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Abstract

Most current approaches to action recognition follow strategies, which permit classification of significantly different
actions. However, in some sports disciplines, actions may be distinguished mainly by the dynamics of the motion
rather than the trajectory. In this work, we propose a novel approach for recognition of sports actions. The novelty
consists in the use of dynamics in the analysis of similar motion patterns. We propose informative motion descriptors
based on accelerometric data, skeleton joints features and depth maps, and demonstrate their potential to model the
motion dynamics. We show that fusing data from multiple modalities permits better recognition accuracy. We make
publicly available a dedicated dataset with fencing footwork samples of ten fencers that consists of depth, skeletal and
inertial data of six types of dynamic actions, most of which have similar average trajectories but different dynamics of
the motion. We show that on our Fencing Footwork Dataset the proposed method outperforms current state-of-the-art
methods for general action recognition.
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1. Introduction

Due to highly competitive nature of sports, athletes
and coaches are eager to adapt and practically verify
new training methods as well as innovative technologies
for training support. The use of technology in sports
has enhanced sports facilities and equipment design in
a wide range of sports disciplines. Biomechanical anal-
ysis of sports movements allows better understanding
how the human body behaves during various sports ac-
tions and subsequently develop better training methods
as well as reduce injury risk [1]. Each sports discipline
developed a set of exercises aimed at perfecting partic-
ular skills. Employing modern technologies permits the
athletes to master these skills in shorter time and in-
crease their overall performance [2].

Currently, an analysis of sports actions begins to play
a crucial role in the training process in several disci-
plines [3]. Its importance comes from the possibility of
providing relevant feedback. Recognition of actions is
one of the basic issues that such analysis tools need to
address. This includes both general identification of dif-
ferent sports activities [4] as well as discipline–specific
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actions, for instance, swim strokes [5]. Action recog-
nition (AR) is an important research topic with many
possible applications in various areas [6]. Thus, mul-
tiple methods have already been proposed [7]. How-
ever, literature devoted to both general and sports action
recognition consider only detection and classification of
significantly different actions from each other [8]. Even
though some of the popular AR databases contain ac-
tions, which are similar to each other to some extent
[9], they all have distinct trajectories and are easily rec-
ognizable for humans. In some sports disciplines, how-
ever, actions may be distinguished mainly by the dy-
namics of the motion rather than the trajectory. These
actions may be difficult to distinguish even for a human,
especially for a person not acquainted with a particular
sports discipline.

In this paper, we propose a novel approach for recog-
nition of sports actions. The novelty consists in the use
of dynamics in the analysis of the similar motion pat-
terns. We propose informative motion descriptors and
demonstrate that they model the dynamics better, and
that the classifiers using them achieve superior results in
comparison to state–of–the–art algorithms. We propose
a method for recognition of action dynamics, which is
based on accelerometric data, skeleton joints features
and a novel depth–based descriptor, as well as employs
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a neural network for fusion of the multimodal data fea-
tures. We consider 6 types of dynamic actions, which
include 4 types of fencing lunge each having a very
similar average trajectory, but considerably different dy-
namics of the motion. We make publicly available a
dedicated dataset with fencing footwork samples of 10
fencers, including depth, skeletal and inertial data. We
show that on our fencing footwork dataset the proposed
method outperforms current state–of–the–art methods
for general action recognition.

2. Related Work

Analysis of actions in sports has been addressed by
several researchers, who investigated several types of
sensors. Color cameras are used for visual tracking of
players in beach volleyball [10], interactive feedback in
martial arts [11] as well as for analysis of golf swing
[12]. Depth sensors, such as the Kinect sensor, have
become quite popular recently, as they are robust to il-
lumination changes and provide 3D information. Appli-
cations of depth cameras include recognition of karate
techniques [13], tracking of golf swings [14] and analy-
sis of tennis shots [15]. The Kinect provides not only
depth data but also skeleton data, which serves as a
low–cost motion capture system [16, 17]. However,
some applications require higher measurement preci-
sion, therefore more advanced motion capture systems
are also used [18]. Inertial measurement units (IMUs)
are commonly used as well [19], since they provide high
sampling frequency and permit analysis of movements,
whose distinguishing may be difficult on the basis of
color or depth data. IMUs are employed in disciplines
such as golf [20], dressage riding [21] or swimming [5].
Fusion of data from multiple modalities is employed
quite rarely, although some recent works in this area can
be found [22, 23].

Most of the aforementioned work employs custom
datasets. There are a few publicly available datasets for
sports action recognition: THETIS Three Dimensional
Tennis Shots Dataset, which consists of 12 types of ten-
nis actions recorded with the Kinect [15]; UCF Sports
Dataset [8], which includes color videos of 10 different
sports activities, such as diving, kicking or riding horse;
G3D Gaming Action Dataset [24], with Kinect record-
ings of 20 gaming actions such as walk, run, jump,
tennis serve, golf swing, throw bowling ball, etc. For
general action recognition a larger variety of datasets is
available. The most frequently used benchmark datasets
are: KTH dataset (color videos, 6 classes) [25]; Weiz-
mann dataset (color videos, 10 classes) [26]; MSR Ac-
tion 3D dataset (Kinect depth data, 20 classes) [9];

MSR Daily Activity 3D dataset (Kinect depth data, 16
classes) [27]. Some of these datasets include sports re-
lated actions such as running, kicking, throwing, tennis
serve, boxing, etc. Nevertheless, the available datasets,
both for sports and general action recognition, lack ex-
amples of actions, which differ in the dynamics of the
movement rather than in the trajectory. Motivated by
the importance of dynamics in analysis of motions in
sports in one hand, and from the other hand by the lack
of datasets targeting this very important issue, we pro-
pose a challenging Fencing Footwork Dataset (FFD)
and make it publicly available to stimulate further re-
search in this area.

The existing work in the area of fencing includes
analysis of lunge performance and biomechanics with:
surface electromyography and high speed cameras [28],
frontal and lateral videos [29] and stereophotogramme-
try [30]. Classification of weapon actions with mo-
tion capture system is presented in [31]. However, as
mentioned previously, there are no publicly available
datasets for fencing analysis. Moreover, no signifi-
cant work on analysis of dynamics of different types of
lunges exists.

So far, the handcrafted features for action descrip-
tion and representation have achieved significant per-
formance on a variety of action recognition benchmarks
and datasets [7, 32]. In [33], taking into account object
relationships in action representation, two types of mo-
tion reference points are examined to alleviate the effect
of camera movement, which frequently takes place in
unconstrained environments. A 3D convolutional neu-
ral network (C3D) [34] that has been trained on a large–
scale video dataset is capable of modeling appearance
and motion information simultaneously. The network
has been trained on Sports–1M dataset [35], which con-
sists of 1 million YouTube videos belonging to a taxon-
omy of 487 classes of sports. In this work, we decided
not to use RGB images for several reasons:

• Lighting conditions – Fencers usually train in large
rooms, where lighting is often not sufficient for
even a high-end consumer RGB camera to provide
images without blur, particularly in the case of fast,
dynamic movement. For classification of similar
actions, dealing with blurred data is crucial. Depth
data provides resistance in such situations.

• Background – Since the training usually takes
place in large rooms, multiple moving persons are
expected to be present in the background, usu-
ally all dressed in single–color uniforms (white or
black), which makes it extremely hard for most
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RGB–based algorithms to extract motion informa-
tion.

• Privacy – Contrary to the depth data, RGB videos
allow for easy person identification. It is well
known that systems that preserve privacy are much
more acceptable.

We show experimental results that were achieved on our
dataset by the C3D algorithm. Our algorithm does not
use RGB data since our intention was to develop an il-
lumination invariant algorithm, which will be capable
of working in poor illumination conditions. Thus, we
focused on person silhouettes extracted at low compu-
tational cost by the Kinect sensor as well as precise joint
positions.

In addition to RGB videos, depth maps have been
successfully employed in many approaches for action
recognition [36]. The methods proposed in [37, 38]
achieve competitive results on many datasets and are
frequently used in evaluation of depth–based algo-
rithms. As shown in recent surveys [6, 39], the learned
representations have considerable potential in action
recognition. In [40], on the basis of skeleton sequence,
a set of vectors is generated with the selected pairs of
joints for every body part. Afterwards, feature arrays
are transformed into gray images, which are finally fed
to a deep learning architecture. The method achieves
superior results on three datasets and outperforms pre-
vious methods.

3. Fencing Footwork Dataset

At the beginning of this section we discuss basic foot-
work in fencing. Afterwards, we present Fencing Foot-
work Dataset.

3.1. Footwork in Fencing

Fencers move in a sideways position, in a straight
line, approaching or moving away from the opponent.
In a basic position the knees are slightly bend and the
armed hand is directed towards the competitor, see Fig-
ure 1 left. Due to the sideways position we can distin-
guish the front and back leg. Basic footwork actions in-
clude steps and lunges. A step forward is initiated by the
front leg, and then followed by the back leg, therefore
each step is finished in the basic position. Step back-
ward is similar, but started with the back leg. Lunge
allows to dynamically shorten the distance to the oppo-
nent during an offensive action. It is performed by first
slightly lifting the front leg and then pushing off with
the back leg. Resulting position is pictured in Figure 1

right. Lunge is usually finished by bending the knee of
the back leg, pushing off backwards with the front leg
and therefore returning to the basic position.

Figure 1: Fencing position (left) and fencing lunge (right).

According to prof. Czajkowski, one of the inventors
of modern theory of fencing, there are four basic types
of lunges, which vary in the dynamics of the motion
[41]:

• rapid – very fast, performed in relatively short dis-
tances, intended for surprise attacks

• with increasing speed – slow at the beginning, but
accelerated during the action, useful for feint at-
tacks

• with waiting – with a short pause in the first stage
of the lunge, during which the fencer observes the
reaction of the opponent and performs a counter–
action if necessary

• jumping – sliding – longest type of lunge, the
fencer jumps forward with the front leg, while the
back leg slides on the floor, intended for complex
offensive actions

Figure 2: Key poses (beginning, middle, end) of fencing actions: top
row – step backward, middle row – step forward, bottom row – lunge.

While distinguishing between step forward, step
backward and lunge is rather straightforward, distin-
guishing between different types of lunge is not easy,
as they vary mostly in the dynamics of the motion.
Moreover, performance of the different lunge actions
varies slightly between fencers, as it is influenced by
their physical capabilities, such as speed or flexibility,
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as well as their skills. For this reason, recognition of
different types of lunge may be a difficult task, even
for human, and automatic recognition of such actions is
challenging. Figure 2 presents key poses of the step for-
ward, step backward and lunge actions. Different types
of lunges are not depicted, since the difference in the
dynamics of the movement is difficult to illustrate with
only a few static frames.

3.2. Dataset

The main focus of our research was recognizing the
dynamics of movement in the context of lunge actions,
nevertheless in order to verify applicability of the pro-
posed method for identification of more distinctive ac-
tions, we consider the steps actions as well. Other fenc-
ing footwork actions are possible, although we did not
find them to be relevant in this case. The Fencing Foot-
work Dataset includes six dynamic actions:

• rapid lunge (R),

• incremental speed lunge (IS),

• lunge with waiting (W/W),

• jumping-sliding lunge (JS),

• step forward (SF),

• step backward (SB).

The data were recorded thanks to the courtesy of
Aramis Fencing School1, one of the biggest fencing in-
stitutions in Poland. Ten fencers in total, ranging from
intermediate to professional level, both male and female
participated in the recording session. We recorded color,
depth and skeleton data using the Kinect as well as data
from x–IMU sensor [42]. The fencers were asked to
attach the inertial sensor to the knee of the front leg
and perform actions in a given distance (approx. 3 m)
from the Kinect sensor. The actions were performed on
a command, each action was repeated 10 – 11 times and
each repetition was recorded as a separate data sample
consisting of multiple files.

The Kinect acquired 640 × 480 16 bit depth data at
30 Hz together with automatically extracted person and
skeleton data for 20 tracked joints. Figure 2 presents
the different modalities for the lunge action recorded by
the Kinect (color data is for illustrative purposes only
and it is not included in the dataset). The x–IMU sen-
sor operated at 256 Hz and provided 9 axis inertial data
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from accelerometer, gyroscope and magnetometer as
well as orientation data. Depth data was recorded as
an uncompressed video file, whereas skeleton and iner-
tial data were stored in Matlab format files. The dataset
is publicly available, see http://home.agh.edu.pl/
~fmal/ffd/ for more information and example data.

Figure 3: Lunge action recorded by the Kinect: color data (top-left),
depth data (top-right), extracted silhouette (bottom left), skeleton data
(bottom right).

4. Features

In order to properly describe complex fencing ac-
tions, and particularly to distinguish between simi-
lar motion patterns that accompany different fencing
lunges, we developed a number of features describing
the dynamics of the fencing actions. The features were
verified separately in recognition of the actions as well
as fused together in order to improve the recognition
accuracy. At the beginning of this section we propose
acceleration based features, then we discuss Joint Dy-
namics features that employ skeleton data, and finally
we introduce a novel skeleton based–descriptor, called
Local Trace Images.

4.1. Accelerometric Features
Over the last decade, a considerable number of

different approaches for extracting features from ac-
celerometer data have been proposed in the literature
[43]. Those include time domain features (e.g. mean,
standard deviation, variance), frequency domain fea-
tures (Fourier Transform, Discrete Cosine Transform)
and others such as wavelets (e.g. Haar wavelets, or
Daubechies wavelets). Other data provided by IMUs,
namely magnetic and gyroscope are sometimes em-
ployed as well [44]. In our research, we considered sev-
eral combinations of inertial data and we found that time
domain features extracted from the acceleration data are
best suited for dynamics analysis [45]. In particular,
magnetic and gyroscope data, which are usually used
for reconstruction of trajectories [46], are less relevant
for analysis of dynamics in sport actions.
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The data acquired by accelerometer were prepro-
cessed and then utilized by a feature extraction algo-
rithm. First, we performed interpolation of the signal in
order to ensure equal lengths of the samples. Since each
sample was about 2 seconds long and the sampling fre-
quency was set to 256 Hz, we interpolated the samples
to a common length of 512 data points. In the next step
we divided the samples into equal–size segments with
50% overlap. We experimented with different segment
sizes (32, 64, 128, 256) and choose the final segment
size of 128, which results in 7 segments per data sam-
ple, see Fig. 4.

Figure 4: Sample accelerometric signal (3 axes) divided into 7 over-
lapping time segments.

A highpass filter was applied, with stopband fre-
quency equal to 0.4 and passband frequency equal to 0.8
normalized frequency units. Finally, using the filtered
signal, the difference between the original and the fil-
tered signal and the first derivative of the filtered signal,
we computed the following features in each segment:
mean value for each axis, root mean square (RMS) value
for each axis, mean value of magnitude, RMS of mag-
nitude. This resulted in total of 24 features per segment.
Considering the splitting of each sample to 7 segments,
the feature vector length was equal to 168.

4.2. Joint Dynamics Features

In algorithms devoted to general action recognition,
positions or relative positions of selected joints, both in
space and time are often utilized [27, 38]. Contrary to
that, in this work we employ first and second deriva-
tive of the joint positions in order to take into account
velocity and acceleration patterns. The resulting mo-
tion and dynamics descriptors are called Joint Dynam-
ics (JD) features. Similarly to processing acceleromet-
ric data the features are also extracted in data segments,
although in this case, we consider multiple joints and
multiple windows, as well as frequency domain rather
than time domain features.

For the computation of the features we use only the
eight lower body joints, namely: hips, knees, ankles
and feet, which are the most relevant for the fencing
footwork analysis. Having on regard that the Kinect

acquires depth maps with 30 Hz and data samples are
around two seconds long, we interpolate data from each
joint to 64 data points. Afterwards, in order to perform
multi–level analysis we divide each data sample into
overlapping windows. At each level we use windows
with a given size and 50% overlap. Experiments demon-
strated that the best results are achieved using 3 levels
with window sizes of 64, 32 and 16, which correspond
to 1, 3 and 7 windows in each level, see also see Fig. 5.
Such an approach allows us to capture both global and
local (in terms of time) motion patterns. In each win-
dow we apply Short Time Fourier Transform (STFT)
and construct a feature vector by taking absolute values
of the first 3 coefficients. We consider velocity and ac-
celeration in vertical and horizontal directions (changes
in depth are irrelevant in this case), which results in four
values per data point. Since we use eleven windows for
each of the eight joints, the feature vector size is equal to
1056. For the configuration with six joints (hips, knees
and feet), the size of the feature vector is equal to 792.

Figure 5: Multi-level windows employed for signal analysis in Joint
Dynamics features.

4.3. Local Trace Images

Depth data has been employed in many approaches
for action recognition [36]. Our algorithm, which we
call Local Trace Images (LTI) is based on creating prob-
abilistic images of motion patterns for each joint sepa-
rately by employing both depth and skeleton data. Im-
ages of motion patterns were introduced with the Mo-
tion History Images (MHI) method [47], where pixel
intensity represented temporal history of that point with
regard to a given decay operator. This resulted in more
recently moved pixels being brighter. Lately, the MHIs
were used for detection of cyclic actions in indoor ex-
ercises [48]. In [27] authors use the skeleton data as an
additional context for the depth data in order to com-
pute 3D histograms around joints, which is called Local
Occupancy Patterns (LOP).

For dynamics analysis we need to consider changes
in motion during the whole movement. Therefore, in
order to adequately model such changes in motion we
propose a Trace Image descriptor. By superimposing
binary silhouettes of the extracted persons without the
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Figure 6: Lunge actions features: MHI (left), energy image (middle),
Trace Image (right).

decay function used in MHI we can create energy im-
ages, which capture dynamics of the movement, see also
middle image on Fig. 6, where brighter pixels represent
slower motion. However, using whole silhouettes intro-
duces significant amount of noise. Therefore, instead of
using the silhouettes we model the positions of the se-
lected joints by a two–dimensional normal distribution:

b = f (x, µ, σ) =
1

√
2σ2π

exp−
(x − µ)2

2σ2 (1)

where b denotes pixel brightness in a particular frame as
a function of distance from the position µ of the joint,
whereas σ denotes the variance. A superposition of
such Gaussians from multiple frames results in a sin-
gle image, which express spatio–temporal patterns of
the joints movement. We call such an image the Trace
Image, see also right image on Fig. 6. However, some
relevant information can be lost in some cases, mainly
due to overlaps of the patterns of different joints. There-
fore, we generate a separate image for each joint, which
is called Local Trace Image. For each considered joint
the Gaussians are first generated on a larger image, and
afterwards the superposition of the relevant area (mini-
mal square area containing only non–zero pixels) is se-
lected as a single Local Trace Image for the particular
joint. These images are then resized to a common size.
In evaluations of the algorithm we found that 16 × 16
pixel size gives the best results. The images are then
concatenated and serve as a single feature vector, see
also Fig. 7.

Figure 7: Local Trace Images for six fencing footwork actions. From
left to right: rapid lunge (R), incremental speed lunge (IS), lunge with
waiting (WW), jumping-sliding lunge (JS), step forward (SF), step
backward (SB). Image for each action is a concatenation of 8 LTI,
each for separate joint (from top to bottom: hips, knees, ankles, feet).

5. Classification and Fusion

Initially we classified the acceleration data using the
Dynamic Time Warping (DTW) [49], which is a typical
approach for time–series matching. It finds an optimal
alignment between two time–series by employing dy-
namic programming. It allowed us to obtain promising
classification accuracies for a single person [45]. How-
ever, we found it to be less suitable for person inde-
pendent recognition of basic footwork in fencing. The
Support Vector Machine (SVM) operating on the dis-
cussed above acceleration features achieves better re-
sults. The experiments demonstrate that it outperforms
Random Forests (RF), which were evaluated in terms of
classification accuracy using different number of trees
grown and the number of predictors randomly tried at
each split. We also employed the SVMs for the Joint
Dynamics and Local Trace Images features. In evalu-
ations of the SVM classification performance we em-
ployed both linear kernel as well as Radial Basis Func-
tion (RBF) kernel, which is commonly utilized to han-
dle non–linear decision surfaces. Both margin param-
eter c as well as kernel width parameter γ were fine–
tuned during the training stage.

We trained a separate SVM model for each of the fea-
ture sets (acceleration features, JD, LTI) and examined
the recognition accuracy of each model. We observed
that, even when the classification accuracy was similar,
confusion matrices indicated that different types of fea-
tures are best suited for recognizing different types of
lunge. Therefore, in order to improve the classification
accuracy we perform fusion of the features. The multi–
class SVM can also generate probabilities for each of
the output classes rather than just provide a single class
label [50]. By using all 3 feature sets and their SVM
models we obtained 18 probabilities, which served as
input for the fusion stage. An important aspect of this
approach is that regardless of the number of features in
each feature set, they all contribute equal number of fea-
tures to the next stage. Having on regard that the num-
ber of features is small, a Multilayer Perceptron (MLP)
has been employed to fuse the multimodal features. We
employed a single hidden layer, while number of neu-
rons in the hidden layer, learning rate and momentum
were used as tuning parameters. Figure 8. illustrates the
entire classification process (including extraction of the
features).

6. Experimental results

We validated the proposed algorithm on the Fencing
Footwork Dataset. In the experiments we considered
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Figure 8: Block-diagram of the system. Data from the x-IMU and the
Kinect sensors is used to extract 3 sets of features: acceleration (Acc),
Joint Dynamics (JD), and Local Trace Images (LTI). Each feature set
has a separate SVM model. Fusion of the results from SVMs is per-
formed by the Multilayer Perceptron (MLP), which provides the final
result.

two cases: person dependent (PD) and person indepen-
dent (PI). In the PD case the classification performance
was determined using five–fold cross–validation sepa-
rately for each person, where 80% of data recorded with
the particular fencer has been employed for training and
the other 20% of data for the test. In the PI case we per-
formed ten–fold leave–one–out cross–validation, where
in each fold nine persons were used for training and
the remaining one for tests. The PD allows us to deter-
mine whether the actions of each particular fencer were
consistent, while the PI case is more relevant from the
practical point of view, as it is more advantageous for
developing a system for recognition of the actions per-
formed by previously unseen athletes. At the beginning
we evaluated each proposed feature set separately and
then we conducted a validation using the feature fusion.
Then we compared the obtained results with the results
achieved by state–of–the–art general action recognition
methods.

6.1. Separate Feature Sets

At the beginning, we evaluated the acceleration fea-
tures (Acc) using DTW and SVM with both linear and
with RBF kernel. The best parameters of SVM, c = 1
for linear SVM and c = 100, γ = 0.01 for SVM with
RBF kernel were determined in a grid search. The ex-
perimental results are presented in Table 1. As we can
observe, DTW achieves superior classification accuracy
for the PD case, although it performs poorly in the PI
case. The SVM, due to its much better generalization
capabilities, achieved significantly better classification
accuracy in the PI case, albeit at a cost of slightly worse
recognition rate in the PD case. It is worth mentioning
that a high classification accuracy in the PD / DTW case
proves that each fencer performed repetitions of partic-
ular actions in a consistent manner. Therefore, we can
conclude that the results in the PI case are influenced
mostly by the inter–person differences and not by inac-
curately performed actions.

The experiments with JD and LTI feature sets were
performed using SVM, both with linear and with RBF

Table 1: Accuracy [%] of recognition using the acceleration features
(Acc) on the Fencing Footwork Dataset.

method PD PI
DTW 98.18 56.75
SVM linear 93.88 70.71
SVM-RBF 94.21 70.71

kernel. Since the non–linear kernel does not lead to sta-
tistically significant improvement of the classification
accuracy, we present results for the linear SVM only.
Similarly as in the case of Acc features we performed
parameter tuning, which resulted in selecting the param-
eter c = 1. Results of the experiments with all feature
sets (Acc, JD, LTI) using the linear SVM and RF are
presented in Table 2. As we can observe, the results
achieved by the SVM are better. In the PD case the clas-
sification accuracy is similar for all feature sets. In the
PI case the JD features give superior results and achieve
almost 80% classification accuracy. Acc features give
the least accurate recognition results, probably due to
being limited to input data from only one joint, i.e. the
knee of the ’front’ leg.

Table 2: Accuracy [%] of recognition using RF and linear SVM, with
Acc, JD and LTI features on the Fencing Footwork Dataset.

SVM RF
features PD PI PD PI

Acc 93.88 70.71 90.58 63.73
JD 93.55 79.82 92.07 79.82
LTI 94.05 74.62 94.21 72.34

In order to remove possible redundancies in feature
representation, we analyzed the accuracies, which were
obtained using features for all eight joints as well as for
subsets of six joints, i.e. without hips, knees, ankles and
feet, respectively, see also first column in Tab. 3. As
we can observe, the best results were achieved without
features extracted on the ankles. In the remainder of this
section, we utilize features extracted on hips, knees, and
feet.

Even though the JD features seem to outperform the
other ones, it is worth analyzing the confusion matrices
for each feature set. These are presented in Tables 4, 5
and 6. First of all, we can observe that the step actions
(step forward and step backward) are relatively easily
recognizable. As described in Section 3, these actions
are distinctively different from the four lunge actions.
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Table 3: Comparison of recognition accuracy [%] for all eight joints
and subset of six joints (without hips, knees, ankles and feet, respec-
tively).

JD LTI
features PD PI PD PI
all 93.55 79.82 94.05 74.62
w/o hips 92.23 79.06 92.40 74.42
w/o knees 93.06 77.69 92.56 70.71
w/o ankles 94.21 80.42 94.88 77.24
w/o feet 93.55 79.36 93.55 74.36

The lunge actions, on the other hand, are much more
difficult to recognize correctly. Particularly, the incre-
mental speed lunge (IS) is the most difficult to recognize
since in all cases the accuracy obtained for this action is
close to 50%. This reason for this is due to specifics
of the IS action. All lunge actions have some distinc-
tive feature - the R action is the quickest one, the W/W
action has a pause, and the JS is the longest. The IS ac-
tion is characterized by a specific acceleration pattern,
which is both difficult to capture and similar to other
actions, as the acceleration stage is always present. An
important observation is that the best recognition rates
for particular actions are not present in a single feature
set. Different feature sets seem to be best suited for
some actions. LTI features are superior for recognition
of the most difficult to recognize IS action, while JD fea-
tures significantly outperform other features in the case
of W/W and JS lunge actions. The Acc features, despite
relatively low accuracy for lunge actions, provide best
recognition rates for both SF and SB actions. This leads
to a conclusion, that using multiple feature sets simulta-
neously may improve overall accuracy.

Table 4: Confusion matrix [%] for the person independent (PI) case
using acceleration features (Acc) and linear SVM.

R IS W/W JS SF SB
R 75.00 7.41 - 17.59 - -
IS 17.12 45.95 9.01 27.92 - -
W/W - 19.30 59.65 21.05 - -
JS 15.60 23.85 10.09 50.46 - -
SF 0.93 0.92 - - 98.15 -
SB 1.83 - - - 1.83 96.34

Table 5: Confusion matrix [%] for the person independent (PI) case
using Joint Dynamics (JD) features and linear SVM.

R IS W/W JS SF SB
R 79.08 13.99 1.95 4.98 - -
IS 17.32 51.05 12.71 18.92 - -
W/W 6.14 12.28 77.19 4.39 - -
JS - 14.68 4.59 80.73 - -
SF 0.92 - - 0.93 98.15 -
SB 2.75 - - - 0.92 96.33

Table 6: Confusion matrix [%] for the person independent (PI) case
using Local Trace Images (LTI) features and linear SVM.

R IS W/W JS SF SB
R 76.20 18.97 3.90 0.93 - -
IS 14.77 58.20 8.11 18.92 - -
W/W 12.28 23.68 61.40 2.64 - -
JS - 19.48 5.50 75.02 - -
SF - - - - 96.30 3.70
SB - - - - 3.67 96.33

6.2. Feature Fusion

Usually, late feature integration [51] is preferred over
early integration for two primary reasons. First, the fea-
ture concatenation in the early integration usually leads
to high dimensional data space. Second, late integra-
tion provides far better flexibility in data modeling and
designing the classifiers. The late integration is espe-
cially desirable if different data sources are available.
In general, in early feature fusion a larger multi–modal
dataset might be necessary due to higher dimension of
data space.

The fusion of the proposed feature sets was per-
formed using a SVM [23], a RF and an MLP neural
network, which was described in Section 5. We consid-
ered two combinations of the feature sets. The first one
included LTI and JD feature sets, as they are both ex-
tracted from the Kinect data. In the second feature com-
bination we included Acc features as well, in order to
verify if additional modality (accelerometer) improves
the classification accuracy. For the MLP neural network
we used a single hidden layer and we experimented with
various parameters, namely number of neurons in the
hidden layer n, learning rate r and momentum m. Us-
ing the grid search we found the best parameters to be
n = 11, r = 0.3, m = 0.2 for the LTI + JD fusion and
n = 7, r = 0.3, m = 0.4 for the LTI + JD + Acc fusion.

8



Experimental results, which were performed to eval-
uate different fusion strategies demonstrated that the
MLP outperforms both SVM– and RF–based fusion. As
we can observe in Tab. 7, the MLP achieves superior re-
sults both on LTT + JD and LTI + JD + Acc features.

Table 7: Evaluation of recognition accuracy [%] of actions from the
Fencing Footwork Dataset for different fusion methods.

SVM RF MLP
LTI+JD 76.67 78.60 81.49
LTI+JD+Acc 79.21 81.03 83.69

For comparison, we also considered state–of–the–art
methods for general action recognition on our Fencing
Footwork Dataset. First we implemented and evalu-
ated the MHI algorithm [47] as it was the starting point
for our LTI descriptor. Next we considered EigenJoints
[38], which employ distances between joints, and hence
constitute a good reference point for our JD descriptor.
The third verified method is called Local Occupancy
Patterns (LOP) and is based on 3D depth histograms
that are computed around joints as well as Fourier Tem-
poral Pyramid (FTP), which uses Fourier Transform in
multiple size windows [27]. It differs from our JD fea-
tures in that it employs relative joint positions (rather
than velocity and acceleration used in the JD features)
and does not include overlapping windows. The next
method used for comparison is the Histogram of Ori-
ented 4D Normals (HON4D) [37], which describes the
depth map sequences using histograms capturing dis-
tribution of the surface normal orientation in the 4D
space of time, depth and spatial coordinates. The C3D
pre-trained model has been used to extract the motion
features, which were then classified by the linear SVM
[34]. In contrast to work mentioned above, where the
RGB videos were used, we fed the depth data for the
three input channels of the C3D network. We also com-
pared our method with recently proposed SkeletonNet
[40]. The experimental results are presented in Table 8.

We can observe that in the PD case, all methods
except EigenJoints and MHI achieve accuracies better
than 90%. There is also a small improvement compared
to using separate feature sets. Employing only LTI fea-
tures resulted in 94.05% recognition rate, see Table 2,
while fusion of the JD features increased the recogni-
tion accuracy to 94.88%, see also results in 7th row in
Tab. 8. In this case, adding the Acc features had little
effect.

Table 8: Accuracy [%] of recognition of actions from the Fencing
Footwork Dataset using fusion of Acc, JD and LTI features, compared
to state-of-the-art action recognition methods.

PD PI
EigenJoints [38] 35.04 29.89
MHI [47] 88.60 61.25
HON4D [37] 93.22 75.87
LOP/FTP 94.21 76.14
SkeletonNet [40] 93.12 64.36
C3D [34] 94.55 67.63
LTI + JD (ours) 94.88 81.49
LTI + JD + HON4D 95.67 80.91
LTI + JD + LOP/FTP 94.55 81.39
LTI + JD + Acc (ours) 95.80 83.59
LTI + JD + Acc + HON4D 95.77 82.67
LTI + JD + Acc + LOP/FTP 95.54 81.91

In the PI case the fusion of LTI and JD features pro-
vided a noticeable improvement, as obtained accuracy
was 81.49%. Adding the Acc features further increases
the recognition rate to 83.59%. We can also observe
that the proposed algorithm is significantly better than
the state–of–the–art methods used for comparison. It
is worth noting, that in general action recognition, dif-
ferent dynamics of execution of an action are deliber-
ately treated as the same action. For this reason, the
deep-learning approaches evaluated in this work, which
demonstrated superior performance in comparison to
hand crafted-based general action recognition, were not
able to capture the subtle differences of motion in recog-
nition of dynamic actions. This indicates, that the prob-
lem of recognition of dynamics of actions is in fact con-
siderably different from the general action recognition.
Since the HON4D and LOP/FTP features provide sig-
nificantly better results than other examined state-of-
the-art methods, we decided to examine if combining
them would lead to further improvement. We examined
the following cases: LTI + JD + HON4D, LTI + JD +

LOP/FTP, LTI + JD + Acc + HON4D, LTI + JD + Acc
+ LOP/FTP. As we can observe in Tab. 8, the combined
features were not able to provide higher recognition ac-
curacy. Confusion matrix for the PI case using fusion
of all the proposed feature sets is presented in Table 9.
For all actions, except the JS lunge, the obtained recog-
nition rate is better than in the case of separate feature
sets, see Tables 4, 5, 6. The reason the results for the
dynamic action JS are slightly worse in comparison to
results in Tab. 5 is that the Acc features do not represent
well the JS in comparison to Joint Dynamics represen-
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tation. In particular, the R and W/W lunge actions are
recognized much better. The recognition of IS lunge ac-
tion is still the most difficult, although even in this case
an improvement can be observed. The step actions are
recognized with none (SB) or very little error (SF).

Table 9: Confusion matrix [%] for the person independent (PI) case
using fused features (LTI + JD + Acc) and linear SVM.

R IS W/W JS SF SB
R 87.04 7.41 0.93 4.62 - -
IS 17.18 59.36 8.18 15.28 - -
W/W 4.61 9.65 80.48 4.38 - 0.88
JS 2.75 17.53 0.92 78.90 - -
SF 0.92 - - - 97.30 1.78
SB - - - - 0.92 99.08

7. Conclusions

In this paper we addressed the problem of dynamic
action recognition in sports. We considered the recog-
nition of basic footwork in fencing on the basis of depth
maps and acceleration data. We found that action dy-
namics is an important issue in sports actions recogni-
tion and differs significantly from typical action recog-
nition problems. Dynamic actions with very similar tra-
jectories but different dynamics of motion require novel
methods for proper classification. We presented the first
public dataset with such actions - the Fencing Foot-
work Dataset. This multi–modal dataset includes data
collected with both the Kinect and the x–IMU sensors.
In order to properly model the motion changes in dy-
namic actions we proposed 3 sets of features, based on
the skeleton data (Joint Dynamics), skeleton and depth
data (Local Trace Images) and inertial data (Accelera-
tion features). We evaluated all feature sets separately
as well as using MLP neural network for fusion. The
experimental results indicate that the fusion of differ-
ent features significantly improves the recognition ac-
curacy. On the Fencing Footwork Dataset the proposed
algorithms outperform state-of-the-art methods for gen-
eral action recognition. We believe that analysis of dy-
namics of actions is a novel and interesting direction
in the area of action recognition and that the presented
dataset will be useful for further research of this subject.
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