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Summary. This paper describes a fast and completely automatic algorithm for
human face tracking. The tracked face is represented by a weighted histogram. The
current histogram is compared to histograms at the particles’ positions. The weight
of each particle is determined on the basis of Bhattacharyya distance and intensity
gradient along the ellipse’s boundary. The incorporation of information about the
distance between the camera and the face undergoing tracking results in robust
tracking even in presence of skin colored regions in the background. The initialization
of the tracker is realized by means of face detection. The detection is carried out
using Haar-like features, followed by the verification of face distance to the camera
and face region size heuristics.

1 Introduction

Fulfilling the idea of machines that interact face to face with people forces us
to think in new ways about computers that could be used in daily life. Within
the past decade, significant advances in machine learning and perception open
up the possibility of understanding human actions. To obtain a high level inter-
pretation of human actions one must first detect humans. There are a variety
of approaches to human detection, mainly focusing on face detection [18].

The visual tracking of objects of interests has become an elementary task
in many applications, including surveillance, human-machine interfaces, smart
environments, and many more. However, the majority of available algorithms
assume that the camera is mounted at a fixed location. Most existing vision-
based tracking algorithms give correct estimates of the state in a short span of
time and often fail if there is a significant inter-frame change in object appear-
ance. These methods generally fail to precisely track regions that share similar
statistics with background regions. To improve the reliability of tracking in
such circumstances we integrated in probabilistic manner the edge strength
along the elliptical head boundary and color within the observation model of
the particle filter. Particle filters provide a means to track the state of an ob-
ject even if the dynamics and observations are non-linear/non-Gaussian [6][7].
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The incorporation of information about the distance between the camera and
the face undergoing tracking results in robust tracking on the basis of images
acquired from a moving camera even in presence of skin colored regions in the
background. In order to initialize the tracker, or reinitialize the system if the
tracking fails, we adopt the fast and efficient face detecting method of Viola
and Jones [17]. The face detector finds the location and size of each region
containing the frontal face in an input image. Next, using the face location,
the eigenfaces algorithm [16] is utilized to identify the robot user.

In tracking techniques [1][2][4], the current frame is searched for a region
whose colors content best matches a reference color model. The searching
starts from the final location in the previous frame and proceeds iteratively to
find the minimum distance to the reference color histogram. Global color ref-
erence models and Bhattacharyya coefficient as a similarity measure between
the color distribution of the model and target candidates have been used in
a particle filter-based tracker [10]. A histogram representation of the region
of interest has been extracted in a rectangular window. In work [3] an ellipse
is used to approximate the head outline during 2D tracking on the basis of
a particle filter. Darrell, at al. [5] combine stereo and color via an intensity
pattern classification method to track people. The CMU face detector [12] has
been used to distinguish the frontal face from other body parts. Over the years
various strategies for face detection have been proposed in the literature [18].
The Viola-Jones system [17] was the first for real-time frontal face detection.

The remainder of the paper is organized as follows. In the next section
we briefly outline particle filtering. In section 3 we present all ingredients of
our tracker and demonstrate how color and contour cues can be integrated to
improve the performance of the tracker. Then we describe the face detection
algorithm. Section 4 reports results which were obtained in experiments with
a moving camera. Finally, some conclusions follow in the last section.

2 Particle Filtering for Visual Tracking

For nonlinear models, multi-modal, non-Gaussian or any combination of these
models the particle filter provides a Monte Carlo solution to the recursive fil-
tering equation p(xt | z1:t) ∝ p(zt | xt)

∫
p(xt | xt−1)p(xt−1 | z1:t−1)dxt−1,

where xt and zt denote the hidden state of the object of interest and the
observation vector at discrete time t, respectively, whereas z1:t = {z1...zt}
denotes all the observations up to current time step. With this recursion we
can calculate the posterior, given a dynamic model p(xt | xt−1) describing
the state propagation and an observation model p(zt |xt) describing the like-
lihood that a state xt causes the measurement zt. Starting with a weighted
particle set S =

{
(x(n)
t−1, π

(n)
t−1) | n = 1...N

}
approximately distributed accord-

ing to p(xt−1 | z1:t−1) the particle filter operates through predicting new
particles from a proposal distribution. To give a new particle representation
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S =
{

(x(n)
t , π

(n)
t ) | n = 1...N

}
of the posterior density p(xt | z1:t) the weights

of particles are set to π(n)
t ∝ π(n)

t−1p(zt |x(n)
t )p(x(n)

t |x(n)
t−1)/q(x(n)

t |x(n)
t−1, zt).

From time to time the particles should be resampled according to their
weights to avoid degeneracy. The resampling selects with higher probability
particles that have a high likelihood associated with them, while preserving
the asymptotic approximation of the particle-based posterior representation.
Without resampling the variance of the weight increases stochastically over
time [6]. When the proposal distribution is chosen as the distribution condi-
tioning the state at the previous time step, the importance function reduces to
q(x(n)

t | x(n)
t−1, zt) = p(x(n)

t | x(n)
t−1) and in consequence the weighting equation

takes the form π
(n)
t ∝ p(zt | x(n)

t ). This simplification leads to a variant of a
well-known particle filter in computer vision, Condensation [7].

3 State Space and Observation Model

The observation model integrates two different visual cues. We construct a
likelihood model for each of the cues. The motion model will be presented as
the first topic in this section. The observation model in which the multiple cue
integration takes place will be discussed in detail later. The model adaptation
over time will be presented afterwards. An outline of face detection algorithm
ends this section.

3.1 State Space and Dynamics

The outline of the head is modeled in the 2D-image domain as a vertical ellipse
that is allowed to translate and scale subject to a dynamical model. The object
state is given by {x, ẋ, y, ẏ, sy, ṡy}, where {x, y} denotes the location of the
ellipse center in the image, ẋ and ẏ are the velocities of the center, sy is the
length of the minor axis of the ellipse and ṡy is the rate at which sy varies.

Our objective is to track a face in a sequence of images acquired from a
moving camera. To achieve robustness to large variations in the object pose,
illumination, motion, etc. we use the first-order auto-regressive dynamic model
xt = Axt−1 +wt, where A is a deterministic component describing a constant
velocity movement and wt denotes a multivariate Gaussian random variable.

3.2 Shape and Color Cues

As demonstrated in [1][3], the contour cues can be very useful to represent the
appearance of the tracked objects with distinctive silhouette when a model
of the shape can be learned off-line and then adapted over time. The shape
of the head is one of the most easily recognizable human parts and can be
quite well approximated by an ellipse. Therefore a parametric model of the
ellipse with a fixed aspect ratio equal to 1.2 is utilized to verify the oval shape
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of head candidates. During tracking the oval shape of each head candidate is
verified using the sum of intensity gradients along the ellipse’s boundary.

When the contour information is poor or is temporary unavailable color
information can be very useful alternative to extract the tracked object. Color
information can be particularly helpful to support detection of faces in image
sequences because color as a cue is computationally inexpensive [14], robust to-
wards changes in orientation and scaling of an object being in movement. The
discriminative ability of color is especially worth to emphasize if a considered
object is partially occluded because edge-based methods can be ineffective.

A color histogram including spatial information can be extracted on the
basis of a 2-dimensional kernel centered on the target [4]. The kernel weights
the color of the pixel according to its distance from the kernel center. In order
to assign smaller weights to the color of pixels that are further away from
the center of the kernel a nonnegative and monotonic decreasing function
k : [0,∞)→ R can be utilized [4]. The probability of particular histogram bin
u at location x = {x, y} is determined by the following formula:

d
(u)
x = Cr

L∑

j=1

k

(∥∥∥∥
x− xj
r

∥∥∥∥
2
)
δ [h(xj)− u] (1)

where xj are pixel locations, L is the number of pixels in the considered ker-
nel, constant r is the radius of the kernel, δ is the Kronecker delta function,
and the function h : R2 → {1...K} associates the bin number. The normal-
ization factor Cr ensures that

∑K
u=1 d

(u)
x = 1. This normalization factor can

be precalculated [4] for the utilized kernel and assumed values of r. The 2-
dimensional kernels have been prepared off-line and then stored in lookup
tables for the future use. The color representation of the target has been ex-
tracted by quantizing the ellipse’s interior colors into K bins and extracting
the weighted histogram. To make the histogram representation of the tracked
head less sensitive to lighting conditions the V component obtained the 4-bin
representation while the remaining components of the HSV color space have
been represented by 8 bins [9].

To compare the histogram Q representing the tracked face to a histogram I
obtained from the particle configuration we utilized the metric

√
1− ρ(I,Q),

which is derived from Bhattacharyya coefficient ρ(I,Q) =
∑K
u=1

√
I(u)Q(u).

The work [4] demonstrated that the utilized metric is invariant to the scale of
the target and therefore is superior to other measures such as histogram in-
tersection [14] or Kullback divergence. Using the Bhattacharyya coefficient we
defined the color observation model as p(zC |x) = (

√
2πσ)−1e−

1−ρ
2σ2 . Thanks to

such weighting we favor head candidates whose color distributions are similar
to the distribution of the tracked head. The second ingredient of the obser-
vation model reflecting the edge strength along the elliptical head boundary

has been weighted in a similar manner p(zG | x) = (
√

2πσ)−1e−
1−φg
2σ2 , where

φg denotes the normalized gradient along the ellipse’s boundary.
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3.3 Probabilistic Integration of Cues

The aim of probabilistic multi-cue integration is to enhance visual cues that
are more reliable in the current context and to suppress less reliable cues.
The correlation between location, edge and color of an object even if exist is
rather weak. Assuming that the measurements are conditionally independent
given the state we obtain the equation p(zt | xt) = p(zGt | xt) · p(zCt | xt)
which allows us to accomplish the probabilistic integration of cues. To achieve
this we calculate at each time t the L2 norm based distances D(j)

t , between
the individual cue’s centroids and the centroid obtained by integrating the
likelihood from utilized cues [15]. The reliability factors of the cues α(j)

t are
then calculated on the basis of the following leaking integrator ξα̇(j)

t = η
(j)
t −

α
(j)
t , where ξ denotes a factor that determines the adaptation rate and η(i)

t =
0.5∗(tanh(−aD(j)

t )+b). In the experiments we set a = 0.3 and b = 3. Using the
reliability factors the observation likelihood has been determined as follows:

p(zt |xt) = [p(zGt |xt)]α
(1)
t · [p(zCt |xt)]α

(2)
t 0 ≤ α(j)

t ≤ 1 (2)

3.4 Adaptation of the Color Model

The largest variations in object appearance occur when the object is moving.
Varying illumination conditions can influence the distribution of colors in an
image sequence. If the illumination is static but non-uniform, movement of the
object can cause the captured color to change alike. Therefore, a tracker that
uses a static color model is certain to fail in unconstrained imaging conditions.
To deal with varying illumination conditions the histogram representing the
tracked head has been updated over time. This makes possible to track not
only a face profile which has been shot during initialization of the tracker but
in addition different profiles of the face as well as the head can be tracked.
Using only pixels from the ellipse’s interior, a new color histogram is com-
puted and combined with the previous model in the following manner Q(u)

t =
(1− γ)Q(u)

t−1 + γI
(u)
t , where γ is an accommodation rate, It denotes the his-

togram of the interior of the ellipse calculated from the estimated state, Q(u)
t−1

is the histogram of the target from the previous frame, whereas u = 1...K.

3.5 Depth Cue

The length of the minor axis of the considered ellipse has been determined on
the basis of depth information. The length has been maintained by performing
a local search to maximize the goodness of the observation match. Taking into
account the length of the minor axis resulting from the depth information we
considered smaller and larger projection scale of the ellipse about two pixels.
Thanks to verification of face distance to the camera and face region size
heuristics it is possible to discard many false positives that are generated
through the face detection module.
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3.6 Supporting the tracking through face detection

The face detection algorithm can be utilized to form a proposal distribution
for the particle filter in order to direct the particles towards most probable
locations of the objects of interest. The employed face finder is based on object
detection algorithm described in work [17]. Using a training set of positive
and negative images the Real AdaBoost [13] has been utilized both to select
features and to train a robust classifier. A 18 layer cascaded classifier has been
trained on images of size 20x20 pixels to detect frontal faces in gray images.
The detector has been trained on 1500 frontal faces. All training images were
manually aligned by eyes position. The aim of the detection algorithm is to
find all faces and then to select the highest scoring candidate that is situated
nearby a predicted location of the face. Next, taking the location and the
size of the window containing the face we construct a Gaussian distribution
p(xt |xt−1, zt) in order to reflect the face position in the proposal distribution.
The formula describing the proposal distribution has the following form:

q(xt | xt−1, zt) = βp(xt | xt−1, zt) + (1− β)p(xt | xt−1) (3)

The parameter β is dynamically set to zero if no face has been found. In such
a situation the particle filter takes the form of the Condensation [7].

4 Experiments

4.1 The system

The experiments described in this section were carried out with a mobile
robot Pioneer 2DX [11] equipped with commercial binocular MegaPixel Stereo
Head. The dense stereo maps are extracted in that system thanks to small area
correspondences between image pairs [8] and therefore poor results in regions
of little texture are often provided. The depth map covering a face region is
usually dense because a human face is rich in details and texture, see a depth
subimage in Fig. 1. a). Thanks to such a property the stereovision provides
a separate source of information and considerably supports the process of
approximating the tracked head with an ellipse of proper size.

A typical laptop computer equipped with 2.5 GHz Pentium IV is uti-
lized to run the software prepared in C/C++ and operating at images of size
320x240. During tracking, the control module keeps the user face within the
camera field of view by coordinating the rotation of the robot with the lo-
cation of the tracked face in the image plane. The linear velocity has been
dependent on person’s distance to the camera. In experiments consisting in
person following a distance 1.3 m has been assumed as the reference value that
the linear velocity controller should maintain. To eliminate needless robot ro-
tations as well as forward and backward movements we have applied a simple
logic providing necessary insensitivity zone. The PD controllers have been
implemented in the Saphira-interpreted Colbert language [11].
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4.2 Experiments on Real-World Situations

To test the prepared software we performed various experiments with the
moving camera. After detection of possible faces, see Fig. 1. a), the system can
identify known faces among the detected ones. In tracking scenarios the user
moved about a laboratory, walked back and forth as well as around the mobile
robot. The aim of such scenarios was to evaluate the quality of ellipse scaling
in response of varying distance between the camera and the user, see Fig. 1.
e),f). Our experimental findings show that thanks to stereovision the ellipse
of proper size approximates the tracked head and in consequence, sudden
changes of the minor axis length as well as ellipse’s jumps are eliminated.
The greatest variability is in horizontal motion, followed by vertical motion.
Ellipse’s size variability is more constrained and tends towards the size from
the previous time step. By dealing with multiple cues the presented approach
can track a head reliably in cases of temporal occlusions, see Fig. 1. b),c), and
varying illumination conditions, see Fig. 1. e),f), even when person moves in
front of skin-like colors of window-panes, see also Fig. 1. e). During a typical
experiment with person following the user typically rounds the laboratory in
70 s and goes a distance about 35 m.

The tracker runs with 400 particles at frame rates of 12-13 Hz. The face
detector can localize faces in images of size 320x240 in about 0.1 s. The full
cascade consist of 820 weak classifiers. The first five stages of the cascade
consists of 80 classifiers and the first ten stages is comprised of 250 classifiers.
The recognition of single face takes about 0.01 s. These times allow the system
to process about 6 frames per second when the information about detected
faces is used to generate the proposal distribution for the particle filter.

depth subimage→
a) b) c)

d) e) f)

Fig. 1. Face detection and tracking, frames #9, #110, #111, #168, #317, #970
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5 Conclusions

We have presented a vision module that robustly tracks and detects a human
face. By employing shape, color, stereovision as well as elliptical shape features
the proposed method can track a head in case of dynamic background. These
features make it general enough to be useful for many human-machine as well
as surveillance applications. Experimental results on tracking faces in long
indoor video sequences demonstrate the robustness of the tracking system.
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