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ABSTRACT
Person re-identi�cation is a di�cult task due to variations of person
pose, scale changes, di�erent illumination, occlusions, to name a
few important factors usually diminishing identi�cation perfor-
mance across di�erent views. In this work, we train a siamese
and triplet convolutional neural networks and show that they can
achieve promising recognition ratios. In order to cope with spatial
transformations and scale changes across multi-view images we
employ deformable convolutions in a triplet convolutional neu-
ral network. We propose an uni�ed neural network architecture
consisting of three triplet convolutional neural networks to jointly
learn both the local body-parts features and full-body descriptors.
We demonstrate experimentally that it achieves comparable results
with results achieved by state-of-the-arts methods.
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KEYWORDS
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1 INTRODUCTION
As a core technology in distributed smart cameras, person re-
identi�cation a�racts considerable research interest in both indus-
trial and academic communities. �e aim of person identi�cation
is matching individuals in a network of spatially non-overlapping
surveillance or monitoring cameras [1]. It is a hard problem, which
is still unsolved due to several di�culties, particularly because of
di�culties caused by di�erent camera views, complications aris-
ing due to di�erent illumination and scale as well as background
clu�er and occlusions [2]. Such di�culties result in unlike person
appearances in images acquired by di�erent cameras. In addition,
di�erent subjects may share similar visual appearance, which in
turn leads to additional di�culties in the person re-identi�cation.
In order to identify the same person in di�erent cameras, the re-
identi�cation system must be robust against illumination changes,
scale variations, outdoor clu�er and occlusions.

Vision-based people re-identi�cation is emerging as a very in-
teresting research �eld with plenty of potential applications in
so�-biometric technology, long-term surveillance or other security-
related applications. In order to address these challenges several
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methods have been developed to describe visual appearance of per-
sons and/or to measure the visual similarity among images with
pedestrians undergoing monitoring. �e research focuses on ap-
pearance descriptors [3, 4] and algorithms for matching across
di�erent views [5–7]. Most of existing methods usually consists
of two parts: (i) extracting discriminative features, (ii) applying
a distance metric for feature comparison. Discriminative feature-
based methods concentrate on discovering robust descriptors that
are resistant to occlusions as well as changes in pose and lighting
while preserving the identity information, whereas the distance
metric-based methods aim at minimizing the intra-class distance
while maximizing the inter-class distance. �e basic idea behind
metric learning is to seek a mapping function from the feature
space to a distance space, in which feature vectors representing
the same person are closer than those from di�erent ones. Most
of the research in this area is devoted to developing or improving
suitable hand-cra�ed features [8, 9] or good metric for multi-view
feature comparison and person re-identi�cation [2, 10–13], or both
of them [6, 14].

Recently, promising approaches for person re-identi�cation us-
ing neural networks have been proposed. Most of the methods
uses convolutional neural networks (CNNs), which integrate the
feature extraction and metric learning in single framework. CNNs
build a hierarchy of features through extracting low-level features
at the bo�om layers and discovering higher level features such as
the object parts or more general texture pa�erns at the mid-level.
In [15] a �lter pairing neural network (FPNN) has been proposed
to jointly deal with occlusions and background clu�er as well as to
handle misalignment, photometric and geometric transforms.

In the �eld of deep learning-based person identi�cation, in addi-
tion to work focusing on improving convolutional neural networks,
several methods that use multiple neural networks have been pro-
posed. Initially applied to signature veri�cation [16], the Siamese
neural network has since then been used in many applications,
among them in learning complex similarity metrics for face ver-
i�cation [17] and dimensionality reduction [18]. Siamese neural
networks optimize a loss function that drives the similarity metric
to be large for feature pairs from di�erent classes and small for
feature pairs from the same category. �e advantage of the siamese
network over typical MLPs is that is capable of learning on data
pairs instead of labeled instances. �is means that it is particularly
useful if the access to the labeled training data is limited or use of
labeled data is too costly.

Yi et al. [19] employed body parts to train a neural network. In
their method, images containing persons are cropped into three
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overlapped parts, which are then employed to train three inde-
pendent networks. Such networks are fused at the score level. In
more recent work [20], an improved deep learning architecture
with cross-input neighborhood di�erences, which capture local re-
lationships between the two input images on the basis of mid-level
features from image pairs has been proposed. In contrast to previ-
ously evoked work [19], which used siamese neural network with
two convolutional layers, their siamese network comprises four
convolutional layers. Gated siamese convolutional neural network
was introduced in [21] to compare local features along a horizontal
stripe for an input image pair and to adaptively boost them for
enhancing the discriminative capability of the propagated features.
Recently, Deng et al. [22] proposed a deep second-order siamese
network for pedestrian re-identi�cation, which consists of a convo-
lutional neural network and a second-order similarity model. �e
convolutional network is used to learn comprehensive features,
whereas the similarity model takes advantages of second-order
information. Both models are jointly trained over one uni�ed large
margin objective.

Recently, triplet neural network-based algorithms for person
re-identi�cation were proposed [23, 24]. A CNN model proposed
in [23] consists of multiple channels to jointly learn both the global
full-body and local body-parts features of the pedestrians. In [24] a
multi-scale triplet convolutional neural network, which is capable
of capturing visual appearance of a person at various scales has
been proposed. �e discussed multi-scale network architecture
consists of both deep and shallow neural networks.

Although various algorithms for person re-identi�cation have
been proposed, which exploit state-of-the-art methods for feature
extraction and advanced metric learning algorithms, the perfor-
mance of the best algorithms on commonly utilized person re-
identi�cation benchmarks [25], e.g. VIPeR, CUHK01, is still far
from the performance needed for surveillance applications.

In this work we train a siamese and triplet convolutional neu-
ral networks and show that they can achieve promising results,
particularly in comparison to results achieved by methods relying
on hand-cra�ed features. We propose an extended triplet convo-
lutional neural network to learn features of the pedestrians seen
in multi-view multiple-scale and multiple channel images. In or-
der to cope with spatial transformations and scale changes across
multi-view images we employ recently proposed deformable convo-
lutions in a triplet convolutional neural network. We demonstrate
that on widely used benchmark dataset such an extended network
can achieve promising performance, particularly in case of scale
changes of pedestrian seen in multi-view images. We propose an
uni�ed neural network architecture consisting of three triplet con-
volutional neural networks to jointly learn both the local body-parts
features and full-body descriptors. We demonstrate experimentally
that it achieves promising results in comparison to results achieved
by the siamese/triplet neural network.

2 METHOD
At the beginning of this section we overview convolutional neural
networks. In the next section we outline the triplet neural networks.
A�erwards, we present recently proposed deformable convolutional

neural networks. In the last part of this section we present an
enhanced neural network architecture for person re-identi�cation.

2.1 Convolutional Neural Networks
Di�erent from regular neural network, which only permits the
input as vectors, convolutional neural networks (CNNs) allow 2
or 3-dimensional arrays at input layer. What makes convolutional
neural networks distinct from classical MLPs is that the weights are
shared, that is, being di�erent with respect to the position relative
to the center pixel they are identical for di�erent pixels in the
image [26]. �us, it is straightforward to view a CNN as hierarchy
of organized into layers a collection of local �lters whose weights
should be updated in a learning process. Every network layer acts
as a detection �lter for the presence of speci�c features or pa�erns
present in the original data. �e convolutions are usually followed
by a non-linear operations a�er each layer since cascading linear
convolutions would lead to a linear system. Besides, max-pooling is
a mechanism that provides a form of translation invariance, which
contributes towards the position independence. �e CNNs are
typically trained like a standard NNs using back-propagation.

2.2 Siamese and Triplet Networks
A siamese network is a symmetric architecture consisting of two
networks [17], which share the same set of parameters. In contrast
to ordinary MLPs, which employ loss functions comparing the
neural network outputs with target values, the siamese networks
use an objective that compares the feature vectors of pairs of the
exemplars. �e objective is constructed such that the distance
between features representing instances from the same class is
smaller in comparison to distances between features representing
exemplars from di�erent classes. By the use of such an objective
there is no need to provide the labels for the classi�ed exemplars.
Moreover, in contrast to classical MLP in which the number of
outputs is usually equal to number of the considered classes, the
dimension of the target space can be speci�ed with respect to the
problem.

Let us assume that we have in disposal a training set consisting
of images with pedestrians {xi ,yi }Ni=1, where xi ∈ R

n and yi are
class labels. �e siamese network produces a feature embedding
f (x,θf ) that is de�ned as f : Rn × Rk → Rm , where θf ∈ Rk
stands for parameters of the network. �e pairwise loss can be
de�ned as follows:

J s1 (xi , xj ,θf ) = δ (yi − yj )‖ f
(1)(xi ,θf ) − f (2)(xj ,θf )‖2−

(1 − δ (yi − yj ))‖ f (1)(xi ,θf ) − f (2)(xj ,θf )‖2
(1)

where δ (·) denotes Dirac delta function, whereas f (1)(x,θf ) is con-
strained to be equal to f (2)(x,θf ). Alternatively, the pairwise loss
can be expressed as:

J s2 (xi , xj ,θд) = δ (yi − yj )(1/(κ+д(xi , xj ,θд)))+
(1 − δ (yi − yj ))д(xi , xj ,θд)

(2)

where a convolutional network д(xi , xj ,θд) returns the similarity
between the features xi and xj , where κ is a small positive constant.

It is worth to noting that the classical MLPs and the siamese
neural networks have similar gradient formulations, which per-
mits the use of standard back-propagation algorithm for training.
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Training a siamese network is almost the same to the training of
a standard MLP or a CNN. �e only di�erence is that a siamese
network operates on pairs of data samples, whereas the standard
MLP operates on single data samples.

A triplet network consists of three instances of the same network
that share parameters [27]. More speci�cally, the network is trained
using set of triplets, which are processed by the mentioned above
three instances of the same network with shared parameters. In
person re-identi�cation tasks each triplet contains three images.
i.e. a query image, a matched image, i.e. an image of the same
person as that in the query image, and the mismatched image.
�e network discovers features such that for every triplet the L2
distance between the matched pair and the mismatched pair tend
to be as large as possible. Subsequently, the distances between
matched image pairs assume smaller values than those between
the mismatched image pairs.

�e triplet loss can be expressed in the following manner:

J t1 (x, x
+, x−,θf ) = max

(
0, 1 −

‖ f (1)(x,θf ) − f (3)(x−,θf )‖2
‖ f (1)(x,θf ) − f (2)(x+,θf )‖2 +m

)
(3)

wherem denotes the margin, x− and x are from di�erent classes,
x+ and x are from the same class, and f (1)(·), f (2)(·) and f (3)(·) are
constrained to be the same neural network.

2.3 Deformable Convolutional Networks
Recently, a new type of convolution and pooling, called deformable
convolution and deformable RoI pooling has been proposed [28].
�e deformable convolution contains two parts, namely regular
convolution layer and another convolution layer that is devoted to
learn 2D o�set for each input. �e deformable convolution can be
perceived as a learnable dilated convolution, for which the dilated
rate is learned and can be di�erent for each input. Having on regard
that o�sets are not integer (fractional), a bilinear interpolation is
employed to sample from the input feature map. �e 2D o�sets are
then encoded in the channel dimension. �e authors demonstrated
that the introduced deformable convolution is capable of expand-
ing the receptive �elds for bigger objects. In context of person
identi�cation this is very desirable property, particularly in context
of real-world person re-identi�cation [24], since the identi�cation
system should cope with scale change over images from di�erent
camera views.

2.4 Parts-based Triplet Neural Network
Every instance of convolutional neural network processes color
RGB images of size 64 x 64. �e �rst convolutional layer consists
of 16 �lters of size 3 x 3. �e second convolutional layer comprises
32 �lters of size 3 x 3 and is followed by 2D maxpooling layer. �e
next layer is convolutional layer with 64 �lters of size 3 x 3, which
is followed by the 2D maxpooling layer. �is layer is followed by
convolutional layers with 64 and 128 �lters of size 3 x 3, respectively,
which in turn are followed by the 2D maxpooling layer. �e output
of this layer is �a�ened and then fed into a fully connected neural
network, which is in turn followed by a dense output layer. Between
the dense layers the dropout is executed. �e convolution and dense
layers apply ReLU activation function. �e dimensionality of the

output of such a base network is equal to 64. �us, the loss of each
triplet network is calculated on the basis of vectors consisting of 64
features. Since we divide the input images into two horizontally
divided sub-images, as well we process the whole input image,
the loss values produced by the triplet networks are summed and
then averaged, see Fig. 1. �is way the proposed neural network
integrates three triplet networks. As far as we know, besides our
network, only network proposed by [23] integrates neural networks
in a single learning framework. For instance, [29] divides person
images into three overlapped parts, but uses them to train three
independent networks.

Figure 1: Parts-based triplet neural network.

3 EXPERIMENTS
At the beginning of this section we present datasets and discuss
the employed evaluation protocol. �en, we present results that
were obtained in experimental evaluations. A�erwards, we present
details of the training of the proposed uni�ed neural architecture.
Finally we discuss the implementation details.

3.1 Datasets and Evaluation Protocol
�e proposed framework has been evaluated on two publicly avail-
able benchmark datasets: VIPeR dataset andCUHK01 dataset. VIPeR
dataset consists of 1264 images belonging to 632 subjects captured
with two non-overlapping cameras. Each person pair was captured
by di�erent cameras with di�erent viewpoints, poses, and lighting
conditions. VIPeR dataset is one of the most challenging datasets
for the person re-identi�cation task due to vast variance and dis-
crepancy. CUHK01 dataset contains 971 persons, captured from
two camera views in a campus environment. �e camera view
A captures frontal or back views of a person, whereas camera B
contains pro�le views of persons. For each person there are four
images.

For each dataset we select half of the persons for training, and
the remaining half for testing. �e images from �rst camera are
selected as query images, while the images from the second camera
are selected as gallery images. �e gallery set comprises single
image for each person. For every image in the query set we calculate
the distance between the query image and all the gallery images.
We compute L2 distances for features (embeddings) produced by
the trained networks and then select the most n nearest images
from the gallery set. If in the selected set of images there is image
representing the same individual as that in the query image at k-th
position, then the recognition is achieved with rank k .
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3.2 Experimental Evaluations
In the �rst part of the experiments we trained the siamese and triplet
convolutional neural networks. �e networks were trained on the
whole images from VIPeR and CUHK01 benchmark datasets. �e
experimental results obtained on VIPeR and CUHK01 benchmark
datasets are presented in Tab. 1 and Tab. 2. �e presented results
were achieved in ten experiments with di�erent splits of data into
train and test parts. As we can observe, the siamese and triplet
convolutional neural network achieve be�er results in comparison
to results achieved by methods that are based on hand-cra�ed
features and achieve promising results in comparison to recent
learning-based methods [8, 15, 20, 29]. Our triplet convolutional
neural network is slightly outperformed by recently proposedmulti-
channel parts-based convolutional neural network with enhanced
triplet loss [23].

Table 1: Performance of state-of-the-art algorithms and
siamese/triplet convolutional neural networks on VIPeR
dataset.

Rank
method 1 5 10 20
[10] 0.196 0.480 0.622 0.770
[7] 0.157 0.384 0.539 0.701
[8] 0.291 0.523 0.660 0.799
[12] 0.302 0.523 0.660 0.792
[8] 0. 434 - - -
[2] 0.459 - - -
[23] 0.478 0.747 0.848 0.911

Siamese 0.352 0.521 0.627 0.691
Triplet 0.440 0.700 0.810 0.820

Table 2: Performance of state-of-the-art algorithms and
siamese/triplet convolutional neural networks on CUHK01
dataset.

Rank
1 5 10 15

[8] 0.343 0.550 0.653 0.705
[12] 0.285 0.463 0.572 0.641
[15] 0.278 - - -
[20] 0.475 - - -
[2] 0.534 0.764 0.844 -
[23] 0.537 0.843 0.910 0.933

Siamese 0.445 0.720 0.769 0.851
Triplet 0.526 0.816 0.882 0.899

A�erwards, we evaluated the performance of the triplet convolu-
tional neural network with deformable convolutions on the VIPeR
dataset. �e weights obtained in training of the triplet convolu-
tional neural network were employed in the initialization of the
triplet convolutional neural network with deformable convolutions.
On VIPeR dataset the triplet convolutional neural network relying
on deformable convolution achieves similar results in comparison

to ordinary triplet convolutional neural network. For rank 1, 5, 10
and 20 the recognition accuracy was equal to 0.40, 0.74, 0.78 and
0.88, respectively, cf. results in Tab. 1. Next, we enlarged the test
images using randomly selected scale from 1.0 to 1.5 and evaluated
the recognition rate of the triplet convolutional network with and
without the deformable convolutions. It turned out that on the
rescaled images the recognition accuracy was almost 50% smaller
for ordinary triplet network, whereas the recognition accuracy
of the triplet network with deformable convolutions was smaller
about 78%.

Finally, we trained a network consisting of three triplet convo-
lutional neural networks. �e �rst triplet CNN operates on whole
images, whereas the remaining triplet networks operate on two
non-overlapping sub-images, which were obtained by dividing the
image into two horizontal stripes. �e neural network was trained
on VIPeR dataset, where �rst half of the images from both cameras
was used in training, whereas the second part of the images was
used for testing. Figure 2 demonstrates the averaged cumulative
match characteristic (CMC) curve, which was obtained in ten runs
with unlike initializations. For rank 1, 5, 10 and 20 the recognition
rate is equal to 0.481, 0.692, 0.753 and 0.803, respectively.

Figure 2: Averaged cumulative match characteristic (CMC)
curve of 10 runs of the triplet network onVIPeRdataset. �e
�rst 316 images from both cameras were used to construct
training triplets, whereas the remaining images were used
in testing.

Figure 3 depicts the embedded features determined by our parts-
based triplet convolutional network, which were projected into two
dimensional space using t-SNE (t-distributed Stochastic Neighbor
Embedding) algorithm [30]. t-SNE transforms similarities between
data points into joint probabilities and tries to optimize the KL
divergence between the joint probabilities of high-dimensional
data and low-dimensional embedding. In the discussed plot, every
projected feature into two dimensional space is represented by
the corresponding image. �e test images from the VIPeR dataset
were processed by the base convolutional neural networksb1,b2,b3,
see Fig. 1, which determined 64-dimensional embeddings, which
in turn were projected in two-dimensional space by the t-SNE
algorithm. Having on regard that the part-based siamese network
consists of three base networks the size of the embedded vector
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was equal to 192. As we can observe, there is consistency among
the projections of such embedded vectors onto 2d space, i.e. the 2d
points representing the same person are usually closer than those
from di�erent ones.

Figure 3: �et-SNEmaps of triplet CNN features for VIPeR
dataset.

3.3 Training of the Convolutional Neural
Network

In order to alleviate the over-��ing we increased the volume of
the training set through small perturbations of the location of the
windows, which were used to crop the person images. �e cropped
images were resized to images of size 64 x 64 pixels. In the process of
arti�cial augmentation of the data the sub-images were translated
and �ipped. �e number of positive image pairs as well as negative
image pairs for each subject has been increased approximately
four times. A�erwards, the average image computed from all the
training images has been subtracted from all images. In addition to
shi�ing of the inputs to zero-mean the images were also normalized
to unit variance. Such images were then rescaled to the range -
1 . . . 1.

�e siamese and triplet networks that were employed in this
work, cf. Subsection 2.2, contain a large number of parameters,
which means that it was necessary to provide a large number of
pairs or triplets at the learning stage. �e simplest solution to
this problem is to employ sampling from training data. However,
sampling all possible pairs or triplets from the training data can
quickly become intractable since the majority of those samples may
produce small costs in lost functions, which in turn leads to slow
convergence [31]. Below we detail a smart data selecting strategy
that has been applied to avoid over��ing, and particularly how we
avoided focusing on the hard training samples.

�e neural networks were initially trained on selected data from
available datasets for person recognition and re-identi�cation. In
the �rst epochs of the training a data generator has been used to
create balanced datasets. �e aim of the generator was to shu�e
the dataset and to produce training data with similar number of
matched and unmatched observations. In the early stage of the
training the persons in the training batch were selected such that
the distance between feature vectors representing positive examples
was small, whereas the distance between the negative samples was
possibly large. In order to cope with the internal covariate shi�
we applied batch normalization, which allowed us to obtain faster
learning and higher overall accuracy. By normalizing the data
in each mini-batch it was possible to apply higher learning rates
and to shorten the learning time. Having on regard that in the
training of deep neural networks, small perturbation in the initial
layers typically leads to large change in the later layers, we paid
considerable a�ention to selecting the training samples in the �rst
batches as well as to regularization the gradients in order to prevent
their distraction by outliers.

A�er training the network such that it was capable of solve
some hard cases, the data generator selected hard cases in order to
keep up a high loss of the objective function. During learning all
pair-wise distance as well as norms of the embeddings were auto-
matically veri�ed as well as stored in a log �le and then manually
inspected. On the basis of such information the learning has been
resumed several times until achieving satisfactory values of the
above mentioned values, and particularly the desirable values of
the objective loss function.

3.4 Implementation
�e data preprocessing has been realized in Matlab. �e data pre-
processed in such a way were then imported into python. �e
learning of the neural network has been performed in python using
keras framework. �e learning of the neural network has been
accomplished with GPU support using tensorFlow backend. All
computations were realized on a PC equipped with an NVIDIA
graphics card and running Windows 7.

4 CONCLUSIONS
In this work an e�ective framework for person re-identi�cation on
RGB images acquired by multiple cameras has been proposed. We
trained a siamese and a triplet convolutional network and demon-
strated experimentally that they can achieve promising results,
particularly in comparison to results achieved by methods relying
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on hand-cra�ed features. We proposed an extended triplet convo-
lutional neural network to learn features of the pedestrians seen in
multi-view multiple-scale and multiple channel images. In order to
cope with spatial transformations and scale changes across multi-
view imageswe utilized deformable convolutions. We demonstrated
that such an extended network can achieve promising performance,
particularly in case of scale changes of pedestrian seen in multi-
view images. We proposed an uni�ed neural network architecture
consisting of three triplet convolutional neural networks to jointly
learn both the local body-parts features and full-body descriptors.
We demonstrated experimentally that it achieves promising results
in comparison to results achieved by the siamese/triplet neural
network.
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