
Scene Recognition for Indoor Localization of
Mobile Robots Using Deep CNN

Piotr Wozniak4, Hadha Afrisal2, Rigel Galindo Esparza3, and Bogdan Kwolek1

1 AGH University of Science and Technology, 30 Mickiewicza, 30-059 Kraków, Poland
bkw@agh.edu.pl, http://home.agh.edu.pl/ bkw/contact.html

2 Universitas Gadjah Mada, Bulaksumur Yogyakarta 55281, Indonesia
3 Monterrey Institute of Technology and Higher Education

Av. E. G. Sada 2501 Sur, Tecnolgico, 64849 Monterrey, Mexico
4 Rzeszów University of Technology
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Abstract. In this paper we propose a deep neural network based al-
gorithm for indoor place recognition. It uses transfer learning to retrain
VGG-F, a pretrained convolutional neural network to classify places on
images acquired by a humanoid robot. The network has been trained
as well as evaluated on a dataset consisting of 8000 images, which were
recorded in sixteen rooms. The dataset is freely accessed from our web-
site. We demonstrated experimentally that the proposed algorithm con-
siderably outperforms BoW algorithms, which are frequently used in
loop-closure. It also outperforms an algorithm in which features extracted
by FC-6 layer of the VGG-F are classified by a linear SVM.

1 Introduction

In recent years, development of mobile robots has reached a promising milestone
in terms of low-energy and effective locomotion [11, 20]. With these achievements,
it is expected that in a near future, service robots will be ready to be employed
in a massive scale. In many home, office or hospital settings a humanoid robot
needs to navigate from one place to other places autonomously, for instance while
transporting and collecting items from one room to other rooms, and so on. Any
service humanoid robot is expected to work autonomously or semi-autonomously
in those settings, therefore there are still many open-problems especially related
to robot localization and mapping, which need to be investigated further [19].

Long-term localization and navigation in unknown environments is becom-
ing increasingly important task for service robots. Such robots should cope with
observation errors and the localization should work even in unexpected and
dynamic situations, and possibly self-similar environments. The aim of Simulta-
neous Localization and Mapping (SLAM) is constructing or updating a map of
an unknown environment while simultaneously keeping the track of the robot’s
location within it. Noisy measurements of the robot’s odometry as well as noisy
observations of the environment lead to errors that accumulate over time, grow-
ing uncertainty of each subsequent pose and map estimation. In consequence,
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errors in the map estimation lead to errors in the pose estimation, and errors in
pose estimation analogously lead to further errors in the map estimation [3]. In
order to reliably maintain error bounds on robot’s position during SLAM over
long trajectories, so-called loop-closures need to be recognized, which can be
achieved by collecting data associations between map and map, image and im-
age, or images and map. Without loop-closure, the position estimated on the ba-
sis of (visual) odometry diverges from the true state since the errors accumulate
over time [17]. Reliable detecting loop-closures is an important issue since any
incorrect recognition of revisited places may lead to substantial mapping errors
in indoor localization. Motion blur and object occlusions are among the factors
that most deteriorate localization performance. Place recognition is perceived as
important component towards semantic mapping and scene understanding.

The problem of qualitative robot localization refers to determining the place
where the robot is present [13]. For instance, in an indoor environment a service
robot should be able to determine that it is in a particular room, which may be
a seminar room, lab, conference room, etc. During navigation the robot learns
from experience and then recognizes previously observed places in known envi-
ronment(s) and eventually categorizes previously unseen places in new rooms.
This task is closely related to semantic localization, which consists in determin-
ing by a robot its location semantically with respect to objects or regions in the
scene rather than reporting 6-DOF pose or position coordinates [3].

Visual place recognition algorithm is one of many solutions to provide a
mobile robot with a localization ability, particularly for navigating in an indoor
environment in which the robot’s localization and navigation cannot only rely on
the Ground Positioning System (GPS) [16]. Vision cameras are a natural choice
for appearance-based SLAM, where the environment is modeled in a topological
way by means of a graph. In such an approach, each graph node represents a
distinctive visual location that was visited by the robot, while the edges indicate
paths between places. On the basis of such a representation, the loop closure can
be detected by direct image comparison, which allows us to avoid the need for
maintenance and estimation of the position of the feature landmarks determined
in the environment [8]. In recently proposed OpenABLE [1], the loop closure is
detected on the basis of fast LDB global descriptor, which is based on idea
of random comparisons between intensities of pixels in the neighborhood of the
center. The main drawback of the OpenABLE is its poor scaling with the number
of frames stored in the image database. Since the matching times increase linearly
with the growing size of the database, the OpenABLE can only be employed
in environments of limited size. Reliable recognition of the indoor place can
therefore be used to constrain the searching for images only to image subset
representing the currently visited room or place.

In this paper, we consider place recognition on the basis of images from a
RGB camera mounted on a humanoid robot. We compare the performance of
algorithms for visual recognition of the place on the basis of handcrafted fea-
tures and deep learned-features. For the handcrafted features, we investigate the
performance of widely used Bag-of-Words algorithm and Histogram of Uniform
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Pattern (HOUP) algorithm. For the learned-features, we demonstrate the per-
formance of transfer-learning method for VGG [26] deep neural network. We
introduce a dataset for visual recognition of the indoor places, which has been
recorded using Nao humanoid robot in sixteen different rooms.

2 Relevant work

There are two main approaches to achieve indoor localization of a mobile robot:
SLAM and appearance-based. Visual SLAM can be computationally expensive
due to the complexity connected with 3D reconstructions. Methods based on
appearance can achieve good performance in coarse determining the camera lo-
cation on the basis of predefined, limited set of place labels. FAB-MAP [6] is
a probabilistic approach to recognize places on the basis of appearance infor-
mation. The algorithm learns a generative model of the visual words using a
Chow-Liu tree to model the co-occurrence probability. It performs matching
the appearance of current scene to the same (similar) previously visited place
through converting the images into Bag-of-Words representations built on local
features such as SIFT or SURF.

Visual place description techniques can be divided into two broad categories:
those that are based on local features; and those that describe the whole scene.
Several local handcrafted features for visual place recognition have been investi-
gated, such as SIFT [15] or SURF [2], binary-based local features such as BRISK
[12] or ORB [21], and other feature descriptors such as lines [32], corner and edges
[9], and HOUP [23]. Global or whole-image descriptors of the images, called also
image signatures, such as Gist [18] process the whole image regardless of its
content, and were investigated in place recognition as well [28].

One method which is commonly used in visual place recognition is Bag-of-
Words (BoW) or Bag-of-Features (BoF), which usually follows three main steps:
(1) extraction of local image features, (2) encoding of the local features in an
image descriptor, and (3) classification of the image descriptor [4]. Sivic et al. [27]
proposed an effective BoW method for object retrieval. Their method searches for
and localizes all the occurrences of an object in a video, given a query image of the
object. Local viewpoint invariant SIFT features are quantized on the basis of a
pretrained visual word vocabulary and aggregated into a term frequency-inverse
document frequency (tf-idf) vector. A benefit of the tf-idf representation is that
it can be stored in the inverted file structure that yields an immediate ranking
of the video frames containing the object. A successful visual place recognition
technique has been achieved by Dorian’s algorithm [7], which utilizes binary
encoding to describe features in a very effective and efficient BoW algorithm.
However, its main limitation is the use of features that lack of rotation and
scale invariance. Another significant challenge in developing robust BoW-based
visual place recognition algorithm is the existence of many similar and repetitive
structures in man-made indoor settings, such as tiles, ceilings, windows, doors,
and many more [31]. In addition, many of those methods are not robust to
viewpoint and illumination changes [29].
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Recent advancement in machine learning and deep learning has shed the
light on a novel approach of utilizing Convolutional Neural Network (CNN) for
many applications in vision-based recognition [24]. CNNs offer a new way of
employing learned features for solving image retrieval problems as demonstrated
in visual place recognition and categorization [5, 14]. However, implementing
deep learning for mobile robots is not quite straightforward, especially to carry
out complex problems such as place recognition, SLAM and pose estimation, in
which a high uncertainty is a considerable challenge [30]. Another challenge is
that limited battery life makes it not easy to implement and execute in real-time
algorithms that are based on deep models. Additionally, there is also need to
cope with blurring and rotation of images around the optical axis, which arise
during locomotion of the humanoid robot.

3 Image descriptors

Below we outline descriptors that were used in our algorithm and experiments.

3.1 Handcrafted descriptors

SIFT. SIFT feature [15], called SIFT keypoint is a selected image region with
an associated descriptor. The keypoints can be extracted by the SIFT detector,
whereas their descriptors can be expressed by the SIFT descriptor. By search-
ing for image blobs at multiple positions and scales, the SIFT detector provides
invariance to translation, rotations, and re-scaling of the image. The SIFT de-
scriptor is a 3D spatial histogram of the image gradients describing the content
of the keypoint region. It is calculated with respect to gradient locations and ori-
entations, which are weighted by the gradient magnitude and a Gaussian window
superimposed over the region.

HOUP. Histogram of Oriented Uniform Patters is a descriptor that is calculated
by filtering the image sub-block by a Gabor Filter with different orientations.
The output of the Gabor filter is then used to calculate Local Binary Patterns
(LBP). The Principal Component Analysis (PCA) is then executed to reduce
the dimensionality of such patterns of textural features. In [23] the input image
is divided into 3 × 3 blocks. Each block undergoes Gabor filtering, and then
LBPs are computed for each block. The block has 58 uniform + 1 non uniform
patterns for each orientation, and it is represented by a vector of size 59×6 = 354.
The PCA reduces the dimension of each block representation from 354 to 70.
The descriptor of the whole image has size equal to 70 × 9 = 630. Finally,
Support Vector Machines (SVM) and K-nearest neighbors (k-NN) classifiers were
executed to achieve place recognition.

3.2 Learned descriptors

Transfer learning is a machine learning approach in which a model developed
and then learned for a certain task is reused as the starting point for a model on



Scene Recognition for Indoor Localization of... 5

another setting. It allows to reuse knowledge learned from tasks for which a lot of
labeled data is available to settings, where only little labeled data is in disposal.
The utilization of a pretrained models is now a common approach, particularly
when patterns extracted in the original dataset are useful in the context of
another setting. This is due to the reason that enormous resources are required
to train deep learning models, and/or large and challenging datasets on which
deep learning models can be trained. For example, the Alex-Net required about
2 - 3 weeks to train using GPU and utilized approximately 1.2 million images.
It was trained on a subset of the ImageNet database, which has been utilized
in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012)[22]. The
model can classify images into 1000 object categories. It has learned rich feature
representations for a wide range of images.

The pretrained deep neural networks demonstrated its usefulness in many
classification tasks, including visual place recognition. However, more often in
practice a technique called fine-tuning is employed. In such an approach the
chosen deep model that was trained on a large dataset like the ImageNet is
utilized to continue training it (i.e. running back-propagation) on the smaller
dataset we have. The networks trained on a large and diverse datasets like the
ImageNet capture well universal features like curves and edges in their early
layers, that are useful in most of the classification tasks. Another fine-tuning
technique, which can be useful if the training dataset is really small, consists in
taking the output of the intermediate layer prior to the fully connected layers
as the features (bottleneck features) and then learning a linear classifier (e.g.
SVM) on top of it. The reason for this is that the SVMs are particularly good
at determining decision boundaries on small amounts of data.

The VGG-F network is an eight layer deep convolutional neural network
(DCNN), see Fig. 1, which has been originally designed and trained for image
classification. Its architecture is similar to the one used by Krizhevsky et al.
[10]. The input image size is 224 × 224 × 3. Fast processing is ensured by the
four pixel stride in the first convolutional layer. The network has been trained
on ILSVRC data using gradient descent with momentum. The hyper-parameters
are the same as used by Krizhevsky. Data augmentation in the form of horizontal
flips, random crops, and RGB color jittering has been applied in the learning
process.

Fig. 1: Architecture of VGG-F.
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The deep features can be extracted after removing the last classification layer
consisting of 1000 neurons. The only image pre-processing is to resize the input
images to the network input size and to subtract the average image, which is
provided together with the network parameters.

4 CNN-based indoor place recognition

We investigated the features extracted by both 6th and 7th layers of VGG-F
network. We compared the accuracies of place recognition using the features ex-
tracted by the layers mentioned above. The classification has been done using a
linear SVM. As it turned out that far better results can be obtained on the basis
of FC-6 features, the FC-6 features were used in evaluations described below.
Afterwards, we removed the last layer from VGG-F and added three new layers
to the layer graph: a fully connected layer, a softmax layer, and a classification
output layer. The fully connected layer has been set to have the same size as
the number of classes in the place recognition dataset. In order to achieve faster
learning in the added layers than in the transferred layers, the learning rate fac-
tors of the fully connected layer have been increased. Such a deep neural network
has been fine-tuned on place recognition datasets investigated in this work. The
learning has been conducted using stochastic gradient descent with momentum
(SGDM) optimizer with initial learning rate set to 0.0001, momentum set to 0.9
and L2 regularization set to 0.0001. The batch size has been set to ten samples.

The images acquired by Nao robot during walking are usually rotated around
the optical axis. In general, for the CNN networks two approaches can be in-
corporated to encode rotation invariance: 1) employing rotations to the feature
maps or alternatively to the input image, or 2) applying rotations to the convolu-
tion filters. The first approach comes down to a common practice of augmenting
the training set with several rotated instances of the training images. Such a
method permits the model to incorporate the rotation invariance [25]. We coped
with the problem of rotated images around the optical axis, as well as scale vari-
ations through augmenting the data by image rotations in range -10,. . . ,10 deg,
and shifting them horizontally and vertically in range -20,. . . ,20 pixels.

5 Experimental results

At the beginning of the experiments we conducted experimental evaluations on
York Univ. Dataset [14]. The dataset has been recorded using a color camera
(Point Grey Bumblebee) mounted on Pioneer and Virtual Me mobile robots in
two different lighting conditions (daylight and night time). On the Pioneer robot
the camera was 88 centimeters above the ground level, whereas on Virtual Me
robot it was mounted 117 centimeters above the floor. The dataset consists of
29 917 images for 11 places, with 100-500 images belonging to each place. All
images have been acquired with a resolution of 640×480 pixels, with the camera
fixed at an upright location. During data recording the robots were manually
driven at the speed of approximately 0.5 meters per second through all the eleven
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places. The images were acquired at the rate of approximately three frames per
second.

As in [14], we determined the accuracies of place recognition in four scenarios:

– Same Robot, Same Lighting Conditions
Pioneer 1 – Pioneer 2 (Day - day or night - night) and Virtual Me 1 - Virtual Me

– Same Robot, Different Lighting Conditions
Pioneer 1 – Pioneer 2 (Day - night or night - day) and Virtual Me 1 - Virtual Me
2 (Day - night or night - day)

– Different Robot, Same Lighting Conditions
Pioneer - Virtual Me (Day - day or night - night) and Virtual Me - Pioneer (Day
- day or night - night)

– Different Robot, Different Lighting Conditions
Pioneer - Virtual Me (Day - night or night - day) and Virtual Me - Pioneer (Day
- night or night - day)

The accuracy of place recognition in each scenario has been determined as the
average of diagonal values in the confusion matrix.

We compared the recognition accuracies of algorithms operating both on
handcrafted features and learned features. At the beginning we evaluated BoW
algorithm operating on SIFT features. The classification has been performed
using a k-NN as well as a linear SVM. The next algorithm was based on HOUP
descriptor and a linear SVM. In the third algorithm the features extracted by a
pretrained VGG-F deep neural network were classified by a linear SVM. Table 1
presents experimental results that were achieved on York Univ. Dataset [14] by
mentioned above algorithms.

Table 1: Place recognition accuracy [%] on York Univ. Dataset [14], [A]BoW using
SIFT with k-NN classifier, [B]BoW using SIFT with SVM classifier, [C]HOUP
with SVM classifier, [D]VGG-F features classified by SVM.

E
x
p
e
r
im

e
n
t

Training
set

Testing
set

Lighting
conditions

Accuracy [%]

BoW+SIFT HOUP VGG-F, FC-6

k-NN[A] SVM[B] SVM[C] SVM[D]

1 Pioneer Pioneer same 68 75 98 99

2 Virtual Me Virtual Me same 66 77 98 98

3 Pioneer Pioneer different 60 72 93 94

4 Virtual Me Virtual Me different 62 73 93 92

5 Pioneer Virtual Me same 58 69 92 92

6 Virtual Me Pioneer same 58 68 92 95

7 Pioneer Virtual Me different 55 64 82 86

8 Virtual Me Pioneer different 58 66 85 89

As can be seen in Table 1, the algorithm based on VGG-F and the linear
SVM achieves far better accuracies in comparison to results obtained in [14].
As we can observe, in experiment #7 and #8 the accuracy of VGG-F+SVM
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algorithm is relatively low compared to other experiments (only 86% and 89%),
i.e. when using different camera and different lighting condition for training and
testing subset of images.

In the next stage of the experiments the evaluations were performed on our
dataset for visual recognition of the place, which has been recorded with the
Nao humanoid robot. During walking the robot acquired the images from the
onboard camera. The dataset has been recorded in rooms, offices and laboratories
of our department. In each of the sixteen rooms we recorded from 309 to 627 color
images of size 640×480. The total number of images is equal to 8000. The dataset
is available for download at http://pwozniak.kia.prz.edu.pl/ICCVG2018.html.

Table 2 presents experimental results that were achieved by the investigated
algorithms. As we can observe, the SVM classifier operating on SURF features
quantized by BoW achieves the lowest recognition performance. In the discussed
algorithm the dataset was split in proportions 0.6, 0.2 and 0.2 for training,
validation and testing parts, respectively. The C parameter of the SVM classifier
has been determined experimentally in a grid search. As can been seen, the SVM
operating on features extracted by FC-6 layer of the pretrained VGG-F achieves
far better results. The discussed results were achieved in 10-fold cross-validation.
The next row contains results that were achieved using testing data with no
motion blur. The blurred images were removed from the test subset of dataset
manually. We can notice, after suppression of blur noise from the test data the
improvement in the recognition performance is insignificant. The best results
were achieved by the fine-tuned VGG-F. The discussed results were achieved by
the deep neural network that has been trained in four epochs. Having on regard
that considerable part of the images is contaminated by motion blur as well as
bearing in mind that many of them are rotated, we fine-tuned the VGG-F neural
network on the augmented data. As can been seen in the last row of Tab. 2, the
data augmentation does not improve the recognition performance.

Table 2: Place recognition performance on our dataset. [A] SURF, BoW, SVM
classifier, [B] Features extracted by VGG-G, SVM classifier, [C] Features ex-
tracted by VGG-G, SVM classifier, no-blur, [D] VGG-F fine-tuned, [E] VGG-F
fine-tuned, data augmentation.

Accuracy Precision Recall F1-score
[A]BoW, SURF, SVM 0.7307 0.7307 0.7312 0.7310
[B]VGG-F, SVM 0.9513 0.9510 0.9483 0.9488
[C]VGG-F, SVM, no-blur 0.9544 0.9544 0.9549 0.9536
[D]VGG-F fine-tuned 0.9719 0.9712 0.9720 0.9716
[E]VGG-F fine-tuned, aug. 0.9669 0.9657 0.9676 0.9666

The experiments were conducted using scripts prepared in Matlab and Python.
They were performed on a PC computer equipped in i7, 3GHz CPU with 16GB
RAM and NVidia Quadro K2100M with 2GB RAM. On the GPU the classifi-
cation time of single image by fine-tuned VGG-F is 0.0873 s.
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6 Conclusions

In this paper we proposed an algorithm for visual place recognition on images
acquired by a humanoid robot. During robot locomotion the images undergo
rotations as well contamination by the motion blur. We recorded a dataset for
indoor place recognition and made it publicly available. We demonstrated ex-
perimentally that a deep neural network, which has been built on the basis of
the pretrained VGG-F through removing the last layer and then adding a fully
connected layer, softmax layer and the output one achieves the best classification
performance. We demonstrated that the learned model deals well with motion
blur as well as rotations that arise during robot locomotion.
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(NCN) under a research grant 2014/15/B/ST6/02808.
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