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Abstract In this paper, a novel framework for acceleration of 3D model-based, markerless visual tracking in
multi-camera videos is proposed. The objective function being the most computationally demanding part of
model-based 3D motion reconstruction is calculated on a GPU. The proposed framework effectively utilizes the
rendering power of OpenGL to render the 3D models in the predicted poses, whereas the CUDA threads are
used to match such rendered models with the image observations and to perform particle swarm optimization-
based tracking. We demonstrate effective parallelization of the particle swarm optimization on GPU. Execution
of time-consuming parts of the algorithm on GPU using CUDA-OpenGL significantly accelerates the 3D motion
reconstruction, making our method capable of tracking full body movements with a maximum speed of 15 fps.
Qualitative and quantitative experimental results on various 4-camera benchmark datasets demonstrate the
efficiency and accuracy of our method for real-time motion tracking.
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1 Introduction

High quality non-intrusive human motion analysis has received much attention in many areas [20], including
computer graphics [38], computer vision [29][31] and multimedia [3][46]. Currently, the need for accurate esti-
mation of human motion is not only limited to the field of animation [28], since in order to achieve immersive
experience [44], researchers and engineers are looking for low-cost real-time techniques for 3D reconstruction of
users [47] as well as their motions. By understanding human motion, clinicians and biomechanics engineers can
improve treatment during rehabilitation [49] as well as improve performance, for example, in high-performance
sport [6]. Rapid progress in hardware-supported processing [7,4,48] and 3D capturing devices [16][17] makes
possible more precise motion analysis, which is required in hand and body gesture recognition.

The aim of 3D motion recovery is to estimate the position and orientation of each limb of the human
body undergoing tracking [20]. Lots of methods have been proposed for articulated object tracking on the
basis of typical RGB cameras [29][31]. Discriminative models typically consist in learning a mapping from
image measurements to 3D pose, whereas generative approaches rely on density estimation to learn a prior
distribution over plausible human motions and poses.

Markerless motion capture (moCap) systems use computer vision algorithms to track 3D motion of subjects
without the need for any special suits or markers [31]. Because no special suits, markers or equipment are
required, subjects can simply step into the capture scene to deliver required motion patterns or movements. By
this means the animators and game developers can capture accurate motion data in less time, and for a much
lower total cost. Markerless moCap also makes many clinical and research applications much more practical.
The difficulty, however, is implementing robust 3D motion tracking algorithms that provide enough accuracy.
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To accomplish this, typically advanced algorithms are required, especially when the motion tracking or 3D
reconstruction of users should be done in real-time [45][44].

In the discriminative bottom–up approaches various features identifying the main body parts are typically
sought in the images [17]. Such recognition-based methods predict state distributions directly from body fea-
tures. That means that their recognition performance strongly depends on discriminative power of the utilized
body part detectors. The challenge is to make such approaches robust to wide range of poses needed for gen-
eral 3D pose reconstruction without modeling most of the 3D articulations. This is since the space of typical
human articulation is huge. Despite being simple to understand and fast, their recognition performance can
decrease in many real-word situations due to self-occlusions, which are hard to model in 2D. A degradation of
the performance in real-word scenarios arises because most of the human body parts do not have the sufficient
distinctiveness for their unambiguous detection.

Despite being a natural way to model the appearance of complex articulated structures, the top-down meth-
ods are not as extensively studied as bottom-up methods because of huge computational demands to infer the
distribution on the high-dimensional hidden states [29][31]. In general, 3D pose estimation in a high-dimensional
space of body configurations is intrinsically difficult [20,26]. On the other hand, three dimensional model-
based methods are generally more accurate in comparison to methods relying on learned mapping between pose
exemplars and image primitives. Moreover, projecting the 3D model into multiple views creates a number of
opportunities for better dealing with occlusions and self-occlusions arising in typical daily activities [36].

Recent progress in sensor technologies have enabled the acquisition of dense depth images in real-time.
In [16], a real-time tracking of full body motion has been achieved using a time-of-flight camera. The system
required 100–250 ms per frame to estimate the joint angles of a 48 degree-of-freedom human model. The more
recent Kinect sensors [17] have revolutionized the field of human-computer interaction by enabling 3D motion
tracking without body-worn inertial devices or markers. The depth information is employed to estimate a
skeletal model of any humans in Kinect’s view using a Random Forest classifier, which assigns each pixel as
being a body part or background. Although the Kinect’s algorithm for pose estimation works quickly and
relatively robustly, the lack of an underlying kinematic model and the static, frame-by-frame nature of the
pose estimation result in some inaccuracies in posture estimation [11]. In addition, as pointed out in [39],
due to the use of a single-depth camera, the recognition accuracy drops significantly when the body parts
are occluded. Moreover, Kinect and other single camera-based systems require a person to stay within the
device’s line-of-sight and cannot track him/her across rooms. In this respect, smart cameras and multi-camera
networks are becoming popular [45], among others, due to possibility of covering larger field of view and better
exploitation of 3D information for dealing with occlusions. In [2], a multi-Kinect 2 system for 3D reconstruction
of moving humans as well skeleton-based motion tracking from multiple depth cameras has been proposed. On
a CUDA-enabled NVIDIA GTX 560 the mean reconstruction time of Fourier Transform-based (FT-based)
reconstruction takes 163 ms. In a recently proposed method [2], as indicated in Tab. III, for the left/right
elbow the mean errors between the estimated angle and the ground-truth are from 14.3 deg. to 25.3 deg.
depending on complexity of the sequences.

3D model based methods are frequently employed in motion tracking both in single and multiple camera
settings. A framework for 3D model-based tracking of an object in monocular videos has been discussed in [8].
The rendering of the projected 3D model has been realized using Direct3D, whereas the NVIDIA CUDA was
utilized to harness the computational power of Graphics Processing Unit (GPU) and to achieve the tracking
in real-time. A SIR particle filter has been used to perform tracking on monocular image sequences. Some
operations like state estimation, particle propagation and particle resampling were executed on CPU. A speed-
up of about 9.5 has been achieved on images of size 96×72 using 900 particles and about 14-fold speed-up using
1296 particles and 128 × 96 images. In a recent work [38], an algorithm for model-based 3D object tracking
in cluttered environments has been proposed. The average overall processing time was about 30 ms and it
was achieved on an NVIDIA Geforce GPU, which processed images of 640× 480 resolution. Recently, in [33]
a model-based method to reconstruct human motions captured outdoors in a multi-camera setup has been
proposed. A coarse skeletal pose is estimated in the first stage, and non-rigid surface shape and body pose are
jointly refined in the second one. The run time of the second stage is about 5–30 minutes on a CPU and 1–4
minutes on NVIDIA GeForce Titan X, per frame.

In another region-based approach to pose tracking using 3D models [36], an optimization of the 2D projection
error is achieved through minimization of an energy function depending on the pose parameters. A precise
tracking with an average error of 33.4 mm on the walking part of the Sequence S4 (frames 15–350) of the
HumanEva-II database [40] has been reported. However, approximately 15 seconds are needed to process a
single frame of the discussed four-views sequence. Corazza et al. reports an average tracking error of about
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80 mm on the first 150 frames of the mentioned above sequence [12]. However, as indicated in [14] the frequency
at which the video sequences were acquired has considerable influence on the tracking accuracy. In the discussed
work, an average error of 38 mm has been obtained on 450 frames of LeeWalk sequence [5], which has been
captured with 60 Hz by 4 cameras with a resolution of 644×488 pixels. The average error grows to 46 mm when
the tracking was on every third frame, i.e. assuming that the frames were recorded with 20 fps. The discussed
results were obtained using a soft partitioning PSO, which is a variant of particle swarm optimization [22].
In recent work [9], the 3D human pose reconstruction is done on the basis of Covariance Matrix Adaptation
Evolutionary Strategy (CMAES) based optimization. However, despite remarkable speedup on the GPUs as
compared with the CPU naive approach, the computation time of the algorithm with 3000 evaluations of the
fitness function on single GPU is far from real-time. Moreover, instead of rasterizing the triangle meshes, the
algorithm calculates the projection of their vertices and draws rectangular patches around them. The result
of such an operation are binary images that are matched with binary silhouettes (extracted by background
subtraction) using XOR operation. In consequence, it ignores edge information and does not use edge distance
map, which is commonly utilized to estimate the proximity of a pixel to the edge.

In [47] a 3D motion tracking is realized in eight camera setup using a volumetric reconstruction. The tracking
has been accelerated by implementing some time-consuming steps using CUDA. The method is capable of
tracking the body movements with a maximum speed of 9 fps. An average error of about 31.3 mm has been
reported on LeeWalk sequence using edge and silhouette based likelihoods. However, only the first 150 frames
were used in the evaluation, as most likely the tracking became less robust in the remaining part of the sequence,
see also error plots in [14]. Considerable attention has been devoted in recent years to interactive virtual try-on
applications, which track the user’s position and pose to augment him or her with garments. In [19] a system
consisting of ten synchronized cameras is mounted in a virtual dressing room of size 2× 3. A cabin with green
walls has been used to simplify background extraction, which was needed in the image-based visual hull in order
to render users and clothes from arbitrary viewing angles. Given, the extracted person in the depth maps, the
skeleton was extracted using the Open-NI API. The images were recorded at 15 Hz. However, the processing
time of the algorithm of about 120 ms is far from real-time.

Currently, real-time reconstruction of 3D human motion is of great importance. However, the existing
applications for markerless motion capture are far from real-time or at least they can process the frames at
time close to real-time, and only are able to deliver promising accuracies using sequences that were recorded
with typical camera rates. In this paper we present an approach for on-line markerless reconstruction of human
motion in a four camera system. We demonstrate how to achieve the 3D motion tracking with an average
accuracy of 50 mm with a frequency close to 15 Hz using a PC with a graphics card. To achieve this we take
advantages of CUDA-OpenGL processing, where the model rendering being the most time consuming part of
the tracking is realized by graphics card’s hardware. We then demonstrate that owing to the use of CUDA-
OpenGL interoperability the tracking time can be shortened more than twice in comparison to GPU-accelerated
processing using CUDA only. The contribution of this paper is an advanced framework for real-time markerless
human motion tracking on the basis of OpenGL-based 3D model rendering and projecting it to the camera
views. To the best of our knowledge, this is a new application of OpenGL in a novel approach to real-time
human motion reconstruction. The most relevant work is [8,9]. The difference between our work and [8] is that
we employ a multi-camera system (entirely calibrated and synchronized four camera system, which is calibrated
and synchronized with moCap). Another difference is that in our system the 3D model rendering can be easily
configured and changed through shader programs. Last but not least, it is worth noting that the problem of
3D tracking of full body (in a multi-camera system) is different from monocular hand tracking. In contrast to
[9], which projects vertices and then draw patches around them, we rasterize silhouette and edges, as well as
we employ the edge distance in the fitness function. Our approach is different since we employ OpenGL and
shaders.

In our previous work [24], a CPU-based approach to real-time full body motion tracking has been proposed.
It has been demonstrated experimentally that an algorithm termed as annealed PSO with resampling (RAPSO)
can perform the tracking with 15 fps on two PC nodes, each of them with two multi-core CPUs with hyper-
threading, connected by 1 GigE links. In order to utilize the computational power of two XEON, 6-core CPUs,
a multi-swarm PSO consisting of 8 swarms has been employed. We demonstrated experimentally that on P1S
image sequence, which is used in this work, we can achieve 5-fold speed-up, and full-body tracking with the
average error equal to 50.6 mm. In [25] we demonstrated that in 3D-model based human pose tracking a
considerable shortening time of calculation of the fitness function can be achieved through the use of OpenGL-
based rendering of the model in the requested poses. We measured the execution times of the main components
of the fitness function using CPU, CUDA, CPU-OpenGL and CUDA-OpenGL. We demonstrated that the
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calculation of the fitness score using CUDA-OpenGL is up to 40 times faster in comparison to calculation it on
a multi-core CPU using OpenGL-based model rendering. We demonstrated that good tracking accuracies can
be obtained on LeeWalk and Human Eva I datasets using the introduced OpenGL-based rendering module.
In the discussed work the PSO was not parallelized and completely integrated with the rendering module.
In this work we present how the synchronous particle swarm optimization using OpenGL-accelerated fitness
function has been decomposed on GPU. It is worth noting that the problem of parallelization of PSO is not
an easy task and considerable research has been devoted to it [43]. We present in detail the motion prediction,
memory mapping as well as CUDA-OpenGL interoperability. We explain in detail vertex pipeline, silhouette
edge pipeline and rasterizing pipeline. We present comprehensive evaluations on LeeWalk dataset as well as
video sequences that were used in [24].

The remainder of this paper is organized as follows. In Section 2 we outline the architecture for the system
and discuss its main ingredients. Afterwards, in Section 3 we discuss computing on GPU using CUDA-OpenGL
interoperability. In Section 4 we detail parallelization of particle swarm optimization on GPUs. Section 5
details acceleration of the calculation objective function through OpenGL-based rendering of the 3D model in
the required pose. Experimental results are discussed in Section 6. Section 7 contains concluding remarks.

2 Architecture and Main Ingredients of the System

In general, the methods based on volumetric reconstruction require larger number of the cameras in comparison
to methods relying on matching a projected 3D model with the captured images. Moreover, such methods
typically assume that a performer occupies a central part of the scene observed by multiple cameras. Bearing
in mind that in applications for walking motion analysis, which are increasingly being used in biomechanics
and rehabilitation, typically a larger scene to be covered by the cameras is needed, as well as that the distance
between the performer and the cameras changes, we focus on a setup with four perpendicular RGB cameras and
motion reconstruction on the basis of matching the projected 3D model with the images. Having on regard that
for larger distances between the person and the camera, the person will occupy smaller portions of the image,
there is no rationale to construct a detailed wireframe to model the human. As a result, our human model
consists of several component objects, which are linked by joints. Such a coarse human models are frequently
used in 3D motion reconstruction [5][40][35].

Figure 1 depicts a diagram of the system for real-time human motion tracking on the basis of OpenGL-based
3D model rendering and then projecting it to the camera views. The system consists of three main ingredients,
namely, OpenGL-based 3D model rendering, GPU-accelerated tracking, and image processing. The OpenGL
module is universal since it can deliver the rendered models for all kinds of predict-evaluate trackers, like particle
filters [13][5] and particle swarm optimization [14][35]. The input for this module are transformation matrices,
which are then used to obtain the 3D model in the required poses. The output is a collection of the rendered
models in the requested poses. The rendered images contain information both on the silhouette and the edges.
The number of rendered images is equal the number of the particles times number of the cameras, where each
particle represents the model in a hypothetical (predicted) pose. In each frame the tracking algorithm, see also
CUDA part on Fig. 1, calculates the state vectors of the potential poses, which are then expressed in the form
of a set of transformation matrices for each of the considered poses. The rendered images are matched with
the images containing the person’s silhouettes and edges. On the basis of an objective function the best state
is estimated, which is then used to calculate the potential states for the person’s pose in the next frame.

CPUs are still the most often used hardware for image processing, given their versatility and tremendous
processing power [32]. On the other hand, image processing algorithms are perfect candidates for computing
on GPU, since many image processing operations have high inherent parallelism, which is often accomplished
through per-pixel operations [15]. Many researches confirmed this by showing GPU acceleration on several
image processing algorithms [10]. A recent study [32] reports a thirty-fold speed-up for low-level algorithms
and up to ten-fold speed-up for high-level functions, which bring larger overheads and typically require many
steps that are not easy to parallelize.

In our system the CPU is responsible for acquiring images from four calibrated and synchronized cameras as
well as processing them. The advantage of such an approach is that the image processing is executed in parallel
with the acquisition of the images [34]. The images with the extracted silhouettes and the edges are transferred
asynchronously from the host memory to the GPU memory. Data transfers from the host (CPU) to the device
(GPU) are done using PCIe 3.0 x16 bus with peek transfer rate of about 16 GB/s in single direction. Thus, the
memory transfer overheads for uploading the preprocessed images from four cameras are negligible. By using
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Fig. 1 Diagram of the system for real-time markerless motion reconstruction.

CUDA we turn the GPU into a powerful parallel processor, whereas by using OpenGL we utilize the same
GPU hardware to render the required images. Because CUDA and OpenGL both run on GPU and share data
through common memory, the CUDA-OpenGL interoperability is very fast [25].

3 Computing on Graphics Processor Units Using CUDA-OpenGL Interoperability

A GPU is a dedicated processor, which offloads 3D graphics rendering workload from the CPU. The image
synthesis is implemented as a pipeline of specialized stages, which is usually called graphics pipeline [27]. The
input to such a pipeline is a wireframe being composed of a set of primitives, which are defined by a group
of one or more vertices. Over the past two decades, this basic graphics pipeline has transitioned steadily from
fixed-function graphics architecture into powerful programmable co-processing units capable of performing
general purpose computing (GPGPU). The replacement of fixed-function dedicated logic by programmable
processors logic while maintaining the basic 3D graphics pipeline organization was one of the key developments
in computer graphics. As a result of such evolution the current programmable processors consist of:

– Vertex processor, which goal is to transform each input vertex to data required by the next graphics pipeline
stages.

– Geometry processor, which is accountable for processing a mesh at primitive level and producing vertices
and attributes to define primitives.

– Fragment processor, which is responsible for determining the color of each fragment.

The three different shaders were merged into one unified shader model with a consistent instruction set across
all three processor types. As a result, vertex, geometry, and pixel/fragment shaders became threads, running dif-
ferent programs on the programmable cores. These cores on the NVIDIA platform are called CUDA cores, and
a streaming multiprocessor (SM) consists of many CUDA cores. To program the GPU pipeline an application
ought to set the configuration of fixed-function stages and supply shader programs, which run within environ-
ments associated with each programmable stage. The discussed above GPU pipeline provides the following key
benefits:

– Programming simplicity. The high-level, graphics-specific pipeline abstraction makes the programming easy.
– Versatility. Programmable stages allow the GPU pipeline to accommodate a wide variety of rendering

techniques.
– High performance. The pipeline abstraction and accompanying shader programming model provide both

task parallelism across stages and data-parallelism within the stages.

The parallel programming languages like CUDA or OpenCL allow us to write software that runs as parallel
program on GPU’s programmable cores. They permits full exploitation of the computational power of GPUs,
which are excellent at graphics and visual computing since they were specially designed for these applications.
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Thanks to the use of the GPU as both a graphics processor and a computing processor at the same time, we
achieved a highly effective computing framework for 3D motion reconstruction in real-time. More specifically,
owing to programming the GPU by the graphics API and utilizing graphics pipeline to perform nongraphics
tasks, like particle swarm optimization, and thanks to OpenGL permitting the use of the same GPU hardware
to render the images needed for the calculating of the objective function, we achieved considerable shortening
of the tracking time. That means that we effectively utilize the rendering power of OpenGL to render the 3D
models in the requested poses, whereas the CUDA threads match such rendered models with the image features
and perform the tracking. Because CUDA and OpenGL both run on GPU and share data through common
memory, the CUDA-OpenGL interoperability is very fast in practice [41,25]. In the motion tracking methods
relying on matching the projected models with the camera images the most significant computational overheads
are associated with the rendering of the 3D models [23,25]. Thus, the OpenGL-based 3D model rendering can
shorten the whole motion tracking time considerably.

4 Parallel Particle Swarm Optimization for 3D Motion Reconstruction

At the beginning of this Section we discuss how the particle swarm optimization algorithm is executed in parallel
on GPU. Afterwards, in two subsections we discuss the motion and the evaluation steps, which involve mapping
OpenGL resources to the CUDA. In the final part of Subsection 4.1, 4.2 and 4.3 we outline organization of
threads and blocks.

4.1 Parallel Particle Swarm Optimization for Object Tracking

Particle swarm optimization (PSO) [22] is a global optimization method and also an heuristic optimization
algorithm, which is based on swarm intelligence. It is derivative–free, stochastic and population–based compu-
tational method, which demonstrated a high optimization potential in unfriendly non–convex, non–continuous
spaces. The swarm consists of a set of particles, and each swarm member represents a potential solution of an
optimization task. The particles are placed in the search space and move through such a space according to
rules, which take into account each particle’s personal knowledge and the global knowledge of the swarm. Each
particle is attracted to some extent to the best location it has discovered so far, and also to the best location any
member of the swarm has found. Every individual moves with its own velocity in the multidimensional search
space, determines its own position and calculates its fitness using an objective function f(x). On the basis of
the fitness function the particles determine the best locations as well as the global best location. Any member
of the swarm follows simple position and velocity update equations; yet as particles interact, the collective
behavior arises, and the interactions between the particles lead to the emergence of global and collective search
capabilities, which allow the particles to gravitate towards the global extremum.

The ordinary PSO algorithm begins by creating particles at initial locations, and assigning them initial
velocities [22]. Afterwards, it determines the value of the objective function at each particle location, as well
as determines the best function value and the corresponding best location. It determines new velocities, based
on the current velocity, the particles’s individual best locations, and the best location of the entire swarm. The
best location can be:

• a global best that is immediately updated when a new best position is found by any particle in the swarm
• neighborhood best where only a specific number of particles is affected if a new best position is found by

any particle in the sub-population

It then iteratively updates the particle locations and velocities, and optionally it updates the neighbors if the
neighborhood best topology has been chosen. However, such a topology slows down the convergence speed.
Taking into account the faster convergence the topology with the global best has been selected for parallel
implementation and it is discussed below in more detail.

At the beginning of the optimization, each particle is initialized with a random position and velocity. While
seeking the best fitness every individual i is attracted towards a position, which is affected by the best position
p(i) found so far by itself and the global best position pg found by the whole swarm. In every iteration k,
each particle’s velocity is first updated based on the particle’s current velocity, the particle’s local information
and global information discovered by the entire population. Then, each particle’s position is updated using the
velocity. In the ordinary PSO, the position and velocity of particle are calculated as follows:

v
(i)
j ← wv

(i)
j + c1r

(i)
1,j(p

(i)
j − x

(i)
j ) + c2r

(i)
2,j(pg,j − x(i)j ) (1)
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x
(i)
j ← x

(i)
j + v

(i)
j (2)

where w is the positive inertia weight, v
(i)
j is the velocity of particle i in dimension j, r

(i)
1,j and r

(i)
2,j are uniquely

generated random numbers with the uniform distribution in the interval [0.0, 1.0], c1, c2 are positive constants,
p(i) is the best position that the particle i has found so far, pg denotes the best position that was found by any
member of the swarm.

Equation (1), which updates the particle velocity has three main components. The first component that
is frequently referred to as inertia models the particle’s tendency to keep it moving in the same direction it
was moving previously. In fact it controls the exploration of the search space. The second component, called
cognitive, attracts the particle towards the best position p(i) that was found formerly. The last component is
referred to as social and it pulls the particle towards the best position pg found by any particle. The fitness

value that corresponds to p(i) is called local best p
(i)
best, whereas the fitness value corresponding to pg is defined

as gbest.
Algorithm 1 shows the pseudo-code of the ordinary PSO algorithm. The discussed algorithm is synchronous

Algorithm 1 Synchronous PSO

1: Initialize randomly x(i), v(i)

2: repeat
3: for each particle i do
4: Evaluate the fitness function f(x(i))

5: if f(x(i)) < p
(i)
best then

6: p
(i)
best = f(x(i))

7: p(i) = x(i)

8: end if
9: if f(x(i)) < gbest then

10: gbest = f(x(i))

11: pg = x(i)

12: end if
13: end for
14: for each particle i do do
15: Update position using (1) and (2)
16: end for
17: until stopping criterion is not satisfied (e.g. maximum number of iterations or a sufficiently good fitness value is not

attained)

since all particle velocities and positions are updated at the end of each optimization iteration. The algorithm
presented above can be used for solving static optimization problems. The motion tracking can be attained
by dynamic optimization and incorporating the temporal continuity information into the ordinary PSO. Con-
sequently, it can be achieved by a sequence of static PSO-based optimizations, followed by re-diversification
of the particles to cover the potential poses that can arise in the next time step. The re-diversification of the
particle i can be obtained on the basis of normal distribution concentrated around the best particle location
pg in time t− 1, which can be expressed as: x(i) ← N (pg, Σ), where x(i) stands for particle’s location in time
t, Σ denotes the covariance matrix of the Gaussian distribution, whose diagonal elements are proportional to
the expected movement.

Figure 2 shows how the synchronous PSO has been decomposed for a parallel execution on the GPU. The
algorithm consists of eight steps: RNG (calling random number generator), initialization, motion, rendering,
evaluation, compute pbest, and compute gbest. The motion and rendering steps are specific for 3D motion
tracking and are discussed in more detail in Subsection 4.2 and 4.3. The PSO algorithm is now widely used
in 3D motion tracking [24,3,35,42]. A survey of GPU-based implementations of PSO, including parallel im-
plementations for 3D motion tracking can be found in [43]. As demonstrated in [23], a considerable shortening
of the motion reconstruction time can be obtained through implementing both the PSO and rendering of the
3D model cuboids on the GPU. The most time consuming part of the motion tracking is rendering of the 3D
model and matching of such a projected model with image observations.

At the beginning of each frame the algorithm generates uniformly distributed pseudorandom numbers. It
generates 2D(K + 1)N pseudorandom values, where D denotes dimension, K is the number of iterations in
PSO, whereas N stands for the number of the particles. The random numbers are used in the initialization step
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Fig. 2 Decomposition of synchronous particle swarm optimization algorithm on GPU.

to generate normally distributed pseudorandom numbers needed for the re-diversification of the particles as
well as to set the r1 and r2 numbers, which are needed in each iteration of the optimization, see also the update
step. In the pbest step the algorithm executes ND threads in B = dND/W e blocks, where W denotes the
number of the GPU cores. This means that NB = dN/Be threads determine the values pbest of NB particles,
and then calculates NB values of the best positions p(i). In the gbest step the algorithm executes NB = dN/2e
threads in a single block, and they determine the gbest and pg values. In the update step the ND threads are
executed in dND/W e blocks, and each thread updates a single element of the state vector of a single particle.

4.2 Motion Prediction

Human body models are often used to describe both the kinematic properties of the body and the body shape.
Figure 3 depicts the utilized human skeleton and the corresponding hierarchical structure of joints. The pelvis
is the root node in the kinematic chain and it determines the global orientation and position of the model.
The pose is encoded on the basis of the position and orientation of the root segment in the world, and a set
of relative joint angles, which represent the orientations of body parts with respect to their parents along the
tree. The model has 31 degrees of freedom (DOFs) and the body segments are linked to the parent segments
by either 1-DOF or 3-DOF rotational joints. The relative rotation between neighboring parts is described by
Euler angles.

Part-based shape models represent each body part as a rigid shape attached to a joint of the kinematic tree.
Such shape models do not deform during motion and they rigidly move jointly with the skeleton segment. These
models are frequently used to achieve articulated human body pose estimation and tracking [13][5][40]. Our
skeleton-driven 3D body model consists of ten rigid body segments that are represented by truncated cylinders.
The state of each truncated cylinder includes base radius, top radius, length and a transform matrix. The sizes
of each cylinder’s length, base radius and top radius were attuned manually. The 4× 4 transform matrices are
determined by the number of degrees of freedom of the joints and they establish the rotation, translation and
scale of the corresponding truncated cylinder.

Each bone has associated with it a local coordinate system. On the basis of the predicted state vector
the algorithm calculates local transformation matrices, see Fig. 4. A local transformation matrix expresses the
displacement/rotation of the body segment in its local frame of reference. The world transformation is the
transformation of the bone in world-space taking into account parent transformations.

As we can see on Fig. 4, the number of the threads is equal the number of the particles. The threads are
grouped into blocks. The number of the blocks is equal to the number of the multiprocessors available on the
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Fig. 3 Human skeleton and the corresponding hierarchical structure.

Fig. 4 Calculation of the world transformation matrices on the GPU.

utilized GPU. The kinematic chain is stored in the shared memory. Given the local transformation matrices,
the algorithm traverses the kinematic chain and calculates the world transformation matrices of the bones. The
OpenGL memory is mapped to CUDA memory, which stores the resulting world transformation matrices, see
Fig. 4. In Section 5 we show how the OpenGL makes use of such matrices to pose the 3D models, to render
them, and then to generate the rasterized images. In the subsequent subsection we discuss how these rasterized
images are employed in the matching, which is performed by CUDA threads.



10 B. Kwolek, B. Rymut

4.3 Calculation of the Objective Function

The majority of algorithms for 3D motion tracking are based on minimizing an objective function that measures
how well the 3D model fits the image observations. The matching function is often based on degree of overlap
between the observed image silhouette and the silhouette of the projected model. The edges are also used
frequently because they allow more precise localizing of individual body parts [13][5][40]. They also provide
some invariance to viewpoint and lighting conditions as well as complement the silhouette cues by providing
internal edges of the body areas. The silhouettes and the edges are extracted on the CPU. The thresholded
distance transform is calculated to guide the model fitting to the image edges. The images with the extracted
silhouettes and the edges are transferred from the host memory to the GPU memory, see Fig. 1. The GPU
memory is then mapped to the texture memory.

The image containing the models rendered by the OpenGL is also mapped to the texture memory, see Fig. 5.
This way both the reference images, which are extracted on the basis of image observations, and the images
with the predicted poses, which are rendered by OpenGL are stored in the texture memory. The rendering
result of each camera is stored in single byte, where information about the silhouette is stored in first seven
bits, whereas the edge is coded in the eighth bit. We reserved seven bits for the silhouette for future extensions
of the algorithm, which will use information about human limbs. The rendering results of four cameras are
stored in RGBA pixels with 8 bit per channel, i.e. per camera.

Fig. 5 Calculation of the objective function on GPU using 3D models rendered by OpenGL.

The matching kernel executes N/16 blocks and each block is split into 16 groups. Each group processes
two regions of interest, which contain the reference and predicted silhouettes (silhouettes, edges and distance
transform values). The value of each pixel is stored on four bytes, which hold the values from four cameras.
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4.4 Objective Function

The overlap degree between the extracted silhouette in the camera images and the silhouette of the projected
model into the camera images i = 1, . . . , 4 is calculated as follows:

f1(x) = 0.5

∑4
i=1 o(i)∑4
i=1 r

(i)
+ 0.5

∑4
i=1 o(i)∑4
i=1 c

(i)
(3)

where o denotes the number of pixels on the rendered image, which are shared by the observed silhouette and
the rendered silhouette, c is the number of pixels in the rendered silhouette, whereas r stands for the number
of pixels in the observed silhouette. The edge fitness between the extracted edges in the camera images and
the edges of the projected model into the camera images has been calculated in the following manner:

f2(x) =

∑4
i=1 e

(i)∑4
i=1 d

(i)
(4)

where e denotes number of pixels in the projected edges, whereas d denotes the sum of the values of the distance
function at positions, where the model edges are projected. Such locations express the proximity of projected
edge pixel to the nearest edge in the observed image. The fitness function has been calculated on the basis of
the smoothed product:

f(x) = 1.0− f1(x)w1f2(x)w2 (5)

where w1 and w2 are smoothing factors, which were set to w1 = 0.7 and w2 = 1.0 − w1. Their values were
determined experimentally and set once for datasets utilized in this work. A decrease of the w1 value about
10% and then update the w2 value accordingly, does not change the tracking error noticeably.

5 OpenGL-accelerated Rendering of 3D Human Models in the Requested Poses

At the beginning of this Section we overview CUDA-OpenGL interoperability. Afterwards, we explain how we
effectively utilized the OpenGL to accelerate the rendering of 3D human models in the requested poses.

5.1 CUDA-OpenGL Interoperability

Open Graphics Library (OpenGL) is an application programming interface for graphics hardware that allows
generating high-quality images of 3D objects [37]. It defines a logical graphics processing pipeline, which is
mapped onto the GPU hardware and processors, together with programming models and languages for the
programmable pipeline stages. The API consists of several hundred procedures and functions that are syntacti-
cally similar to C language. In addition to being language-independent, OpenGL is also platform-independent
and mainly deals with rendering and managing context to external libraries such as GLUT and GLFW.

OpenGL is only concerned with processing data stored in GPU memory. It does not support typical C-
like pointer type memory allocation. Instead, OpenGL stores data in abstract generic buffers that are called
buffer objects. These buffers objects can have various types, like texture objects containing texture data, vertex
array objects holding a set of vertices, and shader objects containing shader programs. Each object type has
a corresponding set of commands that manage objects of particular type. In the process of rasterization and
clipping the 3D primitives are projected onto a 2D plane according to a projection matrix that is defined by
the camera. The graphics pipeline or rendering pipeline refers to a sequence of steps that are needed to create
a 2D raster representation of a 3D object. Some of these stages are programmable through shader programs
and some are fixed-function stages.

CUDA functions for mapping resources from OpenGL into the address space of the CUDA permit an
interoperability between both APIs. Owing to the CUDA-OpenGL interoperability we can avoid back and forth
data transfer, and carry out all processing required for 3D model rendering and matching without additional
transfer overheads [41]. Because CUDA and OpenGL both run on GPU and share data through common
memory, the CUDA-OpenGL interoperability is very fast in practice. As indicated in [25], time needed for
mapping the rendering result is equal to 0.4 ms, and the overall execution time required for determining the
objective function values in the single iteration of PSO is equal to 4.4 ms, for a swarm consisting of 96 particles
and measurements done for LeeWalk sequence.
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5.2 OpenGL-accelerated Rendering of 3D Human Models for Subsequent Use by CUDA

Recent versions of OpenGL support a programmable graphics pipeline designed to exploit the parallel archi-
tectures available in modern GPUs [37]. Figure 6 illustrates the OpenGL graphics pipeline. This programmable
pipeline permits data to be stored into the graphics device memory, and instructs (through shader programs)
the GPU to operate on the data in order to perform the geometric transforms, lighting transforms, and any
other desired calculations on data in device memory before it is placed into video RAM (VRAM) memory for
display or put back in the off-screen frame-buffer.

Fig. 6 Block diagram of the OpenGL pipeline.

A shader program is a user-defined program, which purpose is to execute one of the programmable stages
of the rendering pipeline. Shaders for modern GPUs in OpenGL programs can be written using GLSL syntax,
which is a C like language. The data parallel programming is done by creating vertex, geometry and fragment
shader programs. A vertex shader program is executed on all vertex elements in an array containing vertex data,
and can thus be executed as kernels in parallel across multiple SIMD engines, where each stream processing unit
(SPU) operates on an individual vertex. Each geometry shader processes each incoming primitive, returning
zero or more output primitives. Similarly, each fragment shader is executed on all pixels in an array containing
pixel data, and they are also executed as kernels in parallel across multiple SIMD engines, where each SPU
operates on an individual pixel. The transform feedback, which is located after all of the vertex-processing
stages and directly before primitive assembly and rasterization, see Figure 6, captures vertices as they are
assembled into primitives and allows some or all of their attributes to be recorded into buffer objects for use
as input to future commands.

The rendering of the 3D model has been realized in three steps, in which the following pipelines were
executed:

– vertex pipeline
– silhouette edge pipeline
– rasterizing pipeline

The vertex pipeline is responsible for projection and transformation of the model vertices into vertices in
image coordinates using the world transformation matrices. Owing to such approach we avoided redundant
transformation of the vertices for extracting the edges of the silhouettes and rasterizing the silhouettes. This
means that the vertices in the image coordinates are extracted once, and then used in two pipelines responsible
for extracting edges of the silhouettes as well as rasterizing the silhouettes.

The vertex pipeline for rendering the 3D model built on the truncated cones is depicted in Fig. 7. Each
conical frustrum is represented by the center and radii of the circular bottom and center and radii of the
circular top. On the basis of such a representation as well as calibration parameters of the Tsai camera model,
the shader program generates four vertices of the trapezium perpendicular to the camera axis. The trapezium
vertices were generated using the billboard method [1].

The OpenGL pipeline depicted on Fig. 8 has been executed twice to extract the edges of the 3D model
as well as to rasterize the silhouette of the model. As one can notice, both pipelines consist of vertex shader
and fragment shader. The silhouette edge pipeline operates on line primitives, whereas the rasterizing pipeline
operates on triangle primitives.
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Fig. 7 Vertex pipeline.

Fig. 8 Pipeline responsible for extracting the edges of silhouette and rasterizing the silhouette.

6 Experimental Results

The algorithm has been implemented in C++ with its core parts implemented in CUDA C language. The
system has been evaluated experimentally on a PC with Intel Xeon X5690 3.46 GHz CPU, 8 GB RAM, and
NVidia GeForce GTX 780 Ti graphics card. The GeForce GTX 780 Ti is based on Titan that has GK110
Kepler GPU architecture. The new key feature of the Kepler generation is the new streaming multiprocessor
architecture called SMX [30]. The GK110 is constructed from up to 15 SMXs. Each SMX consists of 192 CUDA
cores, 64 double-precision units, 32 SFUs (special function units) and 32 load and store units. The context of
OpenGL 4.2 has been created by GLFW library, whereas the CUDA context has been created using CUDA
Driver API.

The performance of algorithm has been evaluated on two datasets with walking subjects. The 3D motion
tracking has been initialized on the basis of moCap data. We run the experiments on portion of a circular
walking sequence [5] that contains a full 180 turn of the performer. The images in the discussed LeeWalk
sequence are 480 pixels high and 640 pixels wide. In addition to images acquired by the cameras, the sequence
contains binary images with extracted silhouettes, calibration data and moCap data [40]. In the quantitative
evaluation we utilized an average distance between 15 markers corresponding to joints and limb endpoints.
The algorithm has also been evaluated on P1S and P2S straight walking sequences [24]. The color images
have size 480× 270 and were acquired by four synchronized and calibrated cameras. Each pair of the cameras
was approximately perpendicular to the other camera pair. The silhouettes were extracted from the input
images by statistical background subtraction with a Gaussian mixture model [50,32]. The image edges were
detected by the gradient operator and they were masked by the detected silhouettes. A Vicon moCap system
using reflective markers and consisting of sixteen cameras has been employed to recover the 3D location of the
markers. In the quantitative evaluation of the algorithm we utilized an average distance between 39 markers.
The LeeWalk sequence was recorded with 60 Hz, whereas the P1S and P2S sequences were recorded with 25 Hz.

Table 1 presents the average times of 3D motion reconstruction, which were obtained on CPU and GPU.
The presented times do not include the time needed for the image processing. This means that the edges,
silhouettes and the distance maps were extracted off-line and then they were utilized in the performance
evaluations discussed below. The computation times on the GPU include time for the data transfer from the
CPU to the GPU. The tracking times were obtained on LeeWalk sequence [5] as well as on the P1S and
P2S image sequences. A software rendering algorithm, which has been used in our previous work [24,34]
has been utilized in CPU and CUDA implementations. At the beginning, the rendering algorithm performs
the projection and transformation of the model vertices into vertices in image coordinates using the world
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transformation matrices. Each trapezoid of the model undergoes a projection onto 2D image of each camera
using parameters of Tsai camera model. The image of the trapezoid is obtained by projecting the corners
and then rasterizing the triangles composing the trapezoid [34]. When rendering, back-face culling is executed,
which searches for all normals that point away from the viewpoint and skips the associated faces. Triangle
filling and edge determining is achieved using Bresenham algorithm. Through rasterizing all truncated cones
we attain image representing the 3D model in a given configuration. The tracking times on the CPU were
achieved by a multithread program written in C/C++, which has been executed on the available CPU cores.
As we can notice, the tracking time of the program implemented in CUDA and executed on the GPU is far
shorter. In general, the CUDA/CPU speed-up is bigger for larger number of the particles. For a PSO-based
tracker consisting of 100 particles and executing 10 iterations the CUDA/CPU speed-up is slightly less than
two times. In the subsequent paragraph we show that a PSO consisting of one hundred particles and executing
ten iterations allows us to achieve tracking with good enough accuracy. As we can observe, the time needed for
3D reconstruction of the motion on the LeeWalk sequence is longer. The larger processing overhead is due to
different aspect ratio of the cameras in LeeWalk and P1S/P2S sequences, i.e. different sizes of the silhouette on
the images. As a result, larger number of pixels is processed in the rendering and matching of LeeWalk images.

Table 1 Average tracking time [ms] for single frame.

# part. CPU CUDA
CUDA
CPU CGL CGL

CUDA

(10 it.) [ms] [ms] speedup [ms] speedup

100 138.7 109.6 1.3 62 1.8

P1S 300 368.0 122.5 3.0 67.5 1.8

500 607.4 175.2 3.5 72.7 2.4

100 138.0 106.2 1.3 61.1 1.7

P2S 300 398.5 132.8 3.0 63.7 2.1

500 644.1 174.1 3.7 71.8 2.4

100 271.6 168.8 1.6 75.7 2.2

LeeWalk 300 965.3 251.9 3.8 90.9 2.8

500 1852.0 430.1 4.3 121.7 3.5

As we can notice in Tab. 1, the speed-up of the OpenGL accelerated algorithm (CGL) over algorithm
running on GPU without hardware rendering (CUDA) is considerable. Moreover, as we can observe, for five
times larger number of the particles the execution time for LeeWalk sequence is only about 1.7 times longer,
see also CGL computation times for 100 and 500 particles of P1S and P2S sequences. The tracker running on
GPU without OpenGL support needs about 2.8 more time for PSO consisting of five times larger population
of the particles. This contrasts with algorithm running on CPU, which execution time is roughly proportional
to the number of the particles, see Tab. 2, which presents the ratio of the tracking times for 500 and 100
particles. This means, that the CUDA-OpenGL interoperability allows us to obtain better efficiency of parallel
computations for larger number of the particles.

Table 2 Ratio of tracking times for 500 and 100 particles.

CPU CUDA CGL

P1S 4.4 1.6 1.2

P2S 4.4 1.6 1.2

LeeWalk 6.8 2.6 1.6

Figure 9 illustrates some qualitative results, which were obtained on LeeWalk sequence. The better is the
overlap of the projected model on the person undergoing tracking, the better is the motion tracking. The
discussed results were obtained using CUDA-OpenGL interoperability and PSO consisting of 100 particles and
executing 10 iterations. As we can observe, the PSO with 1000 calls of the objective function permits quite
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precise tracking, which is reflected by good overlap between the projected models and the silhouettes in all
camera views.

#20 40 60 80 100 120 140

Fig. 9 Articulated 3D human body tracking on LeeWalk sequence.

Figure 10 depicts plots of tracking errors versus frame number for the LeeWalk sequence. The plots have
been obtained by an ordinary PSO, executing 10 iterations and consisting of 100 and 300 particles. The average
Euclidean error has been calculated on the basis of 15 virtual markers, which were placed on the body: one
for pelvis, neck and head, and two for shoulders, elbows, wrists, hips, knees and ankles. As we can observe,
the average tracking error for the first configuration of the PSO is about 46.4 mm, whereas for the second one
configuration it is about 43.2 mm. Similar tracking accuracy has been reported in [47], where a hierarchical
PSO (HPSO) [21] has been used to diminish the search space. Moreover, the discussed tracking accuracy was
obtained using 3000 calls of the objective function.

On Fig. 11 there are depicted sample tracking errors that were obtained on the P1S sequence. The tracking
errors on this sequence are slightly larger since the walking person occupies far smaller areas in the images
acquired by the side cameras. Moreover, the size of the person’s silhouette in the frontal/back images changes
during the walk, see also tracking results in [24], whereas in the LeeWalk sequence the area occupied by the
person in all camera views does not change so much. The errors were calculated using the locations of the markers
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Fig. 10 Tracking errors [mm] versus frame number on LeeWalk sequence. The average error for 100 and 300 particles is 46.4
mm and 43.2 mm, respectively.

recovered by marker-based moCap system and locations of the virtual markers estimated by our marker-less
moCap system. For each frame they were computed as average Euclidean distance between individual (39)
markers and the recovered 3D joint locations. From the above set of markers, 4 markers were placed on the
head, 7 markers were attached on each arm, 12 on the legs, 5 on the torso and 4 markers were attached to the
pelvis.

Fig. 11 Tracking errors [mm] versus frame number on sequence P1S. The average error for 100 and 300 particles is 53.6 mm
and 47.9 mm, respectively.

The plots shown on Fig. 12 illustrate the tracking errors versus number of the particles. As we can observe,
the PSO configuration with ten iterations allows us to obtain better tracking accuracy in comparison to PSO
executing only five iterations. As we can notice, with the increased number of iterations to fifteen or even
twenty, the decrease in tracking accuracy is not so high as in the case of change of the number of the iterations
from five to ten. Thus, a PSO configuration with one hundred particles and ten iterations can be assumed as
a base configuration for real-time tracking. For such a configuration the motion on LeeWalk sequence can be
reconstructed with frequency of 13 Hz and with frequency of about 16 Hz on P1D and P2S sequences.

Figure 13 contains sample plots of tracking accuracy versus number of the particles, which has been obtained
on the P1S sequence. As we can notice, the increase of the number of iterations from 10 to 20 leads to far
better accuracy. The reason for this is smaller frequency at which the P1S data were recorded. This means that
for the sequences recorded with 25 Hz more iterations are needed to estimate the pose of the person, which
changes more between the successive frames.



Reconstruction of 3D Human Motion 17

Fig. 12 Tracking errors [mm] versus number of particles on LeeWalk sequence using 100 particles.

Fig. 13 Tracking errors [mm] versus number of particles on P1S sequence using 100 particles.

In Tab. 3 there are shown some quantitative results illustrating the tracking accuracy, which has been
obtained on image sequences from two different datasets, for various number of particles and iterations. The
discussed results have been obtained on the basis of ten runs of PSO with unlike initializations as well as distinct
random numbers. As we can notice, using ordinary PSO it is possible to obtain on the LeeWalk sequence a
tracking error close to 40 mm. We can also notice, that the variance decreases with the number of the calls of
the objective function. One of the reason of different tracking accuracy is the frequency at which the considered
image sequences were recorded, different image size as well as the aspect ratio of the cameras.

Figure 14 depicts tracking error for LeeWalk sequence, assuming that it was acquired at 12 Hz, i.e. with
frequency at which the presented system is able to perform tracking in real-time, see tracking time in Table 1
for PSO consisting of 100 particles and executing 10 iterations. Owing to capability of the system to evaluate
the objective function 12000 times in one second, the full-body motion tracking can be done in real-time with
average accuracy of about 70 mm.

Although the main purpose of this work was to develop effective mechanisms to marker-less 3D human
motion capture in real-time on the basis of two pairs of perpendicular cameras, i.e. camera setup that is used
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Table 3 Average errors.

Seq. P1S Seq. P2S Seq. LeeWalk

#particles it. error [mm] error [mm] error [mm]

CUDA

10

100 63.4±43.6 64.7±45.9 47.0±12.8

300 61.0±42.6 55.9±35.6 44.9±12.0

500 50.4±27.8 52.9±30.7 43.6±11.6

20

100 58.0±36.1 62.5±46.9 45.7±12.6

300 55.2±35.4 51.3±28.7 44.5±12.3

500 47.4±23.9 54.3±31.2 44.9±13.3

CUGL

10

100 60.3±40.6 58.2±36.2 47.9±11.7

300 48.1±27.6 53.9±27.9 44.1±11.8

500 44.2±22.6 45.0±30.3 42.5±10.6

20

100 50.7±32.0 46.7±33.8 43.6±11.1

300 43.8±23.5 42.6±27.0 41.2±10.2

500 41.2±20.4 43.6±27.5 41.5±11.5

Fig. 14 Tracking errors [mm] versus frame number on images from LeeWalk sequence (100 particles, 10 it.) acquired with
12 Hz.

in Human Motion Laboratory of PJAIT1, we also evaluated the accuracy of the system on HumanEva I image
sequence [40], which is frequently used in research on marker-less 3D human motion capture. The dataset
contains seven calibrated video sequences (4 grayscale and 3 color) that are synchronized with 3D ground-truth
obtained from Vicon moCap. The grayscale images have size 644 × 448 pixels and color images are of size
659×494 pixels. The videos were acquired at 60 Hz. On first 210 frames from walking sequence with S1 subject
the error was equal to 55.8±21.3 mm, 53.5±18.4 mm, 52.3±19.1 mm for 96, 304 and 512 particles, respectively.
The discussed errors were obtained by PSO executing ten iterations for each frames. Each result is the average
of ten runs with unlike initializations of the PSO.

In real-time motion tracking all operations are time critical, and all main computations need to be optimized
for time. Video frames arrive at a steady rate and need to be sampled for the tracking at a frequency resulting
from the total time needed for acquisition, image processing, transfer time between CPU and GPU, and
time for human pose estimation. Using OpenMP, the image processing (silhouette extraction, edge extraction,
edge distance map) of images of size 480 × 270 pixels can be done in 12 ms. By overlapping data transfers
with computation on the host, and computation on the device [18], we achieved stream and data-parallel
computations. On the CPU, every second frame was acquired from the camera, processed and then the results
were delivered to the GPU, whereas on the GPU, in parallel, the results from previous frame have been acquired
and then used in the 3D pose estimation.

1 http://bytom.pja.edu.pl/

http://bytom.pja.edu.pl/
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7 Conclusions

In this paper, we presented a framework for 3D model based, markerless full-body motion tracking using
CUDA-OpenGL interoperability. The objective function, which is the most computationally demanding part
of model based 3D motion reconstruction, has been calculated on a GPU. We proposed a computational
framework, which allows us to effectively utilize the rendering power of OpenGL to render the 3D models
in the predicted poses, whereas the CUDA threads are used to match such rendered models with the image
features and to perform the tracking. We demonstrated experimentally that the OpenGL-based 3D model
rendering can shorten the whole motion tracking time considerably. The 3D motion reconstruction has been
achieved by a parallel particle swarm optimization. We demonstrated that for larger number of the particles
the CUDA-OpenGL interoperability allows us to obtain better efficiency of computations in comparison to
CUDA-based implementation of the objective function. In particular, we showed experimentally that thanks
to executing computationally-demanding parts of the algorithm on GPU, CUDA-OpenGL speedups up to 15
times over a CPU-only implementation were achieved, in contrast to 4.3 CUDA speedups over the CPU. In a
four camera-setup the full-body motion tracking can be realized with frequency close to 15 Hz.

In future work, we intend to reduce the tracking error as well as to extend our system such that 3D motion
tracking on the basis of twice larger images will be possible in real-time. By using larger images it will be
justified to use a more precise 3D mesh model. Initial results, which were obtained on NVIDIA Titan V GPU
demonstrate that it will be possible to achieve 3D tracking in real-time on the basis of a 3D mesh model
consisting of thousand(s) vertices.
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