falls in a non-intrusive way by
exploiting audio, vibration, pressure and visual information, to name a few of the most frequently
used sources of information in this domain [1]. There are several types of sensors used in this field,
including measuring the vibration of the floor to detect falls [9], detecting falls by using pressure
mats [10] or impulse-radar sensors [11]. A fall detection system relying on one of the mentioned
above sensors typically has a high false alarm rate. None of the sensors mentioned above, if used
separately in a fall detection system, is able to meet the requirements of end-users regarding the
level of false alarms. Despite the enormous effort of research and the number of IMU-based devices
on the market, there is still no system that has sufficient reliability and is accepted by end-users.

To overcome the limitations of these devices, a wide range of vision-based monitoring systems
with fall detection functionality have been proposed over recent years [12][13][14]. Vision-based
systems usually use image sequences to analyze motion features of human body, and distinguish
features of fall events from non-fall activities in order to infer about occurrence of fall. They
provide valuable information for assistive monitoring but raise privacy concerns. Besides, such
systems fail to work in darkness or when the elderly is outside of the observed area. Their major
advantage is that the user does not need to wear any specialized apparatus. However, most of these
solutions are energy demanding and expensive. Moreover, their deployment is cumbersome, and
only a few of them can meet the demands of the end-users in the detection of the fall in real homes
or health care facilities.

Event-driven systems, in which the system activities are triggered in response to events, usually
representing a significant change of the state of controlled or monitored physical variables, exhibit
certain advantages over other approaches, particularly, in resource-constrained applications. Last
years have witness an upsurge in the research interest to harness the advantages of event-based
paradigm applied to a wide spectrum of engineering disciplines including signal processing and
control. Application areas of such systems include energy-efficient control, energy-efficient signal
processing, rehabilitation [15], event-driven visual attention [16], or frame-free event-driven vision
systems [17], to mention a few.

In this work, we present an event-driven system for fall event detection using measurements
from a body-worn accelerometer and depth sensor(s). In response to significant motion variation
indicated by an accelerometer, the system fetches depth maps from a circular buffer and then pro-
cesses them to validate the fall event. This way, the most time consuming depth image processing
is executed only in case of a significant change of the person’s motion, i.e. high likelihood of fall
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occurrence. We discuss and compare the efficiency of fall detection on depth maps provided by a
ceiling mounted camera as well as a wall-mounted (facing the user) camera. With the purpose of
extending the viewing area the overhead camera was mounted on a pan-tilt motorized head. The
aim of the controller of the pan-tilt unit was to keep the moving person in the center of the current
depth map. We discuss the person delineation as well as feature extraction in both camera set-
tings. We show experimentally that the results achieved in both camera settings are promising. We
discuss the advantages and limitations of the considered camera setups. We show experimentally
that a two-camera system achieves perfect classification performance on data from freely available
URFD dataset.

2. Background and Related Work

Recent fall alert devices are usually able to recognize when a person wearing the device has fallen
by using accelerometers and optionally gyroscopes, and through detecting changes in the body’s
orientation and speed. An obvious limitation of such devices is that the senior may be not capable
to press the emergency button after the fall due to loss of consciousness or just because of over-
excitation. Thus, the applicability of such devices is limited to niche markets as nursing homes.
Moreover, today’s devices are not widely accepted by primary end-users [7], particularly those
who are not impaired. The reason for this is that current systems are not able to guarantee good
sensitivity (nearly 100%) with enough specificity to limit the number of false alarms [18][19]. An
alarm is false when it is triggered unnecessarily or for cause other than fall event. In practice, this
means that certain fall-like activities activate alarms, which in turn lead to irritation of the end-
users. The reason for this is that the acceleration ranges are overlapping for falls and activities of
daily living (ADLs).

Besides solutions outlined above, more complex systems are now utilized to improve the fall
detection accuracy [20][8]. Such fall detection systems can be divided into two major categories,
that is, based on wearable sensors and context-aware systems [4]. Micro-electro-mechanical sys-
tems (MEMS) are extensively used in a wide range of applications. MEMS accelerometers are one
of the most common types of MEMS sensors, due to their simplicity, ease of fabrication, low price
and good usability [21]. In comparison to vision sensors, wearable inertial sensors are lighter,
smaller, easier to use, and most importantly, they consume less energy and are far cheaper. They
allow collection of data outside of laboratory environments and are perceived as one of the best
sensors for AAL [1]. Hence, many different algorithms have been proposed to explore, support or
improve fall detection using only accelerometer(s) [22] or an inertial measurement unit(s) [23][24].

Usually, approaches relying on body-worn accelerometer utilize a threshold-based algorithm
to examine if a person’s movement is higher than some preset threshold [25][22]. However, as
shown in [19], such systems are too sensitive and thus generate substantial number of false alarms.
A similar conclusion has been drawn by an international group of researchers [18], which evaluated
the effectiveness of threshold-based algorithms to identify falls on data from real falls. The dataset
of 29 real–world falls contains accelerations of persons’ movement, each for a period of two days.
In the evaluation, thirteen different algorithms were examined with respect to their capability of
identifying of real falls. Regrettably, none of the examined algorithms gave satisfactory results in
terms of both sensitivity (capability of recognizing falls that in reality took place) and specificity
(ability to properly recognize a movement as a non-fall).

Fall detection methods relying on body-worn accelerometers can be ineffective in detection of
slow falls [26], such as collapsing after a heart attack, which usually do not feature significant
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accelerations. Moreover, as noticed in [27][18], some fall phases detected in experimentally sim-
ulated falls are usually not detectable in acceleration signals from heterogeneous realworld falls.
Thus, having on regard reduced availability of motion data with real-world falls, the usefulness of
machine learning-based methods might be limited in practice. In general, although it is not easy to
distinguish between falls and fall-like activities, the inertial sensors are thought to be very useful
sensors in fall detection [4]. They are now massively utilized in the mobile smart devices, includ-
ing smartwatches. Smartwatches are lightweight and waterproof, so they can be kept on when
taking a bath. Overall, the inertial sensors can greatly support fall detectors built on other sensors,
including vision and depth sensors [28][29][20].

Among the possible types of context-aware detectors, vision systems offer a promising way of
recognizing of human actions [30] as well as detecting human falls [31]. Variety of vision-based
fall detection algorithms have been developed in recent years [13][14]. One of their advantages
is that the monitored person does not need to wear any special apparatus. On the other hand, this
form of fall-monitoring is both most intrusive and most expensive. Despite many approaches to
preserve privacy, people in the observed spaces still have feel of being-watched. In consequence,
the usual CMOS/CCD cameras are very often unacceptable, especially in the bedrooms or bath-
rooms. Moreover, while near-infrared light sources made it possible to record video in low-light
conditions and during the night, the quality of the videos might be insufficient to achieve automatic
fall detection with high sensitivity and specificity. Nevertheless, thanks to technology progress in
the area of smart camera [32] and smart home, the CMOS/CCD camera-based systems offer many
monitoring capabilities.

The cameras providing in real-time the depth maps can considerably enhance the detection
and tracking performance making possible to reliably extract the head trajectory, which has been
proven to be very useful in fall detection [33]. An entire view of the scene can be very advantageous
in fall detection. In [34], it has been demonstrated how the omnidirectional cameras can be utilized
to achieve coupled fall detection and tracking. In general, the omnidirectional cameras have proven
to be the very useful if big visual field coverage is desired. Thermal video cameras, which detect
the amount of thermal radiation emitted/reflected from objects in the scene can also provide very
informative information for reliable fall detection [35].

Just a few years ago, the Kinect’s sensor has been proposed for detection of humans’ falls
[36][28][37]. As shown experimentally [36][28], the depth maps delivered by the Kinect sensor
are enough to extract the person from the background. What is more, owing to estimation of
dense depth maps on the basis of speckle pattern of infrared laser light, the detection of the person
can be done anytime. Despite several approaches to Kinect-based fall detection [37], the existing
algorithms do not provide both high sensitivity and specificity. By integrating the acceleration
data with video or depth maps [38][28], the recognition of activities [29] as well as emergency
situations can be noticeably improved.

Our work differs from research in the area of fall detection (e.g. [37]) in that we do not use only
inertial device or depth maps standalone but we use both an inertial unit and depth sensor. The ra-
tionale for such an approach is that the current accelerometer-based algorithms being to sensitive,
generate too much false alarms. Assuming that such algorithms typically produce a few alarms a
day [19], our approach is able to reduce the false alarm ratio to almost null. Having on regard that
accelerometers are frequently available in smartwatches, as well as considering further progress in
this area, the obtrusiveness and the discomfort when wearing such a device will be limited. With
a view to high computation cost of vision-based algorithm for fall detection we apply event-driven
approach to data processing and system design. This allows us not only to reduce computational
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overload but also allows us to determine precisely the time at which the impact took place. Since
in the relevant literature [37][14] there is no detailed comparison of approaches for fall detection
on the basis of ceiling-mounted and wall-mounted cameras, we discuss algorithms for both ap-
proaches as well as present experimental results on freely available fall detection dataset. Since in
the second approach an active camera is recommended in order to extend the observation area, we
develop an effective algorithm for person’s head detection and tracking. We show experimentally
that the results achieved by this algorithm on maps acquired by the active camera are promising.

3. Architecture and Main Components of the System

While embedded vision is comparatively a novel term, as a technology, it is highly established in
a number of domains, and the most successful applications are in the area of factory automation.
Smart cameras are another example of successful applications of the embedded vision technol-
ogy [32]. In addition, one can specify a number of successful applications of this technology in
surveillance and transport. Healthcare is one of the main application areas for the embedded vision
[3]. The embedded vision technology has significant potential to change the health monitoring in
home, for instance through mobile phone applications for monitoring the user’s state of health and
reporting it to a medical center. One of successful examples of embedded vision systems is the
Microsoft Kinect game controller [39], which has been designed to perform real-time tracking of
the movement of the users. Although Kinect was initially devised only as a motion sensing device
for computer games, a strong interest of the computer vision community led to developing several
new applications, including applications for activity recognition [30] or rehabilitation [37].

In our approach, a body-worn accelerometer is utilized to indicate a potential fall event and a
depth camera is employed to authenticate fall alert. The proposed event-driven sensor data pro-
cessing method fetches from a circular buffer a sequence of depth maps, which were acquired prior
to the fall and then processes it to authenticate the fall alert, instead of processing data frame-by-
frame, see Fig. 1. In general, if the person acceleration is higher than a predetermined threshold the
algorithm executes a lying pose detector as well as optionally employs a dynamic feature to finally
confirm the fall. In consequence, more computationally demanding authentication of the fall is not
processed frame-by-frame. Such data streams processing has been designed specifically to operate
with the least amount of energy consumed while achieving reliable fall detection in real-time [40].

Fig. 1: Event-driven architecture for fall detection.

The presented system can operate in two main modes. In the first mode the fall authentication
is achieved using depth maps acquired by a static depth sensor facing the scene, whereas in the
second one the verification of the fall is achieved using depth maps provided by an active ceiling-
mounted camera. The main difference between the modes of the system lies in the person detection
algorithm. In the first mode with a static depth sensor, the person is extracted by differencing the
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current depth map from an accommodated depth map of the background. In the second mode
with the active camera, the person is delineated using depth region growing followed by a person’s
head detector. If a person moves the system delineates the person in each frame to extract his/her
centroid, which is in turn required by a controller of the active camera to keep the target in the
center of the current depth map.

The fall detection algorithm is executed on a PC or on PandaBoard depending on the configura-
tion. It runs under Linux operating system. The accelerometric data are acquired by x-IMU device
and then transmitted by Bluetooth to the receiver device of the processing unit. The Xbox Kinect
sensor is connected to the processing board via USB. The connection between the microcontroller
of the active camera and the board is realized by I2C bus.

4. Person Detection in Depth Maps

In this Section we discuss algorithms for person extraction in depth map sequences. The next
Subsection is devoted to explaining how person is delineated in depth maps acquired by a Kinect
facing the scene, whereas the subsequent Subsection details the method for person detection in
depth maps acquired by a Kinect and mounted on the ceiling, i.e. providing the top view of the
scene.

4.1. Person Detection in Frontal Depth Maps

The key technology behind Kinect is a variant of structured light in which a pseudo-random speckle
pattern is projected onto the scene by a laser-based IR emitter and then observed by an IR camera.
The shift of such a speckle pattern in space is measured and after that mapped to depth through
triangulation. However, the depth maps acquired in such a way often contain much noise. Thus,
typical detectors when trained from the widely applied image feature descriptors, which demon-
strated to be successful on visible images, cannot achieve promising results. As demonstrated in
[36][28], depth information is sufficient to extract human by the use of depth background maps
collected by a fixed Kinect. As noticed in [28], person extraction on the basis of depth background
maps can be done at low computational cost.

In our event-driven approach the algorithm extracts the person at low computational cost and
then processes the foreground image to prove whether a more costly update of depth background
is needed. Moreover, the accommodation of depth background maps is done only in map areas
in which the scene took change. The scene changes are detected with low computational cost
through extracting coherent depth maps on the foreground map and then examining if the size
of the component with person increased considerably, for instance due to opening a door, or the
number of the foreground components is larger than one, i.e. if there is an non-person object of
sufficient size in the foreground.

In the person extraction algorithm we can distinguish a part that is executed every frame and
a part, which is evoked when there is a scene change, see lines 1-7,22 and 8-20 in Algorithm 1,
respectively. Let us assume that there is given a background model B(x, y) and a buffer Q consist-
ing of Qsize last depth frames. In each frame the algorithm takes a new frame Dt(x, y) and then
extracts the foreground Ft(x, y) through determining the absolute value of difference between the
current depth map and the depth background map, see lines 2-3. Then, the algorithm determines
the connected components in the binarized foreground images, calculates their number as well as
their areas. Afterwards, it determines the blob belonging to person, see line 5, and stores it on the
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person image Pt(x, y). Finally, it examines if the number of blobs is larger than one or there is a
significant change of the person area on consecutive person images. If both conditions are false
the algorithm returns the previous background model, see line 22-23.

Algorithm 1 Person extraction using depth reference map

1: Given a background model B(x, y), and buffer
Q = {Dt−1(x, y), Dt−2(x, y), . . . , Dt−Qsize

(x, y)}
2: Acquire new depth map Dt(x, y) ◃ Fig. 2c
3: Determine foreground

Ft(x, y) =

{
Dt(x, y), if |Dt(x, y)−B(x, y)| ≥ Bth

0, otherwise |Dt(x, y)−B(x, y)| < Bth

4: Determine Blobs on Ft(x, y) using connected comp. ◃ Fig. 2d
5: Assign to person image Pt(x, y) the Blob with the greatest similarity to Pt−1(x, y)
6: Determine number of Blobs Nb

7: If area(Pt(x,y))
area(Pt−1(x,y)

> Ta or Nb > 1

8: Determine

Ft−3(x, y) =

{
Dt−3(x, y), if |Dt−3(x, y)−B(x, y)| ≥ Bth

0, otherwise |Dt−3(x, y)−B(x, y)| < Bth

9: Determine ROI , allocate stack S, determine seed on the
basis of Ft−3, allocate logical table L and initialize
it with false

10: Pt(x, y) = RegionGrowing(Dt(x, y), seed)
11: D′

t(ROI) = Dt(ROI)− Pt(ROI) ◃ Fig. 2f
12: Push D′

t(ROI) on stack S
13: L = L or logical(D′

t(ROI)) ◃ Fig. 2g
14: If for each (x, y), L(x, y) ̸= false
15: B′(x, y) = Median(S)
16: return B′(x, y)
17: Else
18: acquire new depth map
19: determine seed
20: go to line #9
21: Else
22: B′(x, y) = B(x, y)
23: return B′(x, y) ◃ Fig. 2h

A modification of the scene layout requires an update of the depth background map. Figure 2
illustrates a dynamic scene, where a person closes the door. In such a scenario the depth model
should accommodate to scene changes. In our approach the depth background map is a temporal
median over a set of the depth maps. The depth background map is updated only in a region of
interest ROI , which is represented by a rectangular sub-image. It contains the foreground objects,
see Fig. 2d. After determining the foreground image Ft−3(x, y) the algorithm uses it to determine
a seed region, which is used by a region growing procedure, see 10th line in Algorithm 1. Then,
in region constrained by ROI , the person blob extracted by the region growing is removed from
the current depth map, see 11th line in Algorithm 1 and Fig. 2f. The image D′(x, y) extracted in
such a way is then pushed on a stack S, which holds a set of depth maps required for determining
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the temporal median. The temporal median is calculated if all pixels in the logical table L are true.
This means that all pixels in the ROI region changed the value from false to true, i.e. that at every
(x, y) location, at least one background pixel D′ has been stored in every location (x, y) in S, which
in turn is employed in the median filtering. After updating the depth background map, see 15th
line in Algorithm 1 as well as Fig. 2h, the algorithm returns the background model. By comparing
depth background map before the scene change, see Fig. 2b, and depth background map, which
has been extracted after the scene change, see Fig. 2h, we can notice that the model accommodated
to change of the scene. In particular, it contains only objects belonging to the room. As we can
notice, the depth background model takes into account the closed door. The thresholds Ta and
Bth were determined experimentally. The buffer Q contains three last consecutive depth maps
Dt−1, Dt−2, Dt−3, i.e. Qsize is set to 3. In the current implementation it contains also depth maps
for the calculation of dynamical features as well as maps for re-initialization of the background
model. The region growing function is discussed below.

a) b) c) d)

e) f) g) h)

Fig. 2: Person extraction in a dynamic scene. RGB input image a), initial depth background model
b), input depth map c), foreground blobs d), segmented person e), input depth map after removing
person f), logical table L g), updated depth background model of the scene h)

4.2. Person Detection in Depth Maps from Ceiling-mounted Active Camera

The Kinect sensor has an angular field of view of 43◦ vertically and 57◦ horizontally. The observa-
tion area of an overhead Kinect mounted at the altitude of 2.6 m from the floor is about 5.5 m2. In
order to increase the field of observation a home-made pan-tilt head has been utilized to rotate the
Kinect sensor. Thanks to the use of such a pan-tilt motorized head the observation area covered by
the device is far larger and in effect the Kinect can cover a typical room, say 15-20 m2 [41]. When
a person moves, a PI controller rotates the camera in order to keep him/her in the central part of the
image. The person is detected in real-time on the basis of a depth region growing. The person’s
position is represented by the centroid of the delineated blob. In order to decrease the number of
pixels that can be potentially included into the person blob, in advance, the algorithm detects the
floor using RANSAC algorithm [42].

The seeded region growing [43] was originally designed for intensity, i.e. gray-value images.
The method takes a set of seeds as starting points along with the image. The regions are then
grown from these seed pixels to pixel neighbors depending on a region membership criterion,
which determines whether the adjacent point should join a region or not. The magnitude of the
difference δ between pixel’s intensity value and the region’s mean is used as a decision criterion.
The order in which the pixels are processed is determined by a global priority queue, which orders
all candidate pixels by their fitness scores. This way the pixel with the smallest measured difference
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is assigned to the respective region. If the unlabeled pixel meets two or more boundary pixels from
adjacent regions, it is joined into a region that has the smallest similarity distance and then it is
marked as border region. The above process continues until all pixels are assigned to a region.

A disadvantage of the original region growing is that it does not update the previous entries
in the sequentially sorted list (SSL) to reflect new differences from a region whose mean has
been updated. In an improved seeded region growing [44] the border pixels, which have the same
minimum δ value are processed in parallel. The improved algorithm employs an ascending priority
queue (PQ) and several LIFO queues, where each LIFO queue contains pixels with the same δ
value. When a new pixel is added to the PQ, it is inserted into a LIFO queue that corresponds to
the pixel’s δ value. This means that instead of removing individual pixels from the PQ, the entire
LIFO queue corresponding to the smallest δ value is removed.

In our approach, the person is extracted in the sequence of depth maps using a modified region
growing, which starts from a single seed region. The pseudo-code of the algorithm is given in
Algorithm 2, whereas the symbols utilized in the pseudo-code are explained below. An NHQ
queue contains the pointers to pixels neighboring with the depth region, whereas a QM holds the
NHQ queues indexed according to δ. The queue with the smallest δ is denoted by FQ.

Table 1 Notation in the Algorithm 2

RG M The mean value of the depth region

δth Threshold for δ value

NHQ Neighbours holding queue

QM Map of queues holding δ

FQ Queue with smallest δ

Labels

NO L Not visited pixel

IN NQ Pixel is inserted in NHQ queue

IN Q Pixel is in QM queue

LA Pixel is assigned to the region

At the beginning, the seed pixels are assigned the LA label, the mean depth value of the pixels
belonging to seed is determined and the neighboring pixels are inserted in the neighbors holding
queue (NHQ). Then, the algorithm iterates until NHQ and QM are nonempty. At the beginning
of the iterative process the algorithm iterates until the NHQ queue is not empty, see line #3. In
the discussed loop the algorithm deletes the pixel from the NHQ queue and then calculates its δ.
If δ is smaller or equal a threshold δth the algorithm inserts the pixel in the QM’s queue indexed
by the δ value and assigns him the IN Q label, otherwise it takes next pixel from NHQ queue.
After terminating the loop, the algorithm examines if the QM queue is not empty, see 10th line in
pseudo-code. If yes, it deletes from QM the queue FQ with the smallest δ and then iterates until
the FQ is nonempty. At each step in the loop, the algorithm deletes the pixel from the FQ queue,
see 13th line, assigns him the LA label, and it assigns the neighboring pixels with NO L labels to
NHQ queue as well as changes their label from NO L to IN NQ label. After terminating the loop,
the algorithm actualizes the average value of depth. It continues until NHQ and QM are nonempty.

Figure 3 demonstrates the extracted person blob by the discussed algorithm together with the
images illustrating the region growing stages. Due to the nature of the distribution of depth values
on the person’s head, i.e. gradually decreasing depth values, the algorithm at first extracts the head.
This means, that if the seed region is located in the head’s area, the algorithm will extract the head
first, see Fig. 3b, then the arms, see Fig. 3c, and then the remaining body. As we can notice, this
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Algorithm 2 Depth region growing
1: Assign LA to seed pixels, calculate RG M, insert the neighboring pixels in NHQ and assign

them IN NQ
2: While NHQ ̸= ∅ and QM ̸= ∅
3: While NHQ ̸= ∅
4: Delete pixel from NHQ
5: Calculate its δ
6: If δ > δth
7: continue
8: Insert it in QM queue with index δ
9: Assign him IN Q label

10: If QM ̸= ∅
11: Delete FQ from QM
12: While FQ ̸= ∅
13: Delete pixel from FQ
14: Assign him LA label
15: Assign its neighbors with NO L to NHQ

and assign them IN NQ label
16: Actualize RG M about the pixel values from FQ

creates a possibility for analysis of shapes, which arise during region growing to authenticate that
the extracted regions belong to the person’s area. In particular, the oval shape of the head can be
approximated by an ellipse, see Fig. 3b, whereas the head-arm part can be approximated by an
ellipse or T-shape like figure, depending on the relative position between person and the camera,
see Fig. 3c.

a) b) c)

d) e) f)

Fig. 3: Person extraction on depth maps acquired by a ceiling-mounted camera using region grow-
ing.

4.3. Finding person in depth maps

Regular depth region growing suffers from the effect of region chaining (overspill), which takes
place when two separate regions are grown into single region while they are really split. To ame-
liorate delineation of the subject in such circumstances as well as to improve person following by
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the active camera, we can configure the system to execute a person’s head finder. The detector
can also be used for automatic initialization of person tracking. The head detection is realized by
a linear SVM, which operates on Histogram of Oriented Depths (HOD) features [45]. The HOD
features locally describe the orientation of depth changes. In this work, they are determined in sub-
windows of fixed size [46]. The scaling ratio is determined on the basis of the distance between the
camera and the head’s part, which is closest to the camera. The sub-windows of fixed size undergo
a subdivision into cells. The descriptors are extracted for each cell and finally the oriented depth
gradients are assembled into 1D histograms.

5. Feature extraction

First part of this Section is devoted to explain how we indicate fall events on the basis of motion
data. Subsequently, we present recognition of lying pose in depth maps, which are acquired by the
frontal as well as the ceiling-mounted depth sensor. Afterwards, we discuss features that describe
dynamic transitions of the body. Finally, we explain how person falls are detected.

5.1. Fall indicating using body-worn accelerometer

A lot of various techniques were proposed to achieve reliable fall detection using IMUs [25].
Usually, the accelerometer-based techniques indicate the alarm if the acceleration reaches a certain
threshold value. An algorithm proposed in [47] relies on change in body orientation. It raises alarm
if the square root of sum of the squares of acceleration components exceeds a preset threshold
value.

In the discussed system, a fall impact is signaled if the Total Sum Vector SVtotal is larger than
2.5 g. The SVtotal value is determined as follows:

SVtotal(t) =
√

A2
x(t) + A2

y(t) + A2
z(t) (1)

where Ax(t), Ay(t), Az(t) stand for the acceleration in the x−, y−, and z−axes at time t, respec-
tively. The SVtotal value includes both the dynamic and static acceleration components. It equals
to 9.81m/s2 when the accelerometer has no acceleration, and zero when it is in free fall. Having
on regard that the potential fall is indicated if the SVtotal is larger than experimentally determined
threshold, the fall event is signaled only on the basis of body impact, i.e. we do not consider free-
fall and post-fall phases. Such phases were considered in approaches aiming at detecting the falls
on the basis of acceleration data only [25, 18]. In order to measure the movements of the whole
body the device was located around the pelvis, which is close to the center of the body mass. Thus,
similarly to [18], the device was placed near the spine on the lower back. As pointed out in [48],
since the acceleration signal measured from wrist varies considerably, the signal of ADL samples
strongly overlaps with that of the fall events. An analysis [25] of acceleration signals from 240 falls
demonstrated that a fall with the smallest trunk magnitude produced a value of 3.5 g. The men-
tioned above value provided 100% fall-detection accuracy. In [48], the SVtotal value from waist
was set 2.0 g, i.e. to smaller value in comparison to the value used in [25]. As noted, this difference
might be partly explained by the median filtering, which changes the absolute peak value of the
impact signal.
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5.2. Fall detection dataset

The classifiers responsible for fall detection were trained on depth map sequences from URFD
dataset1. The URFD dataset consists of depth map sequences acquired by two Kinect sensors with
the corresponding motion data, which were collected by a body-worn accelerometer. The motion
data consisting of the acceleration over time in the x, y, and z axes were acquired by a x-IMU
device with sampling rate of 256 Hz. The frontal depth maps with the corresponding RGB images
were acquired by a fixed Kinect that was placed at 1 m altitude from the floor, whereas the top view
RGB-D maps were acquired by a second static Kinect, which has been mounted at a ceiling at the
height of 3 m from the floor. All depth maps are synchronized with the motion data. The dataset
contains thirty image/acceleration sequences with 30 falls, which were simulated by five persons,
including one 50+ performer. They simulated falls from standing and from sitting on the chair. A
part of dataset with frontal images contains also forty image/acceleration sequences that contain
typical ADLs like sitting down, picking-up an object from the floor, crouching down, as well as
ten data sequences with fall-like activities, consisting in quick lying on the floor and lying on the
bed/couch. The sequences with falls consists of 3K images with corresponding motion exemplars,
whereas the total number of images in ADLs sequences is equal to 10K.

5.3. Recognition of lying pose

On the basis of features representing the extracted person in the depth maps we trained classifiers
responsible for distinguishing falls from ADLs. The lying pose has been distinguished from ADLs
using classifiers trained on features representing the extracted person in the depth maps. For each
of the considered camera setting a separate lying pose classifier has been prepared. For training
and evaluating the classifiers we selected 2425 and 525 depth maps from URFD dataset. Such
image set was then employed to build k-NN classifiers and to train linear SVM classifiers, whose
main task was to check whether the person is lying on the floor. Below we discuss the features that
were utilized in both camera settings.

5.3.1. Recognition of lying pose in depth maps from facing camera: The lying pose in
frontal depth images has been recognized using both depth features and features expressed as a
point cloud. The conversion from depth data expressed in the 2D array to data expressed as the
point cloud has been done using factory calibrated settings. The following features were extracted
from the frontal depth maps to recognize the lying pose:

• H/W - ratio of height to width of the person’s bounding box

• T/Tmax - ratio of height of the person’s surrounding box to the physical height of the person,
projected onto the depth map

• D - the distance of the person’s centroid to the floor

• max(σx, σz) - standard deviation from the centroid for the abscissa and the applicate, respec-
tively.

• P40 - ratio of the number of points belonging to the person, contained in a surrounding cuboid
of height 40 cm from the floor, with respect to total number of points belonging to the person.

1http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
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5.3.2. Lying pose recognition in depth maps from ceiling-mounted camera: The detection
of the lying pose in the maps from ceiling-mounted active camera has been realized on the basis of
the following features:

• H/Hmax - ratio expressing the head-floor distance to the person’s height

• area - ratio of the person’s area in the depth map with respect to the area of the top-view blob
of the person in the standing pose

• l/w - ratio expressing the major length to major width of person’s blob in the depth image.

The major length and width (eigenvalues) have been calculated as follows [49]:

l = 0.707

√
(a+ c) +

√
b2 + (a− c)2

w = 0.707

√
(a+ c)−

√
b2 + (a− c)2

(2)

a =
M20

M00

− x2
c , b = 2(

M11

M00

− xcyc), c =
M02

M00

− y2c ,

M00 =
∑

x

∑
y
F (x, y), M11 =

∑
x

∑
y
xyF (x, y),

M20 =
∑

x

∑
y
x2F (x, y), M02 =

∑
x

∑
y
y2F (x, y)

where F (x, y) indicates a pixel on binary image representing the extracted person, whereas x, y
stand for image coordinates.

5.4. Dynamic transitions

During human fall the head-floor distance changes rapidly due body transition from vertical ori-
entation to horizontal one. The distance between the person’s centroid and the floor also varies
considerably and quickly over the accidental fall. The ratio of the areas occupied by the person
in the depth maps from a ceiling-mounted camera also changes meaningfully over the accidental
fall. Therefore, by analyzing the above mentioned cues we can settle whether the body transition
is intentional or not.

In the setting with ceiling-mounted sensor, aside from the features discussed in previous sub-
section, we employed also a dynamical feature incorporating information about the speed of the
falling person’s body towards the floor. The speed of the falling body was modeled through the
distance between the farthest person points and the floor. The discussed feature was determined in
the following manner:

h(t) =
H(t)

H(t−∆T )
(3)

where value of H(t) is determined at the time of the impact, and H(t − ∆T ) is calculated ∆T
prior the impact. The value of ∆T has been chosen experimentally and it was set to 600 ms. It is
worth noting that typical lead times for falls range from 650 - 800 ms. The experimental results
showed that in the scenario with the ceiling-mounted depth sensor such a feature quite reliably
describes the fall dynamics. In the depth maps from a ceiling-mounted sensor the peak value
of H(t)/H(t − ∆T ) for the fall assumes values smaller than one. The accelerometer used as an
indicator of the potential simplifies determining this ratio since the impact time t can be determined
readily at low computational cost.
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5.5. Fall detection

In the setting with the frontal camera the decision about the fall is taken on the basis of SVtotal

value (1) as well as lying pose detector. If the SVtotal exceeds the value equal to 2.5 g the lying
pose detector is executed to authenticate the fall. This means that the accelerometer filters most of
the fall-like activities and as a result the lying pose detector is executed only in the case of high
likelihood of fall event. In the scenario with the overhead camera, aside from the mentioned above
cascade of two classifiers, the dynamical transitions are considered too. If both the accelerometer-
based classifier signals high likelihood of fall event and the lying pose classifier indicates that the
person is lying on the floor, then the threshold-based classifier is executed to examine if the value
of dynamic transition (3) of the head assumes a value smaller than 0.6. In consequence, the final
decision about the fall in the setting with the ceiling-mounted camera is taken on the basis of a
chain consisting of three classifiers. The discussed chain includes a classifier that on the basis of
acceleration data signals potential fall, as well as classifiers of lying pose and dynamic transition,
which decisions are taken on the basis of depth maps. The final classifier of the fall considers
different modalities and has lower false positive rate and high precision.

6. Real-Time Data Acquisition and Processing. Tuning and Parameters

Having on regard that fall detection system should be inexpensive as well as work anytime and
consume low power, we designed an event-driven processing framework in which the body-worn
accelerometer is utilized to signal high likelihood of the fall occurrence and depth maps are not
analyzed frame-by-frame, but instead they are stored in a circular frame buffer. In case of high
likelihood of fall event the previously stored depth maps are fetched from the circular buffer and
then processed to extract the features. In the setting with the frontal and fixed camera the frame-by-
frame calculations comprise person extraction through taking absolute value of difference between
current depth map and depth background map, determining the connected components as well as
calculating the areas and number of the connected components, see lines 1-6 in Algorithm 1. These
operations do not require a significant computational power. In the setting with the active camera
the person is extracted in every frame using the region growing, which is optionally followed by
the person-finder. The extraction of the features is more time consuming due to extraction of
the floor and determining the point clouds. However, owing to event-driven data processing such
computations are realized only in case of high likelihood of fall. The real-time data processing can
be realized on a PC running Linux. The algorithms were also executed on PandaBoard in order to
demonstrate their application potential and possibility of running on low-cost computing boards.

The fall detection application uses an asynchronous message-driven communication model to
propagate information throughout four application layers. It runs five main concurrent processes
communicating via message queues, which are one of the interprocess communication mechanisms
available under Linux and yield asynchronous communication among processes, see Fig. 4. In such
a communication model a process usually referred to as the sender writes the generated messages
to a queue, while one or more other receiver processes retrieve them from the queue. Once a
message has been read, it is deleted by the kernel from the queue. This means that the sender
and the recipient of the message do not have to cooperate with the queue at the same time. Even
if several receivers are listening on a channel, each message can be retrieved by single process
only. As we can see on Fig. 4, the first process is amenable for acquiring motion data from the
wearable device, the second process acquires the maps from the depth sensor, third one extracts
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the person, fourth process is accountable for processing of data and feature extraction, whereas the
fifth process is accountable for data classification and triggering the fall alarm. In case of use of
the PandaBoard, the dual-core processor allows parallel execution of processing and acquisition
processes. The IMU signals were collected with frequency of 256 Hz and 12-bit resolution.

The algorithms for person detection use parameters that were determined experimentally. The
algorithm for person extraction using depth reference map requires the thresholds Ta and Bth,
which were determined experimentally. The extraction performance does not drop significantly
with the change of parameters mentioned above. The region growing is resistant to changes of
experimentally determined δth values.

Fig. 4: Data acquisition, processing and communication between main processes.

7. Experimental results

In this Section we present the experimental results that were obtained on URFD dataset. In the sub-
sequent subsections we discuss evaluation results that were obtained on publicly available URFD
dataset using the presented fall detector along with performance of person detector and tracker.

7.1. Performance measures

The performance of the fall detector was evaluated with respect to sensitivity, specificity, accuracy
and precision. Sensitivity and specificity were calculated as follows:

sensitivity =
TP

TP + FN
× 100 (4)

specificity =
TN

TN + FP
× 100 (5)

where TP stands for True Positives (number of detected falls), FN denotes False Negatives (num-
ber of undetected falls), FP indicates False Positives (number of ADL examples giving false fall
alarms), whereas TN specifies True Negatives (number of ADL examples not giving fall alarms).
A perfect fall detector should be described as 100% sensitive (e.g., all falls are identified as falls)
and 100% specific (e.g., all ADLs are not identified as falls).

The accuracy is defined as the proportion of true responses (both True Positives and True Neg-
atives) among the total number of cases examined. It measures how well the system predicts both
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categories. The precision is defined as the proportion of the true positives against all the positive
results (both True Positives and False Positives). They were calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
× 100 (6)

precision =
TP

TP + FP
× 100 (7)

Accuracy expresses how close the indicated values are to the corresponding true values. When a
method is precise, the amount of random variation is small.

7.2. Evaluation of the fall detector

The system can be configured to perform fall detection on the basis of depth data only or both
accelerometric and depth data. In the second option, thanks to indicating that person’s movement
is above some preset threshold, the detection performance is far better. It is superior due to two
stage decision process, where at first stage the fall-like activities are filtered out on the basis of
acceleration data from body-worn device, and depth map analysis is conducted on a subset of
frames, which likely contain fall event. Thanks to the use of accelerometer as an indicator of the
potential fall the impact time can be determined easily and precisely enough, and thus the dynamic
features (3) can be determined without considerable computational overheads.

7.2.1. Threshold Selection: Keeping in mind that the accelerometer is used only to signal po-
tential falls, the acceleration threshold was set to 2.5 to indicate all fall and fall-like activities as
non-ADLs. The experimental results described below were obtained using the X-IMU accelerom-
eter that was worn near the spine on the lower back, and which was attached to body using an
elastic belt around the waist.

7.2.2. Evaluation of the fall detector for facing camera: The lying pose detector on depth
maps from the facing camera was evaluated on 2425 images from URFD dataset. The samples are
selected so that the representative set included images that represent all the possible poses of lying
person. We decided to base the system on the SVM and k-NN detectors since they demonstrated
high fall detection performance. They were built on features discussed in subsection 5.3.1. The
experimental results that were obtained by a linear SVM and a k-NN with five neighbors are shown
in Tab. 2. Both classifiers gave identical results. The k-nn with three neighbors achieves slightly
worse results. As we can notice the presented results are promising both in terms of sensitivity and
specificity.

7.2.3. Evaluation of the fall detector for overhead camera: The algorithm for lying pose
recognition in depth maps from the ceiling-mounted sensor has been evaluated on 875 representa-
tive images from URFD dataset. From the above mentioned dataset a subset of 60% images was
chosen for the training, whereas the remaining images were used only in testing. Since the dis-
cussed image sequences were acquired by a static depth sensor, the person has been extracted by
differencing the depth maps from the depth background map. The discrimination between falls and
ADLs has been performed by a linear SVM and a k-NN with 5 neighbors. The discussed classi-
fiers operated on features discussed in Section 5.3.2. The classification performances, which were
obtained by the classifiers mentioned above are shown in Tab. 3. As we can observe, the results
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Table 2: Performance of lying pose recognition on frontal depth maps of URFD dataset.

True
Fall No Fall

E
st

im
at

ed SVM, k-NN Fall 898 6
Accuracy=99.55%
Precision=99.34%No fall 5 1516

Sens.= 99.45% Spec.= 99.61%

Table 3: Performance of lying pose detection on overhead depth maps from URFD dataset [50].

True
Fall No Fall

E
st

im
at

ed

SVM Fall 244 9
Accuracy=97.52%
Precision=96.44%No fall 4 268

Sens.= 98.39% Spec.= 96.75%

k-NN Fall 244 10
Accuracy=97.33%
Precision=96.06%No fall 4 267

Sens.= 98.39% Spec.= 96.39%

obtained by lying pose detectors operating on features from ceiling-mounted sensor are promising
in terms of both accuracy and sensitivity. We evaluated also k-nn classifier with three neighbors,
which gave slightly worse results. The C parameter of the SVM classifier has been set to default
value, i.e. to one. Experiments consisting in an exhaustive grid search over the parameter space to
find the best setting demonstrated that the presented results do not change significantly for the C
values differing from the default value.

Subsequently, we conducted evaluations in terms of the usefulness of the dynamic feature for
distinguishing between fall and fall-like actions. They were evaluated in context of improving the
distinguishability between the accidental falling and the intentional lying on the floor. Figure 5
depicts the receiver operating characteristic (ROC) curve of the dynamic feature. It illustrates the
classification performance of a binary classifier for different values of the discrimination threshold.
The best accuracy was achieved for ∆T equal to 500 ms and Threshold equal to 0.525.

Afterwards, we asked two volunteers to act as evaluators of the dynamic feature. It turned out
that a simple cascade classifier consisting of the lying pose detector and the dynamic transition
detector performs very well in practice as it has almost null false alarm ratio. In particular, the cas-
cade gives promising results if a moment in which there was the impact is determined precisely.
In consequence, the fall detector consisting of accelerometer-based fall indicator, depth map-based
lying pose detector and dynamic transition detector achieves the best results for the overhead cam-
era. It is worth noting that such a classifier detected properly all falls in the depth map sequences
from URFD dataset. However, the discussed classifier was not able to completely eliminate the
false alarms. The inability to eliminate false alarms by fall detectors working on images from a
single camera motivated us to elaborate a fall detector using images both from facing and overhead
cameras.
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Fig. 5: ROC for dynamic feature.

7.2.4. Evaluation of the fall detector using data from facing and overhead cameras:
Using the features extracted from both facing and overhead cameras we evaluated a fall detector
consisting in accelerometer-based fall indicator and k-NN classifier with 5 neighbors for lying
pose detection. The classifier operates on features discussed in Subsections 5.3.1 and 5.3.2. It
has been trained on features extracted from the maps, which were used in Subsection 7.2.3, plus
corresponding depth images from the facing sensor. The results are presented in Tab. 4. As we can
observe, the results obtained in the discussed camera setting are superior in comparison to results
presented previously.

7.2.5. Comparison of performance of fall detection: Table 5 summarizes the classification
performances, which were obtained using the discussed camera settings. The camera setup with
frontal camera gives slightly better results in comparison to setup with the top camera. The best
results were obtained using data from both cameras.

7.3. Evaluation of person detector and tracker

If the system is configured to work with a static ceiling-mounted camera, the person can be ex-
tracted at low computational cost by differencing the current depth map from continuously updated
depth reference map of the scene. On the PandaBoard this operation takes about 10 ms. However,
as we already mentioned, the ceiling-mounted and fixed Kinect has quite limited observation area.

Table 4: Performance of lying pose recognition on frontal and overhead depth maps of URFD
dataset [%].

True
Fall No Fall

E
st

im
at

ed k-NN Fall 903 0
Accuracy=100.00%
Precision=100.0%No fall 0 1192

Sens.= 100.00% Spec.= 100.00%
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Table 5 Performance of lying pose detection [%].

front. cam. top cam. front. + top cam.
Accuracy 99.55 97.52 100.0
Precision 99.34 96.44 100.0

Sens. of fall det. 99.45 98.39 100.0
Spec. of fall det. 99.61 96.75 100.0

By the use of a ceiling-mounted motorized head to rotate the Kinect, the observation area can be
expanded noticeably. In such a setup with pan-tilt sensor, more sophisticated and time consuming
algorithms are required to extract the subject and to follow it by the active camera.

We began with evaluation of the depth region growing in the depth maps from the URFD
dataset. It is worth noting that in all sequences the person was extracted correctly. This means that
the presented person tracker achieved perfect performance on all fall events registered in URFD.
Next, our region growing was examined on five depth map sequences that were acquired by the
pan-tilt camera. The subject was moving freely around the room in an area that could not be
observed by the fixed camera. In the discussed experiments, it was required not only to extract
the person in real-time, but additionally to keep he/she in the central part of the depth maps ac-
quired by the active camera. Before starting the delineation of person, the camera was stationary
for a while to initially extract the subject through differencing the current depth map from the
depth reference map of the scene. It is worth mentioning that in all frames acquired by the ac-
tive camera, including depth maps containing intentional falls, every main body part has been
extracted properly. On Fig. 6 there are presented illustrative results, which were achieved on depth
images colleted by the active camera. On the PandaBoard the time needed for region growing-
based person delineation depends on the blob size and ranges from 17 ms to about 25 ms. A
video illustrating the person tracking by pan-tilt depth camera is available under the following
link: http://fenix.univ.rzeszow.pl/~mkepski/demo/act.mp4.

Fig. 6: Region growing – based person detection and tracking on depth maps acquired by a ceiling-
mounted active camera.

The person detector, which is discussed in subsection 4.3 has been evaluated on 254 positive
examples and 638 negative examples of which 60% were used for training and the remaining 40%
for testing. The depth maps with the delineated person were rotated to a canonical pose on the
basis of axis of the person’s blob. They were also scaled according to the distance of his/her head
to the camera. Table 6 contains experimental results that were obtained using the HOD-SVM
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detector, see also [51][46]. As we can observe, the detector achieves better performance when the
rotation of silhouettes to the canonical pose takes place. On the other hand, the improvement in the
performance is not considerable, and this in turn indicates that the algorithm is fairly resistant to
variations in head poses. This is due to extracting of HOD features on gradients forming elliptical
like structures on the person’s head seen on depth maps from an overhead camera. The discussed
results were achieved using the HOD with the cell size equal to 8× 8. The time needed for person
detection on the PandaBoard is equal to 41 ms.

Table 6 Performance of person detection using HOD-SVM on depth maps from ceiling-mounted active camera [%].

accuracy precision sensitiv. specificity
rotat. 99.45 98.21 100.0 99.22

no rotat. 98.91 98.18 98.18 99.22

8. Discussion

Both camera settings have advantages and disadvantages. As we already mentioned, ceiling-
mounted depth sensors are rarely utilized in fall detection research [37][8]. One of the reasons
for this is limited monitoring area of depth sensors, including Kinect. Our experimental results
demonstrate that owing to mounting the depth sensor on a motorized pan-tilt unit the observation
field can be extended considerably. As a result, typical senior rooms of size up to 25m2 can be
monitored by the single depth sensor. Moreover, we found that person delineation in such a setting
with an active camera can be done quite reliably and fast. Our modified depth-region growing for
person extraction demonstrated value in several experiments. The person detection times on the
low-cost PandaBoard are close to times needed for real-time processing. The computational power
of current PCs is sufficient to execute in real-time our algorithms for person detection and fall
recognition. One of the most significant obstacles to the introduction of fall detection systems and
their acceptance by seniors is the barrier of costs of devices and their everyday use [8]. In this con-
text it is worth noting that our system for fall detection can be built relatively inexpensively, using a
low-cost depth camera, a wireless accelerometer and low-cost processing boards like PandaBoard.

One of the advantages of the setting with the active ceiling-mounted camera is that the number
of situations in which occlusions impede person extraction is much smaller in comparison to setup
with a facing camera. In this context it is worth noting that there is almost no significant work that
deals with fall detection in case of visual occlusions [13][8]. Another observation is that for such a
camera setting a similar performance of lying pose detection can be obtained with smaller number
yet more discriminative features in comparison to depth map features that are needed for reliable
fall detection using a facing camera. Moreover, in setup with the ceiling-mounted camera the
dynamical features, which demonstrated high discrimination power, can be computed quite easy,
particularly if a body-worn accelerometer is used. We showed experimentally that two-camera
system achieves perfect detection performance on data from freely available URFD dataset.

As we already mentioned, our work differs from relevant work since we focus on ceiling-
mounted pan-tilt depth sensor, and last but not least, in that we are using a body-worn accelerom-
eter to indicate the context of the event. In this way, an expert knowledge about the specificity of
the fall detection problem has been realized in the form of event-driven architecture and a cascade
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of classifiers. In consequence, a decision about the fall is not taken by a single classifier, trained
using a machine learning technique, but it is taken on the basis of carefully designed and evaluated
classifiers, which attempt to mimic human experts. Our conclusions are in line with the research
findings presented in [27][18] in that the motion patterns of real-falls might differ from simulated
falls, particularly if falling person is trying to save himself from falling in order minimize the ef-
fects of the fall. The event-based approach to fall detection does not introduce unobtrusiveness
due to possible use of suit-integrated accelerometers, which employ the human body motions to
continuously recharge the battery [52].

9. Conclusions

In this work, efficient algorithms for fall detection were developed, implemented and tested using
depth map sequences and wireless inertial sensor worn by a monitored person. A set of descrip-
tors for depth maps has been proposed to permit classification of person poses as well as his/her
actions. The experimental validation was carried out on prepared and then shared data repository
consisting of synchronized depth and accelerometric data. Extensive experiments and tests were
conducted in the scenario with a static camera facing the scene and an active camera observing
the scene from above. The algorithms were designed with regard to low computational demands
and possibility of their run on ARM platforms. Several experiments consisting in person detec-
tion, tracking and fall detection in real-time were carried out to show efficiency and reliability of
the proposed solutions. Both camera settings were compared in terms of person detection and
fall recognition. The experimental results showed that the developed algorithms for fall detection
have both high sensitivity and specificity. In future work, we will investigate scenarios with two
persons as well as scenarios with occlusions. The region growing-based person detection should
be extended to deal with activities like sleeping on a coach.
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