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Abstract

This paper presents a model-based technique for monoc-
ular tracking of the head pose using a non-calibrated cam-
era. We use texture-mapped face images through the 3D head
model as the data representation. The mapped data are com-
pared to the model data via a similarity metric that expresses
the likeness between the rendered and the reference images.
The tracking is realized using a particle filter. In observation
model we utilize rectangle features as the primary cue. The
potential of our approach is demonstrated by tracking of the
head pose on real videos.

1. Introduction

Accurate and reliable tracking of the three-dimensional
head pose is an important problem. The usage of a three-
dimensional head model provides the tracker with knowl-
edge about the subject’s structure, motions and appearance.
Although there exist several methods to perform 3D head
tracking [2][4][12][13][17], there is still a need to improve
the accuracy and reliability of such systems.

A method developed by Horprasert [10] estimates the
head pose through tracking only five salient facial points like
eye corners and the nose top. In order to determine the head
pose, Feng et al. [7] normalizes the head to a frontal pose
and then tests it against the repository of frontal faces. The
system developed by La Cascia et al. [13] works through
mapping the face onto a cylindrical model and estimating
the change in pose with regard to the incremental discrep-
ancy in the re-rendered texture maps. Another example of
3D face modeling through parameterized meshes provides
Ahlberg [1]. Basu et al. [2] uses optic flow to constrain the
motion of non-rigid surface model. Rigid motion parame-
ters of an ellipsoid model are estimated from the flow field
using a standard optimization algorithm. The angular errors
in this method could be as high as 20 degrees. Blanz et al.
[3] developed a 3D morphable model, described with a linear
combination of the texture and shape of multiple exemplars.
This model could be fitted to a single image to obtain indi-
vidual descriptors. Vacchetti et al. [14] utilizes key frames in

a model based tracker to eliminate the jitter. Xiao et al. [16]
demonstrates fitting both a 2D eigenspace appearance and 3D
model. Darell et al. [4] employs a template-based method
to estimate the head pose. The system uses the estimated
head location to acquire an image of higher resolution, using
a second active camera. This narrow field-of-view camera
provides images with a resolution suitable for eigenspace-
based pose estimation. The template-based methods require
the presence of the same pixels over the entire image se-
quence. This limits the range of head poses which can be
tracked.

This work is motivated by our desire to preserve eye con-
tact in teleconferencing applications. We define tracking as
the problem of determining the model parameters so that the
tracked face re-projected to frontal pose best matches the ref-
erence face. The perspective projection of the 3D head rep-
resentation onto the 2D viewing plane is used to generate the
faces in the frontal pose. A texture taken from the consid-
ered face candidate is employed in rendering the face. Each
sample of the particle filter represents the state of the po-
tential face. The observation model of the particle filter uti-
lizes the color rectangle features as the primary cue. The use
of eigenspace-based face representation in such a tracking
scheme is demonstrated too.

The entire tracking process is automatic, except for the
initialization stage, which requires the person operating the
system to manually align in the image plane a camera pro-
jection of the head to be tracked with the projection of the
mesh representing the head model. Prior to the matching
the subject is required to remain relative still in a neutral ex-
pression in order to shot an image with a frontal view of the
face. Next, a locking of the facial appearance into the texture
map takes place. Before the tracking the person observing
the screen should align approximately his/her face onto the
displayed mesh.

In the next section we describe our 3D head model. The
components and details of image processing in model-based
tracking are discussed in section 3. We then describe particle
filtering. We present and discuss the experimental results in
section 5. We draw conclusions in the last section.



2. The 3D head model

In order to determine the head pose, a model that incor-
porates knowledge about head structure, facial deformations,
motions and appearance should be used.

The face model we utilize is a triangular mesh consisting
T = 128 triangles, shown smoothly shaded in Fig. 1a. Such
models are widely used in computer graphics because of ac-
celeration from the modern graphics hardware. The model
consists of a collection of K = 71 vertices v0, ..., vK−1 and
a single texture image I . The texture image consists of pixels
in the RGB space. The 3D triangles are defined by triples of
vertex indices. Each vertex has a corresponding coordinate
in the texture image. This means that a given vertex should
always correspond to the same facial region. Each point in
the reference image is associated with a point of the 3D mesh
model. Therefore each triangular face of the 3D model has
a corresponding 2D triangle in the reference image, see Fig.
1b. The transformation of the 3D representation of the head
onto the 2D viewing plane of the tracking sequence is accom-
plished through a perspective projection. Under perspective
projection the point x = {x, y, z} projects to the image point
xp = f

z {x, y}, where f denotes the focal length.

a) b)

Figure 1. The face model in a default configuration
(a), the wireframe fitted to the face (b).

Combining the model of the shape and model of the tex-
tures results in a 3D face representation which can be ren-
dered. This allows us to generate images depicting faces in
the requested pose and therefore to evaluate quickly the qual-
ity of aligning the face to the mesh, see Fig. 2. This has
proven to be useful during an initialization of the tracker.

Figure 2. Reference face re-rendered in pose 60, 70
and 90 degrees.

3. Image processing

In the following subsections, the usage of image cues in
estimating the head pose is presented. First we describe the
use of color rectangle features. The integral images [15] al-
low the features to be extracted fast. The eigenspace-based
pose estimation is evaluated next. To evaluate the robust-
ness of such cues we perform a deterministic search for the
best pose. We need to estimate the position {x, y, z} and the
Euler angles {α, β, γ} describing the head orientation in the
coordinate system coupled with the camera.

3.1. Color rectangle features

The drawback of color-based tracking techniques is that
are usually not very accurate. In this subsection we demon-
strate that a rectangle pixel-sum can be used in model-based
estimation of the head pose. Such a feature can provide suffi-
cient discrimination capabilities in many tracking scenarios.
In contrary, pixel-based features have often sharp minima in
the observation model. The use of pixel-based texture mod-
els in head pose estimation is demonstrated in [13]. The work
[8] uses relatively small number of the rectangle features to
perform a tracking, since there was no efficient method to
compute such features. An integral image-based tracker in
which rectangle features are computed fast is presented in
work [9].

The integral image at location x, y is defined as the sum of
all pixels above and to the left of x, y. This can be expressed
as follows:

ii(x, y) =
x∑

j=0

y∑

k=0

I(j, k), (1)

where ii(x, y) is the value of the integral image at (x, y), and
I(j, k) represents the original image value. This formula can
be rewritten into the following recurrent equations:

r(x, y) = r(x, y − 1) + I(x, y)
ii(x, y) = ii(x− 1, y) + r(x, y), (2)

where r(x, y) is called the cumulative row sum, r(x−1) = 0,
ii(−1, y) = 0, and ii(x,−1) = 0. On the basis of these
recurrent equations the integral image can be computed in a
single pass over the input image.

The pixel-sum in a rectangular image area is defined as
follows:

ps(x, y, w, h) =
x+w−1∑

j=x

y+h−1∑

k=y

I(j, k), (3)

where w and h are the width and the height of the rectangular
area, and x, y determine the location of the upper right corner
of the rectangle, see also Fig. 3. It can be demonstrated
that this pixel-sum can be computed with only four lookups,



two subtractions and one addition, according to the following
formula:

ps = ii(x + w − 1, y + h− 1 + ii(x− 1, y − 1)−
ii(x− 1, y + h− 1)− ii(x + w − 1, y − 1). (4)
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Figure 3. Calculation of the pixel-sum in a rectangle
using the integral image.

To minimize the influence of different lighting conditions
we normalized the input images to unit variance. Comput-
ing the standard deviation of pixel values in the rectangle re-
quires only eight lookups and few operations. The standard

deviation is given by: σ =
√

µ2 − 1
N

∑
x2, where N is the

number of pixels inside the rectangle, µ can be determined
using the integral image, and

∑
x2 can be computed using a

squared integral image.
The subject to be tracked is represented by mean colors

of the pixels within rectangles Ri. The similarity between
the reference face and the considered face candidate was
measured using the normalized cross-correlation between
the corresponding rectangle features. The normalized cross-
correlation for color c is given by:

e(c) =

∑
{x,y}∈W (I(c)

x+i,y+j − I
(c)

i,j )(T (c)
x,y − T

(c)
)√∑

{x,y}∈W (I(c)
x+i,y+j − I

(c)

i,j )2(T (c)
x,y − T

(c)
)2

, (5)

where Ix,y denotes the mean color pixel reflecting the value
of the rectangle feature from the input image, Tx,y denotes
the mean color pixel representing the value of the rectangle
feature from the reference image, and W is the number of
non-background pixels in the reference image.

Assuming the independence of color pixel values, the
maximum likelihood estimation is equivalent to determin-
ing the model pose that maximizes the error ρ = e(r)e(g)e(b),
where r, g, b denote colors in the utilized color space. A con-
sidered pose is the estimated pose of the subject if after ren-
dering to the frontal view best matches the reference face.

The search space S = (x, y, z, α, β, γ) is the set of all
states within some range of estimated state in the last itera-
tion. Assuming that the face in the frontal pose is symmetric,
we generate on the basis of the rendered image two images.
Taking into account the reflected symmetry, the first image

is generated of the basis of the left side of the face, whereas
the second one is created on the basis of the right side of the
face. We then choose the image which better matches with
the reference face. This manipulation was realized because
of some undesirable effects accompanying the re-rendering.
In particular, the invisible parts of the face, which after the
transformation of the face to the frontal pose can not be re-
rendered correctly, are detected easily.

Some images from the experiments are presented in
Fig. 4. In this experiment a person moves and rotates his
head in front of the wooden desks. The rectangle features
were computed in interiors of the overlapping sub-images of
size 5x5 pixels.

Figure 4. Estimation of the head pose using color
rectangle features. Frames #6, #35, #50.

Figure 5. depicts the integral images which were obtained
after re-rendering the face to frontal pose. These images have
been extracted during a search for the best match in the frame
#6, see also Fig. 4. The image (a) illustrates a rendered view
of the face in case of over-rotating (about 10 deg), the image
(b) demonstrates the rendered view in case of under-rotating
(about -10 deg), whereas the next image demonstrates the
pose of the face, which has been re-projected according to
the estimated head pose. The last image in the sequence
demonstrates the synthetic face that has been re-projected ac-
cording to the estimated head pose in the frame #50. In this
frame the face has been rotated about a small angle in order
to transform it to the frontal pose and thus a relatively small
degradation of the synthesized face can be observed.

a) b) c) d)

Figure 5. Re-rendering the face to the frontal pose
in frames #6 (the first three images) and #50 (the
last image). Over-rotated face (a), under-rotated
face (b), re-projected face according to the esti-
mated head pose (c), face rotated about a relatively
small angle (d).



3.2. Model-based analysis via synthesis

Low-dimensional linear subspace models are often uti-
lized to model the illumination bases [13] and for modeling
the appearance [4]. In this subsection we demonstrate how
linear subspaces can be used in the analysis through a model-
based synthesis of images.

Low-dimensional linear subspace models utilize the prin-
cipal components of face space reflecting the statistical prop-
erties of facial appearance. Our algorithm for estimating the
head pose on the basis of linear subspace models operates
on gray images. During initialization of the tracker we col-
lect training faces Γ1,Γ2, ...,ΓM. The average face for this
collection is computed as Ψ = 1

M

∑M
m=1 ΓM . Next, this

image is subtracted from each training image and a new set
of vectors Φm = Γm −Ψ is created. Since the number of
the face images is much smaller than the dimension of face
space, there only exists M − 1 nontrivial eigenvectors with
the remaining ones associated with zero or negative eigenval-
ues. The matrix B = [Φ1Φ2, ...,ΦM ] is used to create the
covariance matrix of BT B. The eigenvectors gm and eigen-
values λm of such a covariance matrix are determined finally.
The eigenvalues of the covariance matrix indicate how much
of the variance in the image is captured by the corresponding
eigenvector. The higher the eigenvalue, the more character-
istic features of a face does the corresponding eigenvector
describe. The first M

′
= 6 normalized eigenvectors, sorted

by decreasing eigenvalue represent linear subspace which is
further utilized in reconstruction of the face. The reconstruc-
tion is realized as follows:

Γ̂ = Ψ + GGT (Γ−Ψ), (6)

where the orthogonal columns of G are the eigenvectors.
The first six eigenfaces obtained in a typical initialization

of the tracker are shown in Fig. 6. The eigenfaces depicted
in the upper row were generated using a re-rendered face to
frontal pose, whereas the bottom sequence of eigenfaces has
been obtained with no re-rendered face. The second and fifth
images in the upper row indicate some structures from the
re-rendered image, for example see a vertical line at the nose
which is present both in Fig. 5a and at the discussed images.
The distorted bottom part of the face via the re-rendering can
be observed in the depicted eigenfaces too. The eigenbasis
was generated using mirrored face images.

Figure 6. The first six eigenvectors. Eigenfaces
generated with re-rendered face (top), using no re-
rendered face (bottom).

In order to determine the pose the considered face can-
didate was re-rendered to the frontal pose and then recon-
structed using the eigenfaces. The residual image was ex-
tracted using the current and the reconstructed image, see
Fig. 7. To eliminate the influence of the background a suit-
able image mask was utilized during image comparison.

a) b)

Figure 7. Residual images obtained in searching for
the best pose in frame #6. Residual image for the
re-projected face according to the estimated pose
(a), residual image for re-projected face with over-
rotation about 10 deg (b).

Figure 8. shows the images illustrating the estimated head
poses, which were obtained using the discussed method.
Comparing the depicted estimates of the pose with the es-
timates shown in Fig. 4. we can notice that a something
larger error has been obtained for frame #6 and a something
smaller error for the frame #35. Other experiments demon-
strated that the utilized cues can be complementary to one
another in various real situations.

One of the main disadvantages of the method based on
eigenfaces is the necessity for the use of re-rendered images
at the time of training. We observed that without such re-
rendered images the method does not work. This makes
the reuse of this method for different subject types some-
thing challenging. However, this subsection demonstrates
that only one re-rendered image of a face profile can even
be sufficient for model-based analysis through synthesis.

Figure 8. Estimation of the head pose using statis-
tical facial texture model. Frames #6, #35, #50.

The estimated rotation angle of the head is shown in Fig.
9. Results of tracking using rectangle features and eigenfaces
are plotted. The pre-recorded sequence was acquired at 10
fps and 320x240 resolution.

4. Particle filter

One of the goals of visual tracking is to estimate the un-
known state from a set of noisy observations arriving in a
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sequential fashion. Recently, sequential Monte Carlo meth-
ods [5], also known as particle filters, have become increas-
ingly popular stochastic approaches for approximating poste-
rior distributions as they are neither limited to linear systems
nor require Gaussian noise.

Two important components of each particle filter are
motion model p(xt | xt−1) describing the state transition
and observation model p(zt | xt) describing the likelihood
that a state xt causes the observation zt. The particle fil-
ter approximates the posterior distribution p(xt | z1:t) by a
set of weighted samples. Each sample represents the hy-
pothetical state of the object. Starting with a weighted
particle set P =

{
(x(n)

t−1, π
(n)
t−1) | n = 1...N

}
approxi-

mately distributed according to p(xt−1 | z1:t−1) the par-
ticle filter operates through predicting new particles from
a proposal distribution. To give a new particle repre-
sentation P =

{
(x(n)

t , π
(n)
t ) | n = 1...N

}
of the poste-

rior density p(xt | z1:t) the weights of particles are set to
π

(n)
t ∝ π

(n)
t−1p(zt | x(n)

t )p(x(n)
t | x(n)

t−1)/q(x(n)
t | x(n)

t−1, zt).
When the proposal distribution from which particles are
drawn is chosen as the distribution conditioning the state
at the previous time step, the importance function reduces
to q(x(n)

t |x(n)
t−1, zt)= p(x(n)

t |x(n)
t−1) and in consequence the

weighting function takes the form π
(n)
t ∝ p(zt | x(n)

t ). This
simplification leads to CONDENSATION [11], a variant of the
particle filter, which is commonly applied in computer vi-
sion. From time to time the particles should be re-sampled
according to their weights to avoid degeneracy [6].

One way to model the transition of the state is using a
random walk which can be described by

xt+1 = xt + η, (7)

where η ∼ N(0, ν2), and ν2 is typically learned from train-
ing sequences. Such a choice was motivated by observation
that the frame to frame pose difference in our previous test
sequence was not to large, see also Fig. 9. The dimension of
the state vector is 6.

In our approach the particle filter utilizes the observation
models built on re-projection errors between the representa-

tion of synthesized face images in the frontal pose and the
representation of reference faces. Generally, the particle fil-
ter works well when the conditional densities p(zt | xt) are
reasonably flat.

Using the normalized cross-correlation based error ρ we
defined the observation model for the rectangle features as
p(zC | x) = (

√
2πσ)−1e−

1−ρ

2σ2 . Using such weighting we
favor the head pose candidates whose color appearances are
similar to the appearances of the reference face. The second
ingredient of the observation model reflecting the similar-
ity of reconstructed facial textures was weighted in a similar
manner p(zT | x) = (

√
2πσ)−1e−

1−φ

2σ2 , where 1 − φ denotes
the normalized sum of residual pixels. Assuming that the ob-
servations are conditionally independent given the state we
get the observation model p(zt | xt) = p(zC

t | xt)p(zT
t | xt).

The reference image representing the tracked head has
been accommodated over time. The actualization of the im-
age has been realized according to the following equation
It = (1 − γ)It−1 + γR(xt−1), where γ is accommodation
rate, It denotes the reference image, R(xt−1) is the inno-
vation consisting of the image re-rendered according to the
estimated state. The accommodation rate depends on the
head pose and it assumes larger values for frontal poses of
the head. The normal of the considered triangular patch has
been used to modify the accommodation rate of each pixel.

5. Experimental results

The initial poses of the head which are needed for the cap-
ture of texture maps are obtained using a graphical tool in
which the mesh modeling the face could be translated along
all six degrees of freedom. In addition some vertices of the
mesh could be adjusted to obtain a person specific model of
the head. During the initialization of the tracker the subject
should be at rest and approximately facing the camera. Ex-
periments has shown that the tracker is robust to small dis-
placements and rotations (i.e. several pixels and degrees)
of the head to be tracked. The initialization process gener-
ally takes less than one minute. A typical laptop computer
equipped with 2.5 GHz Pentium IV is utilized to run the
software prepared in C/C++ and operating at images of size
320x240. The system uses DirectX/OpenGL libraries and
some procedures employ the computational resources avail-
able in the utilized graphic card. The testing sequences were
taken using a Sony EVI D31 camera.

To demonstrate the abilities of our approach to head pose
tracking we performed various experiments. Some images
from testing sequence that are depicted in Fig. 10. show the
ability of the tracker to estimate the head pose. All of these
head motions appear to be tracked with an accepted accuracy.
The width of the face in the images averages out 70 pixels.

The tracker runs with 400 particles at frame rates of 5-6
Hz. By dealing with multiple cues the presented approach
can estimate the head pose reliably. We conducted experi-



Figure 10. Estimation of the head pose using parti-
cle filter. Frames #19, #99, #115.

ments on the dataset [13] and compared the yaw and pitch es-
timated by our tracker to the ground truth. Figure 11. shows
the comparison of the angles for one sequence from the men-
tioned dataset. We see that the tracker can estimate the pose
quite accurately in most frames. The system is robust to oc-
clusions of a small part of the face by eg. finger.
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Figure 11. Head pose vs. frame number. The
red/solid curve depicts the ground truth, the
green/dashed depicts the estimates.

6. Conclusions

In this paper we presented a framework for estimating the
head pose using a particle filter. We have shown that the ob-
servation model of the particle filter approximating the prob-
ability distributions in model-based analysis through synthe-
sis can be constructed on the basis of rectangle image fea-
tures. Experiments with real video sequences illustrate how
such rectangle features can be used together with statistical
facial texture models to improve the tracking capabilities of
applications devoted to estimating the head pose. In deter-
ministic search-based tracking we compared the usefulness
of the mentioned above cues. Experiments showed that rec-
tangular features are able to support the estimating of the
head pose. These features make it general enough to be use-
ful for many teleconference as well as human-machine ap-
plications. The performance of the particle filter-based head
pose estimation has been demonstrated via experiments. Fur-
ther work need to be performed to speed-up the algorithm
through using the computational power offered by modern
graphics hardware. Issues related to reduction the number of
particles should also be taken into account.
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