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Abstract. This paper considers the problem of mobile robot localiza-
tion. The localization is done using a particle filter built on a highly accu-
rate probabilistic model of laser scan and a histogram based representa-
tion of sensor readings. A histogram matching exploits sensor data com-
ing from the laser and data obtained from the existing map. Experimental
results indicate feasibility of the proposed approach for navigation.

1 Introduction

The problem of determining the position that is occupied by the robot is a central
issue in robotics and has been deeply investigated in the literature. Mobile robots
cannot rely solely on dead-reckoning to determine their location because of cumu-
lative nature of errors in odometry readings. Self-localization techniques are uti-
lized as a way to compensate the errors that accumulate during the robot move-
ment by comparing the acquired sensor data with the pre-stored model of the en-
vironment in form of a map. For this reason the mobile robot should be equipped
with sensors that allow determining the location. The most commonly used sen-
sors are sonar, laser range finders and CCD. Recently Monte Carlo based algo-
rithms have become a very popular framework to cope with the self-localization
of mobile robots. A family of probabilistic algorithms known as Monte Carlo
Localization [2][4] is one of the very few methods capable of localizing the robot
globally. Global position estimation is the ability to determine the robot’s po-
sition in a prepared in advance map, given no other information than that the
robot is somewhere on the map. Once the robot has been localized in the map
within some certainty, a local tracking is performed during maneuvering with aim
to keep the track of the robot position over time. Monte Carlo based algorithms
represent a robot’s belief by a set of weighted particles to approximate the pos-
terior probability of robot location by using a recursive Bayesian filter. The key
idea of Bayes filtering is to estimate a probability density over the state space
conditioned on the sensor data. Algorithms that deal with the global localization
are relatively recent, although the idea of estimating the state recursively using
particles is not new. The application of particle filters to mobile robot localization
[2][4] was motivated by the Condensation algorithm [5], a particle filter that
has been applied with a remarkable success to visual tracking problems [5][6].
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The basic MCL algorithm performs poorly if the proposal distribution con-
tains not enough samples in the right target location. MCL also performs poorly
when the sensor noise level is too small taking into account uncertainty coming
from the discretized map of the environment. A simple strategy based on adding
artificial noise to the sensor readings has been applied in work [4]. The approach
presented in [7] overcomes the degradation to small sample sets by integrating
two complementary ways of generating samples in the estimation and using a ker-
nel density tree in fast sampling. The approach we present in this paper utilizes
the histogram based techniques to compare a laser scan with the scan represen-
tation obtained from an existing map. It is based on the concept of correlation
between the scan extracted from the map taking into account the location of the
considered particle and the sensor scan. A high similarity of histograms indicates
a good match between laser readings and scans which represent considered map
pose. Due to the statistical nature, a histogram based representation holds suffi-
cient statistics for the sensor distributions and introduces desirable uncertainty.
The histogram can be pre-computed and stored for every possible robot orien-
tation and position. In a slower version of the algorithm the histogram at the
considered map pose can be computed on-line. We show that histogram based
map representation has powerful capability and can be used to distinguish sen-
sor scans in a fast manner. Our experimental results indicate feasibility of the
algorithm in which the highly accurate observation model from work [7] and
histogram based one are combined within a particle filter in order to perform
localization of the robot.

2 Monte Carlo Localization and Bayesian filtering

The typical problem in partially observable Markov chains is to obtain a posterior
distribution over the state xt at any time t taking into account all available
sensor measurements z0, ..., zt and controls u0, ..., ut. The state xt depends on
the previous state xt−1 according to stochastic transition model p(xt | xt−1, ut−1)
for a control signal ut−1 which moves the robot from state xt−1 to state xt. Such
a motion model generalizes exact mobile robot kinematics by a probabilistic
component and expresses the probability for certain actions to move the robot
to certain relative positions. The state in the Markov chain is not observable. At
each time step t a robot makes observation zt which is a probabilistic projection
of the robot state xt through a stochastic observation model p(zt | xt). The
observation model describes the probability for taking certain measurements at
certain locations. We assume that observations zt are conditionally independent
given the states xt and that the initial distribution at time t = 0 is p(x0).

The posterior density p(xt | zt) over the state space X characterizes the belief
of the subject about its current state at time t given its initial belief and the
sequence of observations z0, ..., zt. Bayes filters estimate the belief recursively.
The initial belief characterizes the initial knowledge about the system state,
which in global localization corresponds to a uniform distribution reflecting an
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unknown initial pose. In the prediction phase the following motion model is used
to obtain the predictive density

Bel(xt) =
∫
p(xt | xt−1, ut−1)Bel(xt−1)dxt−1 (1)

The parameter u may be an odometry reading or a control command. In the
second phase a measurement model is used to utilize sensor information in order
to obtain the posterior

Bel(xt) ∝ (zt | xt)Bel(xt) (2)

This term expresses the likelihood of the state xt given that zt was observed.
The above two formula describe an iterative scheme for Bayesian filtering.

Monte Carlo Localization relies on the sample based representation of the
belief Bel(xt) by a set of N weighted samples distributed according to Bel(xt)

Bel(xt) ≈ {x[i]
t , w

[i]
t }i=1,...,N (3)

and the sampling/importance resampling algorithm. Each particle is represented
by a state of the mobile robot (x, y, φ) and a weight that reflects the contribution
of particular particle to belief of the robot. A sample set constitutes a discrete
distribution and if the number of samples goes to infinity such distributions
approximate the correct posterior density smoothly. From the samples we can
always approximately reconstruct the posterior density using a histogram or a
kernel based density estimation technique [3]. The population of samples evolves
as new action is executed and new sensor observations are obtained. The pre-
diction phase uses the probabilistic motion model to simulate the effect of the
action on the set of particles. When the new sensory information is available we
use Bayes rule in order to update the probability density function of the moving
robot with the latest observation.

One of the practical difficulties that is associated with particle filters is degen-
eration of the particle population after a few iterations because weights of several
particles are negligible to contribute to the probability density function. The aim
of resampling is to eliminate particles with low importance weights and multi-
ply particles with high importance weights. The resampling selects with higher
probability samples that have a high likelihood associated with them. Without
resampling the variance of the weight increases stochastically over time. An al-
gorithm to perform the resampling from a set of particles in O(N) time has been
proposed in [1]. The sensor readings are typically incorporated in two phases hav-
ing on regard the outlined above resampling. In the first phase each importance
factor is multiplied by p(zt | xt). In the second one the resampling is conducted
and afterwards the importance factors are normalized so that they sum up to
1 and for this reason they constitute a discrete probability distribution. As it
was mentioned above the initial pose in the global localization is unknown and
therefore the initial prior is uniform over the space of possible poses.
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3 Scan matching using histogram

A grid based map represents environment by regularly spaced grid cells. Each
grid cell indicates the presence of an obstacle in the corresponding region of
the environment. If a robot occupies a certain pose in the map we can compute
expected laser scan readings using the well known ray-tracing. The scan readings
obtained in such a way can be then used in comparison with robot scan readings.

Fig. 1a. illustrates the map of the office environment in which localization
experiments have been conducted. This office-like environment is 560 by 460 cm
and it has been discretized into 280x230x90 cells. A single scan of the laser range
finder which was used in experiments returns a hemicircle of 180 readings with
1 degree incrementation. The distance error of range measurement using this
sensor is 1 cm. A sample laser scan is depicted in the Fig. 1b. A reference scan
which has been obtained on the basis of the map for the corresponding robot
pose from Fig. 1b. is demonstrated in the Fig. 1c.

a) b) c)

Fig. 1. Map, sample laser data from the environment, corresponding reference scan

A histogram is obtained by quantizing the scan distances into L bins and
counting the number of times each distance occurs in the single scan. Due to the
statistical nature, a scan histogram can only reflect the environment shape in a
limited way. Two scan shapes taken at close whereabouts appear very similar to
each other and taking the above into account the number of histograms needed
for environment representation is reasonably small. If the number of bins L is
too high, the histogram is noisy. If L is too low, the density structure of the scan
shape is smoothed. The histogram based techniques are effective only when L
can be kept relatively low and where sufficient data amounts are available. The
reduction of bins makes the comparison of two histograms faster and additionally
such a compact representation reduces memory requirements. That aspect is
particularly important considering on the one hand a limited computational
power of the on-board computer and on the other hand the necessity of work
with a rate which enables the mobile robot to utilize localization results during
a maneuvering.
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In order to compare two histograms we need a similarity or dissimilarity
metric. For a given pair of histograms I and M each containing l values, the
intersection of the histograms is defined as follows:

H∩ =
1∑L
j=1 Ij

L∑

j=1

min(Ij ,Mj) (4)

The terms Ij , Mj represent the number of particular scan values inside the
j-th bucket of the current and the model histogram, respectively, whereas L the
total number of buckets. The result of the intersection of two histograms is the
percentage of scans which share the same distances in both histograms.

4 Robot localization using particles

The probabilistic search for the best pose is realized in the utilized particle fil-
ter on the basis of the motion as well as the observation model. Any arbitrary
mobile robot motion [4x,4y]T can be carried out as a rotation followed by a
translation. The noise is applied separately to each of the two motions because
they are independent. When the robot rotates about 4φ the odometry noise can
be modeled as a Gaussian with experimentally established mean and standard
deviation proportional to 4φ. During a forward translation the first error is re-
lated to the traveled distance and the second one is associated with changes of
the orientation attending the forward translation. The simple way to obtain the
translation model is to discretize the motion into K steps and to cumulate the
simulated effect of noise from each step. The sensor model describes the probabil-
ity of obtaining a particular scan shape given the laser’s pose and a geometrical
map of the environment. In the histogram based version of the particle filter the
following observation model p(zt | xt) = H∩(It,M(xt)) has been utilized.

In order to obtain an estimate of the pose the weighted mean (
∑
i w

[i]x[i]),
in a small sub-cube around the best particle has been utilized. The orientation
of the robot has been determined on the basis of sum of direction vectors of
particles from the sub-cube as φ = arctan(

∑
i sinφ[i],

∑
i cosφ[i]). The effect of

probabilistic search for the best position has additionally been enhanced via a
local move of particles according to their probability. The more probable the
particle is, the less it is moved.

5 Experimental results

All experiments were carried out in an office environment with our experimental
Pioneer [8] based platform which is equipped with a laser range finder as well as
an on-board 850 MHz laptop computer. The goal of the first group of tests was
experimental verification of efficiency of particle filter utilizing histogram models
when the robot is continuously moving. Two 4-bins histograms representing the
x and y-components of the scans ensure the high efficiency with relatively low
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computational burden. During experiments which typically took about 10 min-
utes the position has been determined 5 times per sec. and the maximal velocity
was 0.8 m/s. The number of particles used was between 500 and 5000. Assum-
ing stationary particles between consecutive motions, we observed that a cloud
consisting of 5000 particles forms a boundary around the robot in which min-
imum two successive positions of the robot are always contained. The goal of
the second group of experiments was to evaluate the precision of determining
the position in certain points. In order to record data in known positions the
robot has been manually moved several times on a rectangular path of 10 m.
Next, the particle filters utilizing the histogram and the accurate probabilis-
tic models of the laser have been compared on recorded data. The histogram
based algorithm reports the position of the robot anywhere from ten to twenty
iterations from the start of the global localization. In the second algorithm the
position is known after a few iterations. The square root of the sum of squared
errors of 100 measurements on the mentioned above path was about 1000 cm
and 750 cm, respectively. The overall performance of the histogram based algo-
rithm is poorer than that of the conventional one. However, each approach has
complimentary strengths and weaknesses. The particle filter which merges both
approaches yields superior localization performance. The square root of the sum
of squared errors was about 800 cm.

6 Conclusion

We have presented a method that robustly localizes a robot in an office. The his-
togram based representation of the environment is very useful in particle filters
relying on laser readings. Initial results show that our combined method outper-
forms the method using highly accurate probabilistic model of the laser scan.
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