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Abstract. This paper presents a learning-based algorithm for object
tracking. During on-line learning we employ most informative and hard
to classify examples, features maximizing individually the mutual infor-
mation, stable object features within all past observations and features
from the initial object template. The object undergoing tracking is dis-
criminated by a boosted classifier built on regression stumps. We seek
mode in the confidence map calculated by the strong classifier to sample
new features. In a supplementing tracker based upon a particle filter we
use a recursively updated mixture appearance model, which depicts sta-
ble structures in images seen so far, initial object appearance as well as
two-frame variations. The update of slowly varying component is done
using only pixels that are classified by the strong classifier as belonging
to foreground. The estimates calculated by particle filter allow us to sam-
ple supplementary features for learning of the classifier. The performance
of the algorithm is demonstrated on freely available test sequences. The
resulting algorithm runs in real-time.

1 Introduction

Object tracking is a central theme in computer vision and has received consider-
able attention in the past two decades. The goal of tracking is to automatically
find the same object in adjacent frames in a video sequence. To achieve a bet-
ter quality of tracking many algorithms consider environment and utilize pixels
from background [1][2][3]. To cope with changes of observable appearance many
of them incrementally accommodate models to the changes of object or environ-
ment [4][5]. In such systems, Gaussian mixture models can be used to represent
both foreground [6] and background [7].

Detecting and tracking of objects using their appearances play an important
role in many applications such as vision based surveillance and human computer
interaction [5][8][6]. A learning algorithm can improve the robustness if the ob-
served appearance of a tracked object undergoes complex changes. A learning
takes place in recently proposed algorithms built on classification methods such
as support vector machines [1] or AdaBoost [2][3].

Obtaining a collection consisting of both positive and negative examples for
on-line learning is complex task. The algorithm [9] starts with a small collec-
tion of manually labeled data and then generates supplementary examples by
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applying co-training of two classifiers. To avoid hand labeling the use of motion
detection in order to obtain the initial training set was proposed in [10].

In our approach, Gentle AdaBoost built on regression stumps combines sev-
eral classifiers into an accurate one. An algorithm constructs on the fly a train-
ing set consisting of promising object and background features. It consists of
representative object features from the initial template, the most stable object
features seen so far, uniformly subsampled background features without repeti-
tion and features maximizing individually the mutual information. Such family
of features can be poorly informative and therefore the set also consists of hard
to classify examples that provide most new information during object tracking.

An on-line method using boosted features and adaptive appearance models
is key contribution of this paper to learning based object tracking. This work’s
novelty consists in managing several kinds of features, namely describing stable
object structures, characterizing two-frame variations and characteristic samples
from the initial template to support a data-driven learning of weak classifiers
within computationally feasible procedure based on Gentle AdaBoost. We also
demonstrate how adaptive appearance models can be integrated with boosted
features to improve the performance of tracking. The resulting algorithm con-
siders the temporal coherence between images of object undergoing tracking.

The rest of the paper is organized as follows. In the next Section below
we refer to learning in object tracking. In Section 3 we discus how regression
stumps are utilized in Gentle AdaBoost. The components and details of learning
based object tracking using boosted features are discussed in Section 4. The
usage of adaptive appearance models in a particle filter is explained in Section
5. We demonstrate also how adaptive appearance models can be integrated with
boosted features to improve the performance of tracking. We report and discuss
experimental results in Section 6. We draw conclusions in the last Section.

2 Learning in object tracking

When learned off-line classifiers are employed the tracking can be realized trough
detection of the target. Okuma et al. [11] propose an approach that uses a
boosted detector operating on color distributions to construct a proposal dis-
tribution for the particle filter. Considering tracking as binary classification,
Avidan [1] proposes a support vector based tracker built on the polynomial ker-
nel. In such tracker with learning capabilities the score of support vector machine
is maximized for every frame. A system built on the relevance vector machine
which employs temporal fusion is described in work of Williams et al. [12].

In work [2] AdaBoost is used in algorithm termed as ensemble tracking to
learn the classifier. The appearance model is updated by adding recent features.
An approach presented in [13] employs image pairs and temporal dependencies
into a learned similarity function instead of learning a classifier to differentiate
the object from the background.

Some work has been done in the past to enable automatic labeling of training
data. Robust automatic labeling is a highly desirable property in any learning
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based tracking system. Levin et al. [9] propose the so called co-training approach
which consists in starting with a small training set and increasing it by co-
training of two classifiers, operating on different features. Nair and Clark [10]
use the motion detection for constructing the initial training set and then the
Winnow as a final classifier.

Ensemble methods such as boosting and bagging have demonstrated signifi-
cant advantages in off-line settings. However little work has been done in explor-
ing these methods in on-line settings. In [14], Oza and Russel propose on-line
version of boosting which simulates the bootstrap process through updating each
base model using multiple copies of each new example. The algorithm that is pro-
posed in work [2] maintains a list of classifiers that are trained over time. During
tracking it removes old classifiers, trains new classifiers using a confidence map
generated by the strong classifier and then adds them to the ensemble. However,
through removing the oldest classifiers this algorithm omits important informa-
tion contained in the initial object template [15] as well it is not able to detect
features being stable during tracking. The importance of such stable features
during tracking has been highlighted by several authors, among others by [6].
In an algorithm described in [3] the selectors are updated when a new training
sample is available. This operation needs considerable computations since the
strong classifier contains 50 selectors and each can choose from 250 selectors.
This in turn can even lead to slower boosting algorithm in comparison with an
off-line algorithm applied to learn on-line. The average number of calculations
per feature in this algorithm can be far larger than in off-line AdaBoost.

3 Boosting

Boosting originates from a machine learning model known as Probably Approx-
imately Correct (PAC). Boosting algorithms combine simple decision rules into
more complex ones. They aim at finding an accurate classifier consisting of many
base classifiers, which are only moderately accurate. The boosting algorithm ex-
ecutes the base learning algorithm multiple times to achieve the desired clas-
sification performance. During iterations the weights are updated dynamically
according to the errors in previous round of learning. The base learning algorithm
takes into account a weight coupled with each training instance and attempts
to find a learned hypothesis that minimizes the weighted classification error.
The learning algorithm generates classification rules that are combined by the
boosting algorithm into the final classification rule. In the first step a boosting
algorithm constructs an initial distribution of weights over the training set. The
weights are greater than zero, sum to one and constitute a distribution over the
training set. Using the weighted training set the algorithm searches for a classifi-
cation rule consisting in a selecting a base classifier that gives the least weighted
error. The weights of the data that are misclassified by the selected base clas-
sifier are increased. This leads to selection of classifier that performs better on
examples misclassified previously. Each weak classifier predicts the label of the
data. In consequence, AdaBoost [16], which is the adaptive version of boosting
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minimizes the following exponential loss function:

J(F ) = E(e−yF (x)), (1)

where E denotes the expectation and the strong classifier F (x) is a linear com-
bination of T weak classifiers fi(x):

F (x) =
T∑

i=1

αifi(x), (2)

with parameters αi to balance the evidence from each feature. The set of decision
rules {fi}Ti=1 and combining coefficients {αi}Ti=1 are learned.

3.1 Gentle AdaBoost

We employ in our tracking algorithm a version of boosting called Gentle AdaBoost
[17], because it requires fewer iterations to achieve similar classification perfor-
mance in comparison with other methods. Given a set of training instances X
and a corresponding weight distribution D the boosting algorithm calculates a
weak hypothesis f : X 7→ R, where the sign of f determines the predicted label
y of the instance x ∈ X . The magnitude |f(x)| expresses the confidence of the
prediction. Suppose we have a current ensemble hypothesis F (x) =

∑T
t=1 ft(x)

and seek better one F + f by minimizing the following criterion:

J(F + f) = E[e−y[F (x)+f(x)]], (3)

where E denotes the expectation. Gentle AdaBoost minimizes this equation by
employing adaptive Newton steps [17], which corresponds to minimizing at each
step a weighted squared error. At each step m the current ensemble hypothesis
F is updated as follows F (x)← F (x) + fm, where fm is selected to minimize a
second order Taylor approximation of the cost function. Replacing the weighted
conditional expectation E[y |x ] in (3) with an empirical expectation over the
training data leads to minimizing the weighted squared error:

J =
L∑

i=1

wi(yi − fm(xi))2, (4)

where wi = e−yiF (xi) and the summation is over the training exemplars.

3.2 Regression stumps based weak learner

As weak learners we employ regression stumps of the following form:

fm(x) = aδ(x(k) > θ) + b (5)

where x(k) denotes the k-th coordinate of K dimensional feature vector x, δ is
the Kronecker delta function, θ is a threshold, and a, b are regression parameters.
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Such binary regression stumps were employed in [18][19]. To minimize function
(4) we should determine in each iteration m four parameters of the regression
stump (5), namely a, b, θ and k. First, we calculate parameters a and b with
respect to each possible threshold θ

(k)
i = x

(k)
i , i.e. for i = 1, 2, ..., L and k =

1, 2, ...,K:

b
(k)
i =

∑L
j=1 wjyjδ(x

(k)
j ≤ x(k)

i )
∑L
j=1 wjδ(x

(k)
j ≤ x(k)

i )
a

(k)
i =

∑L
j=1 wjyjδ(x

(k)
j > x

(k)
i )

∑L
j=1 wjδ(x

(k)
j > x

(k)
i )

− b(k)
i . (6)

Then, we determine error according to the following formula:

e
(k)
i =

L∑

j=1

wj(yj − a(k)
i δ(x(k)

j > x
(k)
i ) + b

(k)
i )2. (7)

Next, for each dimension k we seek for thresholds θ(k) = x
(k)

ǐ(k) , which minimize
the error function given by (7). This can be expressed in the following manner:

ǐ(k) = arg max
i=1,2,...,L

{e(k)
i }. (8)

In the final step of selecting the best regression stump we determine the coordi-
nate ǩ for which the error function (7) takes minimal value:

ǩ = arg max
k=1,2,...,K

{e(k)

ǐ(k)}. (9)

To speed up the selecting θ the computations were conducted using K sorted
vectors x. In order to decrease the number of summations during fitting the
regression stumps we utilized the cumulative sums of wj and wjyj .

4 Learning-based object tracking using boosted features

The most informative and hard to classify examples are in vicinity of the decision
boundary between background and target. In our approach, an on-line AdaBoost
focuses on such hard examples that provide more new information than easy
ones. Such examples cause the base learner to concentrate on unseen examples.
The updated on-line training set consists of also most stable object features
seen so far, uniformly subsampled background features without repetition and
features maximizing individually the mutual information. In this context, the
major difference of our work from relevant research is that weak classifiers are not
trained from the same data sets, which are acquired within rectangles covering
the object and the surrounding background, but only a small portion of the
newly available training sets. It is major difference between our learning based
tracking algorithm and algorithms relying on linear adaptation or learning, where
the update of the object model is done via all newly extracted pixels.

An on-line learning algorithm does not need all the training data processed so
far to calculate a current hypothesis, rather it process data as it become available
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without the need for storage, through reusing previously learned weak classifier
to learn new classifier. In our approach we initially train the classifier on pixels
that were labeled in advance and then apply the classifier in each frame to extract
the object of interest. An unsupervised learning is done using labeled pixels by
the classifier, pixels depicting initial object appearance as well as stable object
structures within all past observations. The object and background pixels are
extracted using center-surround approach in which an internal rectangle covers
the object, while a larger surrounding rectangle represents the background. The
weak learner that was described in subsection 3.2 is used in on-line training.

Before starting of the tracking the foreground and background pixels are
extracted using center-surround approach. The initial object template is con-
structed on the basis of the internal rectangle covering the object of interest.
A number of representative pixels that are sampled from the object of interest
are then utilized during tracking. Such pixel collection holds information about
initial object appearance and prevents from model drift. A strong classifier is
used to label the pixels as either belonging to the object of interest or back-
ground. On the basis of the distribution indicated by weights we sample from
the current frame a set of foreground pixels that are hardest to classify. Using a
histogram holding information about colors of all pixels seen so far in the object
rectangle we extract in each frame a set of the most stable pixels and add it to
the set representing the current frame. Through such stable pixels the algorithm
considers the temporal coherence between images of object undergoing tracking.
The background is represented by pixels laying in close to decision boundary as
well as collection of uniformly sampled pixels both from the current and previous
frame. In order to avoid the weakness of the random sampling we additionally
pick features maximizing individually the mutual information to forecast the
class. Given Ns samples with the M binary features X1, ..., XM , and the target
classification variable Y , our goal is to select G features Xv(1), ..., Xv(G), which
accurately characterize Y . The selected features individually maximize the mu-
tual information I(Y ;Xv(l)) = H(Y ) − H(Y |Xv(l)), where H() is the entropy.
During tracking a simple procedure is responsible for removing the pixels be-
longing to previous frame and inserting the pixels from the new frame as well as
maintaining proportions between the mentioned above ingredients of the train-
ing vector at possibly the same level. The length of the list containing training
pixels is constant.

During boosting iterations the weights that are employed by weak learner
are calculated as follows:

w ← w exp(−y fm) (10)

The total score produced by AdaBoost is normalized through soft identity func-
tion to range between -1 and 1 in the following manner:

s = tanh(F (x)) = tanh(
T∑

m=1

fm(x)) (11)

Such a normalized score can be used as a measure of prediction confidence [20].
The face location during tracking is computed by CamShift [21] acting on the
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likelihood images. Since our tracking algorithm should spend small number of
CPU cycles, we use similar color cues to those employed in original implemen-
tation of CamShift, i.e. RG or HS color components.

5 Adaptive models for particle filtering

Low-order parametric models of the image motion of pixels laying within a tem-
plate can be utilized to predict the movement in the image plane [22]. This means
that by comparing the gray level values of the corresponding pixels within re-
gion undergoing tracking, it is possible to obtain the transformation (giving
shear, dilation and rotation) and translation of the template in the current im-
age [23]. Therefore, such models allow us to establish temporal correspondences
of the target region. They make region-based tracking an effective complement
to tracking that is based on classifier distinguishing between foreground and
background pixels. In a particle filter the usage of change in transformation and
translation ∆ωt+1 arising from changes in image intensities within the template
can lead to reduction of the extent of noise νt+1 in the motion model. It can
take the form [6]: ωt+1 = ω̂t +∆ωt+1 + νt+1.

5.1 Adaptive velocity model

Let Ix,t denote the brightness value at the location (x1, x2) in an image I that
was acquired in time t. Let R be a set of J image locations {x(j) | j = 1, 2, ..., J}
defining a template. Yt(R) = {I(j)

x,t | j = 1, 2, ..., J} is a vector of the brightness
values at locations x(j) in the template. We assume that the transformations
of the template can be modeled by a parametric motion model g(x;ωt), where
x denotes an image location and ωt = {ω(1)

t , ω
(2)
t , ..., ω

(l)
t } denotes a set of l

parameters. The image variations of planar objects that undergo orthographic
projection can be described by a six-parameter affine motion models [22]:

g(x;ω) =
[
a d
c e

]
x+

[
u1

u2

]
= Ax+ u, (12)

where ω = (a, c, d, e, u1, u2)T . With these assumptions, the tracking of the object
in time t can be achieved by computing ωt+1 such that Yt+1(g(R;ωt+1)) = Ŷt(R),
where the template Ŷt(R) is in pose determined by the estimated state.

Given a set S = {ω(n)
t , π

(n)
t ) | n = 1, ..., N} of weighted particles, which

approximate the posterior distribution p(ωt | Y1:t), the maximum aposteriori es-
timate (MAP) of the state is calculated according to the following formula:

ω̂t = arg max
ωt

p (ωt | Y1:t) ≈ arg max
ωt

π
(n)
t (13)

The motion parameters in time t+ 1 take values according to:

ωt+1 = ω̂t +At+1[Ŷt(R)− Yt+1(g(R; ω̂t))]. (14)
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This equation can be expressed as follows: ∆ωt+1 = At+1∆yt+1. Given N mea-
surements we can estimate matrix At+1 from matrices consisting of adjoined
vectors ∆ωt+1 and ∆yt+1 [23]:

∆Mt = [ω̂(1)
t − ω(1)

t , ..., ω̂
(N)
t − ω(N)

t ] (15)

∆Yt = [Ŷ (1)
t − Y (1)

t , ..., Ŷ
(N)
t − Y (N)

t ]. (16)

Using the least squares (LS) method we can find the solution for At+1 [23]:

At+1 = (∆Mt∆YT
t )(∆Yt∆YT

t )−1. (17)

Singular value decomposition of ∆Yt yields: ∆Yt = UWV T . Taking q largest
diagonal elements ofW the solution forAt+1 is as follows:At+1 = ∆MtVqW

−1
q UTq .

The value of q depends on the number of diagonal elements of W , which are be-
low a predefined threshold value.

In the particle filter [24] we utilize the following motion model:

ωt+1 = ω̂t +∆ωt+1 + νt+1, (18)

where νt+1 is zero mean Gaussian i.i.d. noise, independent of state and with
covariance matrix Q which specifies the extent of noise.

When individual measurements carry more or less weight, the individual rows
of ∆ω = A∆y can be multiplied by a diagonal matrix with weighting factors.
If the diagonal matrix is the identity matrix we obtain the original solution. In
our approach such row weighting is used to emphasize or de-emphasize image
patches according to number of background pixels they contain.

5.2 Appearance modeling using adaptive models

Our intensity-based appearance model consists of three components, namely, the
W -component expressing the two-frame variations, the S-component character-
izing the stable structure within all previous observations and F component
representing a fixed initial template. The model At = {Wt, St, Ft} represents
thus the appearances existing in all observations up to time t−1. It is a mixture
of Gaussians [5] with centers {µi,t | i = w, s, f}, their corresponding variances
{σ2

i,t | i = w, s, f} and mixing probabilities {mi,t | i = w, s, f}.
The update of the current appearance model At to At+1 is done using the

Expectation Maximization (EM) algorithm. For a template Ŷ (R, t) correspond-
ing to the estimated state we evaluate the posterior contribution probabilities
as follows:

o
(j)
i,t =

m
(j)
i,t√

2πσ2
i,t

exp

[
− Î

(j)
x,t − µ(j)

i,t

2σ2
i,t

]
(19)

where i = w, s, f and j = 1, 2, ..., J . If the considered pixel belongs to back-
ground, the posterior contribution probabilities are calculated using Î(j)

x,1:

o
(j)
i,t =

m
(j)
i,t√

2πσ2
i,t

exp

[
− Î

(j)
x,1 − µ(j)

i,t

2σ2
i,t

]
. (20)
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This prevents the slowly varying component from updating by background pix-
els. The posterior contribution probabilities (with

∑
i o

(j)
i,t = 1) are utilized in

updating the mixing probabilities in the following manner:

m
(j)
i,t+1 = γo

(j)
i,t + (1− γ)m(j)

i,t | i = w, s, f, (21)

where γ is accommodation factor. Then, the first and the second-moment images
are determined as follows:

M
(j)
1,t+1 = (1− γ)M (j)

1,t + γo
(j)
s,t Î

(j)
x,t

M
(j)
2,t+1 = (1− γ)M (j)

2,t + γo
(j)
s,t (Î

(j)
x,t )2.

(22)

In the last step the mixture centers and the variances are calculated as follows:

µ
(j)
s,t+1 =

M
(j)
1,t+1

m
(j)
s,t+1

, σ
(j)
s,t+1 =

√
M

(j)
2,t+1

m
(j)
s,t+1

− (µ(j)
s,t+1)2

µ
(j)
w,t+1 = Î

(j)
x,t , σ

(j)
w,t+1 = σ

(j)
w,1

µ
(j)
f,t+1 = µ

(j)
t,1 , σ

(j)
f,t+1 = σ

(j)
f,1 .

(23)

When the considered pixel belongs to background, the mixture center in the
component expressing two-frame variations is updated according to:

µ
(j)
w,t+1 = Î

(j)
x,l , (24)

where index l refers to last non-background pixel.
In order to initialize the model A1 the initial moment images are set using

the following formulas: M1,1 = ms,1I(R, t0) and M2,1 = ms,1(σ2
s,1 + I(R, t0)2).

The observation likelihood is calculated according to the following equation:

p(Yt |ωt) =
J∏

j=1

∑

i=w,s,f

m
(j)
i,t√

2πσ2
i,t

exp

[
−I

(j)
x,t − µ(j)

i,t

2σ2
i,t

]
(25)

Underlying AdaBoost-based tracking algorithms do not take into account of
temporal information (except [13]) as they rely on learned binary classifiers that
discriminate the target and the background. In our algorithm the data-driven
binary classifier learns on-line using features from the initial object template, sta-
ble object features within all past observations, features maximizing individually
the mutual information, most informative and hard to classify examples, and the
features that are sampled from the object rectangle estimated by particle filter.
In the particle filter we use a recursively updated mixture appearance model,
which depicts stable structures in images seen so far, initial object appearance
as well as two-frame variations. The update of slowly varying component is done
using only pixels that are classified by the strong classifier as belonging to fore-
ground. In pairwise comparison of object images we employ only non-background
pixels and in case of background we use the last foreground pixels. Our proba-
bilistic models differ from those proposed in [6] in that we adapt models using
information about background. The outcome of the strong classifier is used to
construct a Gaussian proposal distribution, which guides particles towards most
likely locations of the object of interest.
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6 Experiments

The tests were done on a sequence1 of images 288 high and 384 pixels wide. In this
sequence a tracked pedestrian crosses zones in varying illumination conditions.
In tracking experiments with this sequence and a particle filter built only on
adaptive appearance models and configured to run with 100 particles, some
pixels of the object rectangle are updated by background pixels (for example in
frames #1000 and #1200). Despite this undesirable effect the object model can
adapt to pedestrian’s side view. However, the update of the model by background
pixels leads to considerable jitter of ROI and in consequence the track is lost in
frame #1226.

In a comparison of the results generated by our on-line learning-based al-
gorithm and an adaptive algorithm, where all pixels laying inside the object
rectangle are utilized in an linear adaptation of the model, we observed that our
algorithm performs significantly better. In particular, we compared the proba-
bility images, which illustrate the potential of algorithms in extraction of the
target. The confidence maps generated by the learning-based algorithm picks
better the person’s shape over time. In frames that were generated by learning-
based algorithm the jitter of rectangular ROI is smaller and it is located near
the true location of the target in most frames. Despite similar distribution of
background color with the foreground color, the number of background pixels
with high confidence in the rectangle surrounding the object is relatively small.
The mentioned effect has been achieved using only ten rounds of boosting in
on-line learning.

Figure 1 shows the behavior of learning-based tracker using boosted features
and appearance-adaptive models. It has been initialized and configured in the
same manner as the algorithm based on adaptive appearance models. Because
the appearance models are updated using only object pixels, the algorithm per-
forms far better than algorithm built on only adaptive appearance models, espe-
cially in case of rotations of the pedestrian. The estimates calculated by particle
filter were employed to sample additional features for learning of the classifier.
Generally speaking, the 2-frame affine tracker can be expected to posses prob-
lems with targets that are nor deforming in a roughly affine manner, as well as
with small objects. In such a situation the learning based algorithm can support
the tracking. The algorithms have different failure modes and complement each
other during tracking.

Our algorithm is about 2.2 times slower than the algorithm built on adaptive
appearance models. It was implemented in C/C++ and runs with 320×240
images at about 10 fps on 2.4 GHz Pentium IV. It can be easily extended to
run with other features, for example integral images or orientation histograms. A
modification consisting in a replace of the CamShift by a particle filter operating
on the confidence maps is also straightforward.

1 Downloaded from site at: http://groups.inf.ed.ac.uk/vision/CAVIAR/
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#700 #1000 #1140

#1200 #1263 #1275

Fig. 1. Pedestrian tracking using learning and adaptive appearance models
.

7 Conclusions

We have presented an approach for on-line learning during tracking. The ma-
jor difference of our work from relevant research is that weak classifiers are not
trained from the same data but only a portion of newly available pixels. Dur-
ing learning we employ stable object features seen so far, features maximizing
individually the mutual information, examples that are in vicinity of the deci-
sion boundary between background and target, and uniformly subsampled back-
ground features. To avoid drift the on-line training is conducted using pixels of
the object template. In a supplementing tracker based on a particle filter we use
a recursively updated mixture appearance model, which depicts stable structures
in images seen so far, initial object appearance as well as two-frame variations.
We accommodate the slowly varying component using only pixels that are clas-
sified by the strong classifier as belonging to object. The estimates calculated
by particle filter are employed to sample learning features. The two algorithms
have different failure modes and complement each other during tracking.
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