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Abstract. This paper proposes a particle swarm optimization based algorithm for object tracking in
image sequences. In each frame the particles are drawn from a Gaussian distribution in order to cover
the promising object locations and afterwards the particle swarm optimization takes place in order
to concentrate the particles near the true object state. The aim of the particle swarm optimization
is to shift the particles toward more promising regions in the search area. A grayscale appearance
model that is learned on-line is utilized in evaluation of the particles score. Experimental results that
were obtained in a typical office environment show the feasibility of our approach, especially when
the object undergoing tracking has a rapid motion or the appearance changes are considerable. The
resulting algorithm runs in real-time on a standard computer.
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1. Introduction

Swarm Intelligence (SI) is a technique comprising the study of collective behavior of relatively simple
agents in decentralized systems. These systems are made up by a population of many agents that com-
municate with each other and with their environment. Although there is typically no centralized control
dictating the behavior of the agents and the provision of a global model, each agent by cooperating with
other agents is nevertheless able to solve complex tasks. The interactions between agents lead to the
emergence of global behavior. Such self-organized systems include ant colonies, animal herding, bird
flocking, fish schooling, honey bees, bacteria, and many more. Swarm-based algorithms, such as Par-
ticle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Stochastic Diffusion Search (SDS),
have already been applied to solve real world applications such as, traffic routing, networking, crowd
simulation, games, robotics.
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In particle swarm optimization, simple software agents, called particles, move in the search space,
where the position of a particle represents a candidate solution to the optimization problem. Each particle
searches for better positions in the search space by changing its velocity according to rules originally
inspired by behavioral models of bird flocking. Thus, potential solution flies via the search space by
following the current optimum particles and by adjusting itself according to its former experience and its
relationship to other agents in the population and the environment. The PSO is a remarkable algorithm
in SI domain for several reasons: (i) it has a clear formulation that makes it very easy to implement and
hybridize, (ii) there are few parameters to adjust, and (iii) it is an origin of complicated and emergent
phenomena, which are at the essence of swarm intelligence. Much of the success of PSO algorithms
comes from the fact that individual particles have a tendency to diverge from the best known position in
any given iteration, enabling them to ignore local optima while the swarm as a whole gravitates towards
the global extremum.

Particle swarm optimization was introduced by Kennedy and Eberhart [14]. Since it was originally
introduced, the algorithm has been studied by a number of different authors [8]. There are also theo-
retical study for convergence performance analysis [3]. During the last decade, many modifications of
the original particle swarm optimization algorithm have been proposed [18]. The algorithm has been
demonstrated to perform well for many static optimization problems [19] as well dynamic optimization
problems [2].

In computer vision, visual tracking is the act of consistently locating a desired object in each image
of an input sequence. It usually comprises an optimization process for estimating the motion of an
object from measured images in a video sequence. In the optimization process either deterministic [4]
or stochastic [11] methods can be used. Deterministic methods are usually fast but they can easily
become trapped in local extremas. Stochastic methods are more robust, but the processing time is larger,
especially in high-dimensional state spaces. Particle filters [6] are currently the state-of-the-art tool for
estimating the hidden state of a dynamical nonlinear systems on the basis of observations available on-
line. In such algorithms the state is represented by a set of particles, which are propagated and then
updated recursively in order to approximate the state probability density function (pdf) of the system. A
particle filter can be perceived as an importance sampler for the posterior density, using the predictive
density on the state as the proposal distribution. However, the particle filter can fail if the observation
likelihood is largely peaked compared to the prior or if it lies in the tail of the prior. To cope with this
problem several methods were proposed in the literature. Recent algorithms employ mean-shift based
optimization methods to bias the prior towards regions in the state space with the high likelihood [20].
For this purpose an approach relying on Particle Swarm Optimization has already been proposed in [21].

Some PSO-based approaches for object tracking were proposed recently. An algorithm [1] utilizes
both the PSO algorithm and Kalman Filter in a hybrid framework of region and object tracking. Each
object consists of several non-overlapped blocks and each block is represented by a particle. Another hy-
brid approach has been proposed in [15], where two trackers with different failure models are employed.
The first tracker is based on several grayscale non-overlapping image patches that vote for the possible
positions of the object, whereas the second one employs adaptive appearance models, which are used to
construct a probabilistic observation model of a PSO-based particle filter.
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In this paper we present an object tracking algorithm that is based on particle swarm optimization. At
the beginning of each frame the particles are drawn from a Gaussian distribution to cover the promising
object locations and afterwards the particle swarm optimization takes place to concentrate the particles
in the proximity of the center of the object template. Owing to such an approach the resampling step is
not needed. This significantly simplifies the tracking in comparison to particle filter based tracking.

The rest of the paper is organized as follows. Section 2. is devoted to particle swarm optimization.
In the first part of section 3. the particle filtering is overviewed, whereas in second one a particle swarm
optimization based particle filter is discussed. In section 4. we present particle swarm optimization
based object tracking. The use of adaptive appearance models in our tracker is explained in section 5.
In section 6. we report and discuss experimental results. Finally, some conclusions follow in the last
section.

2. Particle swarm optimization

Particle swarm optimization is a stochastic, population-based evolutionary algorithm for solving nonlin-
ear, multimodal optimization problems [14]. PSO shares several similarities with evolutionary computa-
tion techniques. The swarm is initialized with a population of individuals representing random solutions
and then it searches for optima by updating particle values. The particles iteratively evaluate the fitness of
the candidate solutions and remember the locations x̂i, where they achieved their best fit so far. Another
important value for the swarm is the location ĝ corresponding to the best fitness, which was obtained so
far by any particle. Therefore, while exploring the hyperspace spanned by the possible parameters the
particles employ reasoning capabilities about their own best location and the knowledge of the global
best one. Through changing the velocity of each particle toward best x̂i and ĝ locations, the particle
swarm finds x̂∗ ⊆ X ⊆ Rm such that x̂∗ = arg minx∈X f(x) = {x∗ ∈ X : f(x∗) ≤ f(x)} ∀x ∈ X , and
f : Rm → R

Let there be N particles, each with associated locations xi ∈ Rm and velocities vi ∈ Rm. The
optimization algorithm takes the following form:

• Initialize xi and vi. Then x̂i ← xi, ĝ = arg minxif(xi)

• While stopping criterion is not satisfied

• For each particle

• Update the particle locations: xi ← xi + vi
• vi ← ωvi + c1r1 ◦ (x̂i − xi) + c2r2 ◦ (ĝ − xi) (1)

• Update the local best values, if f(xi) < f(x̂i), x̂i ← xi
• Update the global best, if f(xi) < f(ĝ), ĝ← xi

The symbol ω represents an inertial constant, ◦ stands for array multiply, c1 and c2 are positive
constants, which balance the influence of the particle’s local best (cognition part) and the global best
(social part), respectively, whereas r1 and r2 are vectors of uniform random numbers in the range [0, 1],
which are generated according to a uniform probability distribution.
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In [3] a constriction factorK has been introduced in the PSO algorithm. The velocity updating given
by (1) has been replaced by the following equation:

vi = K[vi + c1r1 ◦ (x̂i − xi) + c2r2 ◦ (ĝ − xi)] (2)

where

K =
2

|2− φ
√
φ2 − 4φ|

(3)

is a function of c1 and c2, and φ = c1 + c2. Typically, when such a velocity updating is employed, φ
is set to 4.1 (assuming that c1 = c2 = 2.05) and the constriction factor assumes the value 0.729. Both
terms (x̂i−xi) and (ĝ−xi) are multiplied by 0.729∗2.05 times a random number between 0 an 1, with
expected value equal 0.5.

The use of particle swarm optimization methods presents various advantages over traditional opti-
mization methods. In particular, a few simple rules result in complex action of the algorithm. It has been
demonstrated that in many problems PSO achieves better results in a faster way in comparison with other
methods. PSO has been successfully applied in wide range of applications. Another reason that PSO is
attractive is that it needs a few parameters to adjust. The classical particle swarm optimization has its
own disadvantages, such as low convergence speed and prematurity. All of these make solutions prone
to convergence into local extremas. Once the algorithm gets into the local extremum it is very hard to
jump out from such local optimizations.

3. Particle filtering using particle swarm optimization

3.1. Particle filter

The effectiveness of object tracking in image sequences has been greatly improved with the development
of particle filtering (PF). The particle filter is an algorithm for estimating the posterior state of a dy-
namic system over time where the state cannot be measured directly, but may be estimated at the current
time-step t [6]. Particle filters are attractive for nonlinear models, multi-modal, non-Gaussian or any
combination of these models for several reasons. They utilize imperfect observation and motion models
and incorporate noisy collection of observations through Bayes rule. The ability to represent multimodal
posterior densities allows them to globally localize as well as relocalize the object of interest in case
of failure during tracking. Particle filters are any-time because by supervising the number of samples
on-line they can adapt to the available computational resources.

Two important components of each particle filter are motion model p(zt | zt−1) describing the state
propagation and observation model p(yt | zt) describing the likelihood that a state zt causes the observa-
tion yt. Starting with a weighted particle set S = {(zn,t−1, πn,t−1) | n = 1, ..., N} approximately dis-
tributed according to p(zt−1 | y1:t−1) the particle filter operates through predicting new particles from a
proposal distribution. To give a new particle representation S ={(zn,t, πn,t) | n = 1, ..., N} of the poste-
rior density p(zt | y1:t) the weights of the particles are set to πn,t ∝ πn,t−1p(yt |zn,t)
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p(zn,t |zn,t−1)/q(zn,t |zn,t−1, yt). When the proposal distribution from which particles are drawn is cho-
sen as the distribution conditional on the particle state at the previous time step, the importance function
reduces to q(zn,t |zn,t−1, yt)= p(zn,t |zn,t−1) and in consequence the weighting function takes the form
πn,t ∝ p(yt | zn,t). This simplification leads to a variant of a particle filter, namely CONDENSATION

[11]. From time to time the particles should be resampled according to their weights in order to avoid
degeneracy [7].

The particle filter converges to the optimal filter in some sense as the number of particles grows to
infinity. The most important property of the particle filter is its ability to handle complex, non-Gaussian
and multimodal posterior distributions. However, the number of particles required to adequately ap-
proximate the conditional density grows exponentially with the dimensionality of the state space. This
poses practical difficulties in applications such as articulated body tracking [20]. In such applications,
weakness of the particle filter consists in that the particles can not cluster around the true state of the
object and instead they can migrate towards local maximas in the posterior distribution. If particles are
too diffused the track of the object can be lost. When the observation likelihood lies in the tail of prior
distribution, most of the particles will become insignificant weights. If the system model is inaccurate,
the prediction based on the system model may not be a good one. Predictions of poor quality can also
be caused by the simulation in the particle filtering, when the system noise is large and the number of
particles is not sufficient.

In order to cope with the mentioned effects several improvements to basic algorithm have been pro-
posed, among others solutions combining extended Kalman filter/unscented Kalman filter with generic
particle filter [16]. Such filters incorporate the current observation to generate the better importance
density than the generic particle filter, which uses the prior as the importance density. In recent work
[21][15] PSO algorithms have demonstrated their great ability to improve the particle filtering through
shifting particles towards their promising locations.

3.2. Particle filter using particle swarm optimization

PSO algorithm and PF employ different schemes to concentrate particles near best locations. PSO shifts
particles towards the optimum by updating position and velocity of each particle using its best previous
value and global best value of all particles. Particle filter utilizes general prediction-update framework
in which probabilistic motion and observation models are used alternately during approximating the
conditional density. The algorithm for swarm-based particle filter that has been employed in work [15]
is as follows:

1. Initialization. Sample z1,0, ..., zN,0 i.i.d from initial density p0

2. Importance Sampling/Propagation. Sample zi,t from p(zt|zi,t−1), i = 1, ..., N
3. Initialize PSO. Assign initial values vi, then xi ← zi,t, x̂i ← xi, ĝ = arg minxi f(xi)

3a. While not stop
For each particle

Update the particle locations: xi ← xi + vi
Update particle velocities: vi ← ωvi + c1r1 ◦ (x̂i − xi) + c2r2 ◦ (ĝ − xi)
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Update the local best values, if f(xi) < f(x̂i), x̂i ← xi
Update the global best, if f(xi) < f(ĝ), then ĝ← xi

3b. zi,t ← x̂i
4. Updating. Compute p̂(zt|y1:t) =

∑N
i=1 πi,tδ(z− zi,t) using normalized weighs:

πi,t = p(yt|zi,t)
πi,t = πi,t/

∑N
j=1 πj,t, i = 1, ..., N

5. Resampling. Sample z1,t, ..., zN,t i.i.d from p̂(zt|y1:t)
6. t← t+ 1, go to step 2.

Such a combined filter outperforms the generic particle filter both in speed of computations and accuracy
[15].

4. PSO-based object tracking

The tracking algorithm presented in this section relies only on particle swarm optimization. After a
convergence of the PSO algorithm we are given the estimate of the object state. This means that the
particles typically form a compact cluster centered at the true state. When a new image is available, the
particles are propagated over time according to Gaussian model of the locomotion. This step spreads the
particles apart in order to start a new exploration of the search space, resulting in the updated estimate of
the object state. Owing to such an approach the resampling process is not required and the estimates of
the object state can be determined through the usage of particle swarm optimization. The PSO algorithm
seeks for the values x̂∗, which minimize the fitness function f(x). Given a new image and the estimate
of the object state, a random propagation of the particles according to Gaussian model takes place,
and afterwards a new optimization is done, which results in an updated estimate of the object state.
The mentioned process is repeated if a new image is available. This modification greatly simplifies
the tracking algorithm, which relies on particle swarm optimizations only, and owing to propagation of
particles over time according to Gaussian model of the locomotion, it still has a probabilistic nature. In
the course of tracking it repeatedly shifts the particles to the promising locations and then spreads they
at the expected object locations in order to start a new exloration. Assuming the temporal continuity
between frames the object can be tracked over time. As we mentioned above no resampling is needed.
Moreover, owing to sharing of information between particles about promising locations, the search space
can be explored more efficiently in comparison to particle filter based exploration. The flowchart of the
algorithm can be depicted in the following manner:

1. Initialize t = 0, zi,t and vi,t.
2. ẑi,t ← zi,t, ĝt = arg minzi,tf(zi,t)
3. While stopping criterion is not satisfied
4. For each particle
5. Update the particle locations: zi,t ← zi,t + vi,t
6. Update: vi,t ← ωvi,t + c1r1 ◦ (ẑi,t − zi,t) + c2r2 ◦ (ĝ − zi,t)
7. Update the local best values, if f(zi,t) < f(ẑi,t), ẑi,t ← zi,t
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8. Update the global best, if f(zi,t) < f(ĝt), ĝt ← zi,t
9. For each particle

10. ẑ∗i,t = gt
11. zi,t+1 ∼ N (ẑ∗i,t,Σt)
12. t← t+ 1, go to 2.

The standard deviation Σt is proportional to the predicted motion of the object. In the convergence
criterion the algorithm checks if f(gt) > th, where th is a predefined threshold, and if the predefined
part of the particles converged into an assumed basin region, centered on gt.

5. Visual appearance modeling using adaptive models

Let Ix,t denote the brightness value at the location (x1, x2) in an image I that was acquired in time t.
LetR be a set of J locations {x(j) | j = 1, 2, ..., J} defining a template. Yt(R) = {I(j)

x,t | j = 1, 2, ..., J}
is a vector of the brightness values at locations x(j) in the template. Our intensity-based appearance
model consists of three components, namely, the W -component expressing the two-frame variations,
the S-component characterizing the stable structure within all previous observations and F component
representing a fixed initial template. The model At = {Wt, St, Ft} represents the appearances existing
in all observations up to time t − 1. It is a mixture of Gaussians [12] with centers {µi,t | i = w, s, f},
their corresponding variances {σ2

i,t | i = w, s, f} and mixing probabilities {mi,t | i = w, s, f}.
The update of the current appearance model At to At+1 is done using the Expectation Maximization

(EM) algorithm. For a template Ŷ (R, t) corresponding to the estimated state we evaluate the posterior
contribution probabilities as follows:

o
(j)
i,t =

m
(j)
i,t√

2πσ2
i,t

exp

[
− Î

(j)
x,t − µ(j)

i,t

2σ2
i,t

]
(4)

where i = w, s, f and j = 1, 2, ..., J . This prevents the slowly varying component from updating by
background pixels. The posterior contribution probabilities (with

∑
i o

(j)
i,t = 1) are utilized in updating

the mixing probabilities in the following manner:

m
(j)
i,t+1 = γo

(j)
i,t + (1− γ)m(j)

i,t | i = w, s, f (5)

where γ is accommodation factor. Then, the first and the second-moment images are determined as
follows:

M
(j)
1,t+1 = (1− γ)M (j)

1,t + γo
(j)
s,t Î

(j)
x,t (6a)

M
(j)
2,t+1 = (1− γ)M (j)

2,t + γo
(j)
s,t (Î

(j)
x,t )2 (6b)

In the last step the mixture centers and the variances are calculated as follows:

µ
(j)
s,t+1 =

M
(j)
1,t+1

m
(j)
s,t+1

, σ
(j)
s,t+1 =

√√√√M
(j)
2,t+1

m
(j)
s,t+1

− (µ(j)
s,t+1)2 (7)
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µ
(j)
w,t+1 = Î

(j)
x,t , σ

(j)
w,t+1 = σ

(j)
w,1 (8)

µ
(j)
f,t+1 = µ

(j)
t,1 , σ

(j)
f,t+1 = σ

(j)
f,1 (9)

In order to initialize the model A1 the initial moment images are set using the following formulas:
M1,1 = ms,1I(R, t0) and M2,1 = ms,1(σ2

s,1 + I(R, t0)2).
The fitness score has been evaluated according to the following equation:

f(xt) =
J∏

j=1

∑

i=w,s,f

m
(j)
i,t√

2πσ2
i,t

exp

[
−I

(j)
x,t − µ(j)

i,t

2σ2
i,t

]
(10)

In the fitness function we utilize a recursively update appearance model, which depicts stable structures
seen so far, initial object appearance as well as two-frame variations.

6. Experiments

In order to demonstrate the usefulness of the PSO algorithm in tracking we performed a simple experi-
ment consisting in seeking for the extremum in a probability image, see Fig. 1c. The probability image
expresses the similarity between the rectangular object template, see Fig. 1a and the image depicted at
Fig. 1b. The object template has been moved over mentioned above image and the corresponding sim-
ilarities have been calculated. The object window has been represented via the covariance matrix [22]
of feature points. As features we employed pixel locations (x, y), RGB color values, and the norm of
the first order derivatives of the intensities with respect to x and y. Each pixel has been converted to
a seven-dimensional feature vector h = [x, y,R(x, y), G(x, y), B(x, y), |dI(x, y)/dx|, |dI(x, y)/dy|]T ,
where R, G, B are the RGB color values, and I is the intensity. The covariance of a region is a 7 × 7
matrix c = 1/(n − 1)

∑L
k=1(hk − µ)(hk − µ)T , where µ is the mean value and L denotes the number

of pixels in the template. To measure the dissimilarity between the covariance matrixes c1 and c2 we

employed the following distance ρ(c1, c2) =
√∑L

i=1 ln2 λi(c1, c2), where {λi(c1, c2)}i=1,...,L are the
generalized eigenvalues of c1 and c2, which are calculated on the basis λic1xi − c2xi, where xi 6= 0,
i = 1, ..., L, are the generalized eigenvectors.

The image Fig.1d depicts the initial location of the particles, whereas the images Fig.1e-i depict the
location of the particles in the course of the optimization. Fig.1i depicts the location of the most similar
region to the object template. The algorithm converged at the proper location despite relatively small
size of the object template, i.e. 11 × 13, peaked probability function, relatively large distance between
starting location of the particles and the extremum. Similar behavior of the algorithm has been observed
in many runs of the algorithm using this image as well as another probability images. In almost all runs
the algorithm converged at proper location. In typical tracking experiments the motion of the object is
smaller than in the considered experiment and the particles are typically located in proximity of the true
location.

In order to investigate the usefulness of the adaptive appearance models for the construction of the
fitness function of the PSO we conducted some experiments, see Fig. 2. The particle swarm optimization
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Figure 1. Template tracking using particle swarm optimization, a) Foreman test sequence, frame #1, b) frame
#50, c) probability image, the optimization in d) 1-st it., e) 10-th it, f) 20-th it., g) 30-th it., h) 35-th it., i) 40-th
iteration, respectively

based algorithm has been employed and the tracking has been done on gray images, which were acquired
from a camera mounted at the top of the computer screen. The number of the particles has been set to 30.
The experiments demonstrated that the algorithm can cope with temporal occlusions. In the discussed
experiment the location of the tracking window has not been shifted considerably and thus only the part
of the template pixels learned the occluding object. Similar effect has been observed in other experiments
devoted to testing the robustness of the algorithm during occlusions. In all experiments the template was
parameterized by the vector [x, y, α, β, θ, s]T in which the pair x, y stands for the template translation
and the remaining parameters characterize template deformations.

As we already mentioned, the results depicted at Fig. 1 demonstrated a great ability of the particle
swarm optimization algorithm in exploring the search space. In order to verify this capability in practice
we performed several experiments consisting in tracking an object with rapid motion. Some experimen-
tal results are depicted at Fig. 3, where a considerable change of object appearance can be observed
too. Despite such untoward conditions the algorithm was able to track the object with arbitrary motion.
The particle filter built on particle swarm achieves similar tracking performance, but due to resampling
process the computational load is far larger.
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a) b) c)

d) e) f)

Figure 2. Particle swarm optimization based tracking of face undergoing temporal occlusions, frames #10 a), #15
b), #20 c), #25 d), #27 e), #28 f)

a) b) c)

d) e) f)

Figure 3. Particle swarm optimization based tracking of face with arbitrary motion, frames #17 a), #18 b), #19
c), #20 d), #21 e), #22 f)

The maximal number of iterations in the PSO algorithm has been set to 5. In order to overcome the
swarm explosion we heuristically maintained the velocity in the particle swarm optimizations. In partic-
ular, the maximal value of constriction factor K in (2) has been accommodated according to predictions
of the object motion. If the current particle velocity exceeds the predicted particle velocity, the value of
K is proportional to ratio between predicted velocity and the current velocity.

In general, deterministic methods require substantial overlap between object windows in the consec-
utive frames. On the other hand, the particle filter typically requires a significant number of particles to
cover the regions of the high likelihood, especially in high-dimensional state-spaces. In Fig. 4 we can ob-
serve an undesired behavior of the particle filter based tracker. The tracker failed because of the particle
impoverishment, i.e. loss of the diversity of the particles. Larger number of particles should be sampled
to deal with this undesirable effect. However, this would cause additional computational overheads. In
the discussed experiment the number of particles has been set to 600.
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a) b) c)

d) e) f)

Figure 4. Particle filter based tracking of face with arbitrary motion, frames #17 a), #18 b), #19 c), #20 d), #21
e), #22 f)

We tested the particle swarm optimization tracker on various image sequences, among others Caviar1,
Foreman, Carphone. The experimental results presented above are representative, because of rapid mo-
tion and considerable appearance changes of the object undergoing tracking. In such sequences the
particles employ the power of reasoning about their own best location and the knowledge of the global
best one. In image sequences, in which the objects have low motion, e.g. Caviar, the PSO-based tracker
and particle filter built on PSO demonstrated similar behavior. The MSE of position of the particle filter
is larger in comparison to the mentioned above algorithms. Some results comparing the ordinary particle
filter with particle filter based on PSO can be found in [15].

7. Conclusions

We have presented a particle swarm optimization based algorithm for object tracking. In each frame
the particles are drawn from a Gaussian distribution in order to cover the promising object locations and
afterwards the particle swarm optimization takes place in order to concentrate the particles near the true
object state. Owing to propagation of the particles according to Gaussian model of the locomotion the
resampling of particles is not needed. The tracker built on particle swarm optimization demonstrated its
robustness in experiments consisting in tracking object with arbitrary motion as well as under consider-
able appearance changes.
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