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Abstract In this paper, a framework for view-invariant

gait recognition on the basis of markerless motion track-

ing and dynamic time warping transform is presented.

The system consists of a proposed markerless motion

capture system as well as introduced classification method

of mocap data. The markerless system estimates the 3D

locations of skeleton-driven joints. Such skeleton-driven

point clouds represent the human poses over time. We

align point clouds in every pair of frames by calculating

the minimal sum of squared distances between the cor-

responding joints. A point cloud distance measure with

temporal context has been utilized in kNN algorithm

to compare time instants of motion sequences. In or-

der to enhance the generalization of the recognition as

well as shorten the processing time, for every individ-

ual a single multidimensional time-series among several

multidimensional time-series describing the individuals
gait is determined. Moreover, on the basis of recogni-
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tion carried out with respect to succes-sive markers the

segment ranking has been constructed. The correct clas-

sification rate has been determined on the basis of real

dataset of human gait. It was acquired in the Human

Motion Laboratory of PJAIT and contains 230 gait cy-

cles of 22 subjects. The tracking results on the basis of

markerless motion capture are referenced to highly pre-

cise Vicon system, whereas the achieved accuracies of

recognition are compared to the ones obtained by DTW

that is based on rotational data of subsequent joints.

1 Introduction

Motion capture systems are commonly used to capture

the detailed human locomotion. The locomotion data

are in the form of time series of pose attributes consist-

ing of joint rotations and global translation. In recent

years, human motion analysis has been actively studied

due to a high application potential in diagnosis of dis-

eases [27,24], sports biomechanics [15], action recogni-

tion [8,6,9] and human identification [2,4,5]. The main

challenges in gait analysis are related to acquiring mo-

tion data as well as description, and assessment of quan-

tities characterizing human locomotion. Among these

applications, significant number of studies are devoted

to human identification. In relation to other biomet-

ric methods, gait recognition has numerous advantages,

such as noninvasiveness, noncontactness, nonawareness,

capability of being identified at a distance and diffi-

culty to conceal [23,18]. Moreover, gait patterns can

be extracted and measured even on the basis of low

resolution videos. Hence, human gait identification is

very important problem due to possible applications in

medicine, biomechanics, biometrics and surveillance.
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Emerging technique of motion data acquisition is

markerless motion capture, which works on the basis of

multicamera registration. A parameterized articulated

body model is projected and then matched to image

data. In contrast to traditional motion sensors that have

quite limited maximal distance at which the motion

can be estimated, the multi-camera markerless systems

can estimate motions at far larger distances. It is worth

noting that they can deal far better with occlusions and

self-occlusions. Markerless systems can register motion

data without awareness of human, which has crucial

meaning for applications consisting in gait recognition.

There is a rich literature of various gait recognition

techniques that can be roughly divided into two ma-

jor categories, namely model-free (appearance-based)

and model-based. The model-free approaches usually

use a moving shape and combine it with motion. They

strongly depend on the extracted silhouettes and are

not resistant to different clothing or carried luggage.

Moreover, the majority of the methods belonging to

this group can achieve correct results only from a spe-

cific viewpoint, usually fronto-parallel (side-view) [20,

21,19,30]. The well known model-free method called

gait energy image (GEI) [21] calculates an average of

successive sequence frames with silhouettes. It repre-

sents both shape and movement of a gait cycle.

The model-based approaches focus on recovering a

structural model of human motion, which is then used

to establish gait patterns. Their main advantages are re-

ferred to handling of self-occlusion, invariance to scale

and rotation as well as resistance to noise. Model based

techniques are also less sensitive to individual’s appear-

ance and clothing [19].

In the most often used approach to motion data clas-

sification, the feature extraction is carried out. In such

a case, motion sequences are transformed into fixed di-

mensional vector space and further recognized by a su-

pervised or unsupervised machine learning algorithm.

There are many different strategies to calculate fea-

tures. In [1] structural gait parameters such as height as

well as stride and footprint poses, whereas in [2] strike

and clearance poses are stated to be motion descrip-

tors. In medical applications the features usually corre-

spond to clinical diagnosis. They can be related to gait

symmetry [32], stride length, walking speed and phase

coordination [24] as well as stance, double support and

gait cycle [27]. There are also many generic feature ex-

traction approaches in which attributes are determined

by a specified transformation. Recently, Balazia & So-

jka [3] presented algorithms for gait recognition, which

transform input space in a linear way on the basis of

Maximum Margin Criterion (MMC) as well as PCA and

LDA (PCALDA) techniques. They reported that their

methods outperform thirteen relevant methods of mo-

tion data classification in the human gait identification

task.

As shown in [16,29], Dynamic Time Warping (DTW)

is a very effective algorithm for motion sequence com-

parison. It dynamically scales the compared time series

in the time domain, which results in minimization of

influence of local shifts between motion phases with re-

gard to total dissimilarity. There are numerous appli-

cations of DTW. It was used in gait identification [16,

29], gesture recognition [11], graphical symbols, hand-

written characters and footwear prints recognition [13],

assessment of tennis shots and selected sport activities

[28,22].

In time series analysis the Hidden Markov Models

(HMM) are also broadly used [11,8,26,31]. In this case,

motion data are stated to be Markov chains with hidden

states. Another approach to motion data classification

is based on Recurrent Neural Networks (RNN) with

long and short terms memory architectures [10,6,7].

In this paper, a complete system for human identi-

fication on the basis of gait is proposed. It consists of

a developed markerless motion capture system as well

as introduced and validated gait recognition method.

Having on regard that the motion represented by skeleton-

driven joint positions is unchanged if we translate it

along the floor plane or rotate it about the vertical

axis, we align the coordinate systems for every pair of

frames. In the proposed approach, every pair of point

clouds consisting of skeleton-driven 3D joint positions is

aligned by calculating the minimal sum of squared dis-

tances between the corresponding joints. Gait recogni-

tion is achieved on the basis of Dynamic Time Warping

(DTW) extended with classification scheme operating

on aligned point clouds. In the experimental evalua-

tions, a gait database containing data of 22 humans

and 230 cycles has been collected and then utilized in

evaluations of the system. Our classification method is

inspired by the registration curves [14]. We demonstrate

experimentally that DTW operating on aligned point

clouds achieves superior results in comparison to results

obtained by recently proposed methods.

The contribution of this work is a model-based method

for gait recognition on the basis of motion data from a

markerless system. In the proposed method the DTW

is used to align and compare motion sequences, whose

distance metric is calculated on the basis of aligned

point clouds representing the skeleton-based 3D joint

positions, whereas the nearest neighbor and minimum

distance classifiers are used to identify individuals. In

order to enhance the generalization of the recognition

performance as well as decrease the computational over-

loads, for every individual a single multidimensional
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time-series among several multidimensional time-series

describing the individual’s gait is determined. One of

the advantages of our model-based approach to gait

recognition, in which skeleton-driven 3D joint positions

are estimated on the basis of multi-camera markerless

motion capture is that the gait recognition system is

view-invariant and can perform gait recognition at larger

areas.

2 Markerless human motion tracking

Markerless motion tracking utilizes a baseline, calibrated

multicamera acquisition. Successive 3D poses of a hu-

man are determined on the basis of an analysis of sub-

sequent frames of video recordings. It is realized by

matching an assumed articulated body model to silhou-

ettes extracted from image data. Hence, there are two

crucial challenges - the optimization technique, which

is responsible for an effective search through a space

of model parameters as well as an assessment of the

projected model onto video data.

3D model of human body A 3D model is used to sim-

ulate the human motion and to provide the estimates

of the current position, orientation and joint rotations.

Our human body model, characterized by the kine-

matic tree, consists of 11 bone segments with limbs

represented by truncated cones [12,17], as depicted in

Fig. 1. There are three basic rotations performed by

human joints, which are called flexion/extension, ab-

duction/adduction and medial rotation. However, the

number of degrees of freedom (DoF) of some segments

is lower. It is caused by the anatomic limitations of

movements range and assumed simplifications of the

model. In total, the model is described by 26 param-

eters, whereas 23 of them are referred to joint and

skeleton rotations and other three ones represent global

translation.

Fitness Function In the first stage, background sub-

traction of input video frame (Fig. 2a) is carried out

and binary silhouettes are extracted (Fig. 2b). The im-

age edges are detected by the gradient operator (Fig.

2c) and they are masked by determined silhouettes. In

the next stage, edge distance map is computed (Fig.

2d). It assigns to every pixel a value of its distance to

the closest edge pixel.

The final fitness function fc(x,y), which reflects the

degree of similarity between the real x and the esti-

mated human pose y in the camera c has two main

components: f1,c(x,y) and f2,c(x,y), which are related

to an extracted human silhouette and an edge distance

Fig. 1: 3D human body model (left), hierarchical struc-

ture (right)

(a) (b) (c) (d)

Fig. 2: Processing of image data, (a) - input image, (b)

- silhouette, (c) - edges, (d) - distance map

map [12,17,18]. They are aggregated using weighting

coefficients w1 and w2 in the following manner:

fc(x,y) = 1 − (f1,c(x,y)w1 + f2,c(x,y)w2) (1)

The f1,c(x,y) component defines the degree of overlap

of the rendered 3D model with the extracted silhou-

ette, whereas f2,c(x,y) is calculated by comparison of

the distance maps. The values of w1 and w2 were de-

termined experimentally. The fitness function for all

four cameras is calculated according to the following

expression: f(x,y) = 1
4

∑4
c=1 fc(x,y).

Articulated Motion Tracking In the motion tracking

the annealed particle swarm optimization (APSO) [17]

was used. The algorithm is initialized with a group

of hypothetical solutions called particles with assigned

values of parameters of human body model. Particles

move through the solution space in successive time in-

stants i and undergo evaluation according to the fit-

ness function. They are described by current velocity

v(i) and position x(i). There is a cooperation between

individuals in a swarm and every particle knows the

global best solution gbest(i), which has been found by

swarm members. The velocity and position of particle l

are altered toward explored best global and local poses
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according to the following formula:

v
(i+1)
l = χ(i)[v

(i)
l + c1r1(pbest

(i)
l − x

(i)
l )

+ c2r2(gbest(i) − x
(i)
l )] (2)

x
(i+1)
l = x

(i)
l + v

(i+1)
l (3)

where χ(i) is constriction factor, pbest
(i)
l denotes best

solution found by a particle l till iteration i, r1 and r2
are uniformly distributed random numbers, c1 and c2
are positive constants, which are used to balance the

influence of the individual’s knowledge and that of the

group. The value of χ(i) depends on annealing factor

α(i) in the following manner: χ(i) = −0.8 · α(i) + 1.4

where α(i) = 0.1 + i
I+1 , i = 0, 1, ..., I and I denotes the

number of iterations. The annealing factor is also used

to smooth the fitness function - the larger the iteration

number, the smaller the smoothing. In consequence, in

the last iteration the smoothing is not carried out at

all.

3 Recognition of markerless data

On the basis of our previous experiences on gait identifi-

cation carried out with respect to highly precise marker

based as well as markerless motion capture data [16,

29], Dynamic Time Warping algorithm was chosen for

motion data classification.

In our earlier work [16], DTW was applied for the

markerless motion capture data with sequences of skele-

ton joint angles. However, if training and testing sets

contain gaits cycles acquired during different sessions

with separate calibration stages, the precision of gait

identification is unsatisfactory, as shown in Table 1.

The performance of the identification can be improved

if anthropometric data are involved in pose comparison.

For instance, if pose description is extended by a left to

right ankle distance and position of a head marker cor-

responding to height of the human, noticeable progress

is achieved [16,18].

However, fusion of pose attributes referred to rota-

tions of skeleton joints and the ones corresponding to

specified segments positions is troublesome. They have

quite different scales, meanings and behaviors through

a gait cycle. This is the reason we have decided to use a

point cloud distance measure with an additional trans-

formation Tα,x,z. It matches compared poses by rotat-

ing one of them around axis Y (vertical direction) and

translating by (x, 0, z) vector [14]. It removes an influ-

ence of location and the direction of gait instances on

the determined dissimilarity.

Moreover, pose descriptions are extended by some

specified number τ of preceding time instants as shown

in Fig. 3. It preserves pose temporal context.

In Figures 4, 5, 6 and Fig. 7 the matching of point

cloud distance is visualized. In default case, see Fig.

4, which does not take into consideration a temporal

context and engages complete set of markers located

on human body, two poses are adjusted. In Fig. 5 the

transformation Tα,x(α),z(α) also analyzes five preceding

time instants. Thus, the number of markers involved in

the comparison increases. There is also possibility to

match only a diminished subset of markers as shown in

Fig. 6 and Fig. 7. Hence, the distance is focused only on

movements of selected body parts. A removal of mark-

ers with weak discriminating traits and/or markers that

are influenced by acquisition noise could even improve

the performance of classification. Moreover, the compu-

tational complexity is reduced.

Dynamic Time Warping only assesses dissimilarity

of motion sequences, which is not sufficient to achieve

gait-based person identification. In classical approach

to DTW-based gait recognition, the recognition is achieved

using nearest neighbors classification algorithm [16]. This

means that on the basis of DTW distance, the k–nearest

neighbors (kNN) for the identified individual are deter-

mined first, and finally a majority vote is carried out to

identify the person.

In this work we follow DTW based approach to

gait recognition and propose minimum distance classi-

fier (MDC) that operates on aligned point clouds and is

based on DTW distance. The resulting gait recognition

algorithm is more resistant to overfitting and has lower

run-time computational requirements. In the learning

stage of the MDC, a single prototype for every indi-

vidual in the gallery data is determined, whereas in

the recognition phase the closest prototype to the con-

sidered instance prototype is determined in order to

identify the person. A prototype is an average of sub-

set of motion data sequences (multidimensional time-

series) describing the gait of a single person in the

gallery dataset. Thus, in run-time of kNN–based person

identification, instead of determining the closest neigh-

bor(s) for every motion data in the gallery dataset, we

determine the neighbor(s) only for the representative

prototypes. In such an approach, each person is rep-

resented by a single representative motion data. How-

ever, in case of motion data characterizing gait, which

are usually of different length, computing such proto-

type motion data is not straightforward. Averaging by

DTW is the problem of finding an average sequence

for a set of sequences. The average sequence is the se-

quence that minimizes the sum of the squares to the set

of multidimensional data points. When there are more
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Table 1: Precision of gait identification on the basis of DTW using angular distance, inter-ankle distance and

height [%] [16]

Distance metric RANK1 RANK2 RANK3

Angular distance
Euclidean 45.7 61.2 72.4

Manhattan 45.7 64.7 71.6

Angular, height and
inter-ankle distance

Euclidean 80.2 91.4 96.5
Manhattan 80.2 90.5 96.5
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Fig. 3: Temporal context
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Fig. 4: Example transformation: pose 2 is adjusted to pose 1, complete set of markers, no temporal context

than two data sequences, the problem is related to the

one of the multiple alignment and necessitates heuris-

tics. In [25], a method called DBA, which is currently

the reference method to average a set of sequences con-

sistently with the DTW has been proposed. It aligns

motion sequences in time domain on the basis of DTW

transform and calculates mean for corresponding time

instants. There is one more challenge to face, namely,

it is the way in which the mean is calculated for a set

of point clouds. Similarly like in the DTW alignment,

the naive, direct approach in which centroids are deter-

mined is influenced by the location and the direction of

gait. Thus, again transformation Tα,x(α),z(α) that aligns

the corresponding poses of reference motion and aver-

aged motions is applied.

4 Dataset

To assess performance of the proposed system a real

dataset of human gait was collected. It contains 230 gait

cycles extracted from 88 video sequences. The acquisi-

tion took place in the Human Motion Laboratory of

the Polish-Japanese Academy of Information Technol-

ogy (http://bytom.pja.edu.pl) equipped with Vicon

software and hardware. The vision subsystem consists

of four color, synchronized and calibrated cameras with

full HD resolution. The cameras register front, back, left

and right views of a gait as illustrated in Fig. 8. The

acquisition frequency was set up to 25 fps.

In the recordings, in total 22 volunteers participated

- 8 females and 14 males. Two gait paths were designed

- the first one joining two opposite cameras and second

one joining two nonconsecutive laboratory corners. In

total, there are four directions of the gait, two for every

http://bytom.pja.edu.pl


6 A. Switonski, T. Krzeszowski, H. Josinski, B. Kwolek, K. Wojciechowski

-2000 -1000 0 1000

x [mm]

0

500

1000

1500

2000

y
[m

m
]

-1000 0 1000

z [mm]

0

500

1000

1500

2000

y
[m

m
]

-2000 -1000 0 1000

x [mm]

-1000

-500

0

500

1000

z
[m

m
]

XY View YZ View XZ View

Fig. 5: Example transformation: pose 2 is adjusted to pose 1, τ = 5 for temporal context, complete set of markers
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Fig. 6: Example transformation: pose 2 is adjusted to pose 1, τ = 5 for temporal context, only LeftUpLeg marker

(see Fig. 1)
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Fig. 7: Example transformation: pose 2 is adjusted to pose 1, τ = 5 for temporal context, only markers located on

lower limbs (LeftUpLeg, LeftLeg, RightUpLeg, RightLeg)

path, as shown in Fig. 9. Single video sequence is related

to uninterrupted acquisition of gait performed along a

specified path and direction. Disjoint gait cycles are

extracted from video sequences and they contain two

successive steps performed by left and right lower limbs.

Afterwards, the precision of applied markerless mo-

tion tracking was evaluated. In capturing, APSO exe-

cuting 20 iterations and consisting of 300 particles was

used. The ground truth data are provided by Vicon

commercial marker based motion capture system that

is synchronized with vision cameras. The visual assess-

ment for randomly selected person from the dataset is

depicted in Fig. 10. As we can observe, the degree of

overlap of the projected 3D body model with the per-

son’s silhouette on images data appears to be satisfac-

tory, and the differences are not significant.

Table 2: Average errors [mm] for six persons in four

image sequences

Person id. Direction 1 Direction 2 Direction 3 Direction 4

p1 57.4 ± 25.4 63.6 ± 26.6 45.3 ± 19.1 51.8 ± 20.0
p2 48.1 ± 23.4 58.4 ± 27.3 52.4 ± 22.5 59.3 ± 28.6
p3 42.9 ± 20.7 38.8 ± 18.1 46.5 ± 18.4 44.9 ± 18.3
p4 53.4 ± 31.2 47.6 ± 22.9 46.7 ± 22.2 52.5 ± 23.8
p5 62.1 ± 28.4 56.4 ± 23.4 57.1 ± 20.1 56.4 ± 22.8
p6 35.4 ± 18.4 55.7 ± 30.9 35.8 ± 16.0 39.7 ± 18.7
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Fig. 8: HML layout and camera setup

PATH 1

Direction 1

Direction 2

Fig. 9: Paths and directions of gaits, cameras localiza-

tion

Moreover, quantitative measures were calculated. The

average Euclidean distances over whole video sequences

between poses estimated by markerless system and lo-

cations of physical markers determined by the Vicon

are computed. The results obtained for six randomly

selected persons are presented in Table 2. The achieved

mean distances have to be related to segments lengths.

Taking that into consideration the performance of de-

veloped markerless motion capture system is accept-

able. However, the most important issue is usability of

the system and it is assessed by its application in hu-

man gait identification.

5 Evaluation protocol and metrics

The developed markerless motion capture system esti-

mates bone segments lengths and their rotations. To

obtain compatible results with our previous work that

was carried out on the basis of rotational data [16], in

Fig. 10: Tracking results on the two image sequences:

p1s1 (first row) and p2s1 (second row) in frames: #0,

20, 40, 60, 80, 100

the classification the virtual markers are used. They are

located at the ends of bone segments and their names

correspond to a preceding joint (see Fig. 1).

The considered classification problem is related to

human gait identification, where individuals are recog-

nized on the basis of their way of walking. The col-

lected database was split in a random way into sep-

arate training and testing sets according to video se-

quences with separate calibration stages of the marker-

less system (cameras are calibrated only once directly

after their setup). This means, that all cycles extracted

from a given video sequence belong either to training

or to testing set. It guarantees that recognition does

not utilize specific features referred to the performed

calibration, which estimates orientation of local 3D co-

ordinate systems of skeleton segments. It is consistent

with a real applications in which the classification is

carried out only on disjoint video recordings.
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The results are described by a correct classifica-

tion rate – percentage of properly identified gait in-

stances of testing set (column RANK1). Moreover, met-

rics RANK2, RANK3, RANK4 and RANK5 are cal-

culated. They correspond to percentages of correctly

recognized gait instances in the first two, three, four

and five indications of a classifier, respectively. The it-

erative procedure is used to determine a subset of class

indications. In successive steps instances of already rec-

ognized classes are removed from a training set and the

recognition is repeated.

6 Results

The classification performance for complete set of mark-

ers is presented in Table 3. The discussed table presents

the results achieved by the considered classification schemes

as well as the influence of the interval τ of temporal

context on the precision of gait identification. The ob-

tained results are promising, particularly in comparison

to results achieved by kNN/DTW classifier with angu-

lar distance measure (see Table 1). As expected, the

precision of the classification is significantly improved.

It is caused by influences of anthropometric features on

markers locations and lack of direct relationships be-

tween strict orientation of local coordinates systems of

successive skeleton joints and markers positions. More-

over, in reference to hybrid distance, which combines ro-

tation data with inter-ankle distance and height value,

there is a substantial progress since the best obtained

accuracy of gait identification exceeds 90%, which is

more than 10% better. If, for instance, for safety rea-

sons, some specific persons are recognized and it is cru-

cial not to reject their identifications at the expense

of greater number of false positives, it is necessary to

take some number of the most probable classifier indi-

cations. If four are taken into consideration, sensitivity

achieves 100% (RANK4), which means no false nega-

tives. In case of three and two, sensitivity is reduced to

99.14% and 97.41%, respectively. The best results are

obtained by 1NN classifier, but MDC is only less than

3% worse. Temporal context does not have a great im-

pact on performance of classification if complete set of

markers is analyzed.

We compared results achieved by our method with

results obtained by PCALDA and MMC algorithms [3].

Similarly to [3], the motion sequences were normalized

in time domain. Moreover, two different variants of pre-

liminary motion preprocessing named Variant 1 and

Variant 2 were investigated. The second one, more re-

strictive, directly corresponds to the preprocessing ap-

plied in the experiments presented in [3]. It means that

all motion sequences are described by a single skele-

ton, whereas the root attributes are reset. However,

point cloud alignment does not normalize bone seg-

ments lengths, which is satisfied in Variant 2. For this

reason, in the Variant 1 only root attributes are re-

set and motion sequences preserve their custom skele-

tons estimated by motion capture system. This is more

adequate to our approach. Thus, it allows compari-

son of the recognition techniques rather than influence

of data preprocessing. Moreover, 1NN DTW classifier

with naive Euclidean distance function comparing point

clouds for initially preprocessed data in the both vari-

ants was examined.

Table 4 presents the results achieved by algorithms

proposed by [3] as well as the best classification re-

sult, which has been achieved by DTW-kNN with point

cloud alignment, see also Tab. 3. There are substantial

differences between compared approaches to markerless

motion data recognition. In the best case – MMC ex-

traction for data preprocessed in the Variant 1, CCR

is only 81.03% which is almost 10% worse than DTW

with point cloud alignment. PCALDA and raw DTW

are weaker by another 11% and 15%, respectively. As

expected, skeleton parameters contain strong individual

features, which are helpful in gait identification. Thus,

removing them in Variant 2 causes significant decrease

of classification accuracy.

Finally, on the basis of prepared segments rankings

and in order to reflect the movements of different body

parts through a gait cycle, arbitrarily selected markers

are utilized in a 1NN classification, as shown in Ta-

ble 5. It is sufficient to analyze only hand, feet and

head segments to obtain 89.66% precision of identifi-

cation, which is just one misrecognized gait instance

more in comparison to the best case of the classifica-

tion carried out in respect to complete set of markers.

Head marker corresponding directly to human height

improves the performance noticeably. The analysis of

only upper and lower limbs, which are mainly respon-

sible for movements in typical gait, is inadequate for

more precise classification.

The experiments were conducted on mobile com-

puter equipped with Intel i7-7820HQ, 2.9 GHz (4 cores)

and 16 GB of RAM. The entire tracking process takes

approximately 1.3 s per frame. Therefore, processing a

single gait cycle (about 30 frames) will take approx-

imately 39 seconds. It should be noted that if neces-

sary, tracking can be realized in real-time [17]. The

gait recognition process of single motion sequence with

complete set of markers using the kNN/DTW and MD-

C/DTW classifiers without temporal context takes ap-

proximately 171 ms and 32 ms, respectively. The time of

computations depends on the number of samples in the
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Table 3: Classification accuracies achieved by kNN and DTW operating on aligned point clouds for complete set

of markers [%]

Classifier τ RANK1 RANK2 RANK3 RANK4 RANK5

1NN/DTW

0 89.66 96.55 99.14 99.14 100.00
1 88.79 97.41 99.14 99.14 100.00
2 89.66 94.83 96.55 99.14 100.00
3 88.79 94.83 97.41 98.28 100.00
4 87.07 94.83 97.41 98.28 100.00
5 86.21 92.24 96.55 98.28 100.00

3NN/DTW

0 90.52 95.69 97.41 99.14 100.00
1 90.52 93.10 97.41 99.14 100.00
2 89.66 93.10 95.69 96.55 99.14
3 87.93 93.10 95.69 97.41 98.28
4 87.93 93.10 94.83 96.55 98.28
5 85.34 92.24 93.97 97.41 98.28

5NN/DTW

0 90.52 93.97 97.41 100.00 100.00
1 88.79 92.24 96.55 100.00 100.00
2 87.93 92.24 95.69 99.14 100.00
3 87.07 91.38 94.83 95.69 99.14
4 85.34 90.52 93.97 96.55 98.28
5 81.03 89.66 94.83 96.55 97.41

MDC/DTW

0 87.93 95.69 99.14 100.00 100.00
1 86.21 94.83 99.14 100.00 100.00
2 85.34 91.38 98.28 100.00 100.00
3 82.76 89.66 96.55 100.00 100.00
4 78.45 87.07 95.69 99.14 99.14
5 77.59 84.48 94.83 96.55 97.41

Table 4: Results achieved by 3NN/DTW and by gait recognition algorithms [3] for complete set of markers [%]

Classifier RANK1 RANK2 RANK3 RANK4 RANK5
3NN/DTW τ = 0 (ours) 90.52 95.69 97.41 99.14 100.00

Variant 1
1NN/PCALDA 69.83 75.86 84.48 88.79 90.52
1NN/MMC 81.03 88.79 90.52 91.38 92.24
1NN/Raw DTW 64.66 74.14 80.17 84.48 89.66

Variant 2
1NN/PCALDA 47.41 62.93 72.41 77.59 81.90
1NN/MMC 67.24 76.72 81.90 86.21 88.79
1NN/Raw DTW 48.28 57.76 62.07 68.10 74.14

Table 5: Classification results for arbitrary selected markers [%]

Segments τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

LeftHand; RightHand; LeftFoot;
RightFoot; Head

88.79 89.66 89.66 88.79 86.21 87.93

LeftHand; RightHand; LeftFoot;
RightFoot

79.31 80.17 81.03 80.17 81.03 79.31

LeftArm; RightArm 78.45 78.45 78.45 76.72 75.86 74.14

LeftUpLeg; RightUpLeg 50.00 50.86 47.41 45.69 44.83 43.97

training set for kNN and number of classes for MDC.

Average time of single-thread DTW point cloud align-

ment is 6 ms.

7 Discussion

Multicamera markerless motion capture measurements

permit acquisition of motion data without human aware-

ness. There is no requirement to attach markers on hu-

man body and to perform calibration movements be-

fore every acquisition. It is much more convenient, flex-

ible, mobile and less expensive technique in compari-

son to marker based motion capture. Thus, quite new

opportunities for practical applications are given - for

instance, medical or biometrical. However, markerless

measurements are influenced by acquisition noise. Due
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to noise the analysis of captured data poses additional

challenges. In case of classification of such data, fea-

tures with stronger discriminative power have to be

explored. Thus, we incorporated in a recognition both

states of successive skeleton joints and anthropometric

traits that are mainly related to bone lengths. The re-

sults are promising, we obtained substantial progress

in comparison to previously investigated approaches.

Moreover, the local and global alignment of points clouds

outperforms noticeably the analyzed up to date state

of the arts methods in the problem of markerless gait

identification.

The following observations can be drawn as a result

of our work:

1. The proposed markerless motion capture system is

characterized by acceptable acquisition noise. The

tracking errors are small enough so the system can

be used to perform human gait analysis.

2. Dynamic Time Warping is an efficient tool for

markerless motion data classification.

3. Point cloud distance is not only coherent approach

that merges rotational data and anthropometric

features, but furthermore it achieves high perfor-

mance of classification.

4. Though, complete markers set contains the strongest

discriminative features, there are selected subsets

of markers for which accuracy of recognition is

very similar.

5. Temporal context provides additional movement

description and it is useful in case of pose de-

scribed by reduced markers set.

6. Minimum distance classification in comparison to

kNN achieves only bit worse, but still acceptable

performance of recognition. On the other hand, it

has essential advantage over kNN - it has much

less demands of computational power. It can be

really important in production systems with ex-

tremely large training sets containing numerous

data samples.

7. Classification of markerless motion capture data is

challenging task. It is not guaranteed that meth-

ods, which are efficient in recognition of marker

based data as for instance the analyzed PCALDA

and MMC, have similar performance if combined

with markerless acquisition.

8 Conclusions

This paper proposes a method for view-invariant gait

recognition on the basis of motion data from mark-

erless system. The applied point cloud-based distance

measure takes into account the temporal context of the

pose, which depends on velocities and accelerations of

markers in successive frames. We demonstrate exper-

imentally that kNN and MDC classifiers operating on

aligned point clouds achieve superior results in compar-

ison to results obtained by recently proposed methods.
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