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Abstract. This paper proposes a new filtering scheme for eliminating
random-valued impulse noise from gray images. In the first phase a noise
detector is utilized to extract the noise candidates. Next, the algorithm
applies a connected component analysis in order to gather the neigh-
boring noisy pixels into separate sets of connected noise candidates.
The corrupted pixels are restored using a detail preserving regulariza-
tion method. The main idea of the proposed approach is to gather the
noisy candidate pixels into separate sets of connected pixels and solve the
minimization functional over these pixels. Experimental results illustrate
the efficiency and effectiveness of the algorithm.

1 Introduction

Impulse noise can corrupt images due to noisy sensors or channel transmission
errors. Typical median filters, which are usually utilized invariantly across the
whole images to remove noise, tend to modify both noise pixels and undisturbed
pixels. To achieve a good compromise between the image-detail preservation
and the noise reduction an impulse detector can be utilized prior to filtering [1].
The filtering is then selectively applied to regions where there is impulse noise.
In such decision-based filters the possible noise pixels are first detected and
then replaced through a median filter, while all other pixels are unchanged. The
adaptive center-weighted median filter (ACWMF) [2] can effectively discover
the noise even when its ratio is high. The main drawback is that each noisy
pixel is replaced by a median value of neighboring pixels without considering
the local structure of the image. The replacement of the noisy pixels by the
median involves blurring of edges, which is evidently visible when the noise
ratio is high. A recently proposed detail-preserving variational method [3][4] first
detects noisy pixels and then uses a non-smooth data filtering term along with
edge preserving regularization to restore the corrupted pixels. The minimization
of a convex functional is conducted on the set consisting of all noisy pixels [4].
The nonlinear equation is solved by Newton’s method with a suitable initial
guess [5].
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Our approach detects noisy pixels and additionally applies a connected com-
ponent analysis in order to gather the neighboring noisy pixels into separate sets
of connected noise candidates. To minimize the functional over each set of con-
nected noise candidates we utilize the Levenberg-Marquardt (LM) algorithm. LM
can be considered as a combination of steepest descent and the Gauss-Newton
method. The steepest descent that is utilized first, guarantees the convergence
of the algorithm and the faster Gauss-Newton is utilized finally to achieve the
desired tolerance. The ACWMF filter is used to extract noise candidates and its
output is utilized as an initial guess for the optimization algorithm. The nov-
elty of our algorithm lies in the use of connected component analysis to gather
the noisy candidate pixels into separate sets and to perform a local optimiza-
tion over these sets. The optimization is then easier. This makes our algorithm
several times faster than the algorithm proposed in [3].

The paper is organized as follows. In the next section we briefly review
ACWMF filter. In Section 3 we present all ingredients of our method and discuss
how our algorithm differs from relevant algorithms. In Section 4 we demonstrate
the efficiency and effectiveness of the algorithm using various test images. Some
conclusions are drawn in the last section.

2 The Adaptive Center-weighted Median Filter

Let xi,j be the gray level in a noisy M -by-N image at pixel location (i, j) ∈
A ≡ {1, ...,M} × {1, ..., N}. The general expression of the ACWMF filter is as
follows:

y2k
i,j = median{xi−u,j−v(2k) ¦ xi,j | −h ≤ u, v ≤ h} (1)

where (2h + 1)2 is the window size, and ¦ represents the repetition operation.
For k = 0, 1, ..., J − 1, where J = 2h(h + 1), we can determine the differences
dk =| y2k

i,j − xi,j |. They satisfy the condition dk ≤ dk−1 for k ≥ 1. To determine
if the considered pixel (i, j) is noisy a set of thresholds Tk is utilized, where
Tk−1 > Tk for k = 0, 1, ..., J − 1. The output of the filter is defined in the
following manner:

yACWMF =
{
y0
i,j , if ∃k, dk > Tk
xi,j , otherwise (2)

where y0
i,j is the output of the standard median filter. For a window of size 3× 3

four thresholds Tk, k = 0, ..., 3 are needed. Using the median of the absolute
deviations from the median MAD = median

{| xi−u,j−v − y0
i,j |: −h ≤ u, v ≤ h

}
which is robust estimation of dispersion, we can define the thresholds Tk as
Tk = s ∗MAD + δk where 0 ≤ s ≤ 0.6, σ0 = 40, σ1 = 25, σ2 = 10, and σ3 = 5
[2].
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3 Our Filter

Our method consists of two steps, which are applied alternatively. The ACWMF
filter is utilized to extract noise candidates as well as to provide an initial guess
for the optimization procedure in each iteration l = 1, ..., L. Denote by ỹ(l) the
image obtained by applying the ACWMF to the noisy image y(l−1). The noise
candidate set is extracted through the ACWMF filter and it is extracted on the
basis of the following formula:

N(l) =
{

(i, j) ∈ A : ỹ(l)
i,j 6= y

(l−1)
i,j , and y

()
i,j ∈ {0, 1, ..., 255}

}
. (3)

The set of all uncorrupted pixels in iteration l is NC
(l) ∈ A\N(l) and we

keep their original values. Let B(l) be a binary image indicating the candidates
of noisy pixels. A labeling procedure applied to the image B(l) produces the
connected components C(k)

(l) , where k = 1, ...,K. Let N (k)
(l) be a subset of the

set N(l) whose pixels belong to C(k)
(l) . Let us now consider a noise candidate at

position (i, j) ∈ N (k)
(l) . Each of its 4-connected [6] neighbors (m,n) ∈ Vi,j is

either an undistorted pixel, i.e. (m,n) ∈ NC
(l) or is another noise candidate, i.e.

(m,n) ∈ N (k)
(l) . The corrupted pixels are then restored by minimizing a convex

objective function F
y|N (k)

(l)
: RM×N → R of the following form:

F
y|N (k)

(l)
(u) =

∑

(i,j)∈N (k)
(l)

{
| ui,j − yi,j | +β

2
(S1 + S2)

}
(4)

S1 =
∑

(m,n)∈Vi,j∩NC(l)

4φ(ui,j − ym,n)

S2 =
∑

(m,n)∈Vi,j∩N (k)
(l)

φ(ui,j − um,n)

where β is a regularization factor, φ is an edge preserving potential function [7][8].
Examples of such functions are: φ(t) =

√
α+ t2 where α > 0 and φ(t) =| t |α,

1 < α ≤ 2. In the output image y(l) the corrupted pixels are set to values gen-
erated by the optimization procedure, whereas all undistorted pixels are copied
from the y(l−1). The data-fitting term | ui,j−yi,j | prevents the wrongly detected
undistorted pixels from being modified to other values, whereas the regulariza-
tion term (S1 + S2) accomplishes the edge-preserving smoothing of corrupted
pixels [3][4]. The regularization factor balances the effects of the data-fitting
term and the a priori term. In our approach the noise candidates are restored
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by minimizing the functionals F
y|N (k)

(l)
(u), k = 1, ..,K, whereas [3][4] restore the

noise candidates by minimizing a single functional that is restricted to the noise
candidate set N(l).

4 Tests

In this section we compare our method with ACWMF [2] and detail-preserving
regularization [3] in terms of restoration errors and computation time. In all
images, 30% or 50% pixels were corrupted with random-valued impulse noise,
see Fig. 1. and Fig. 2. The peak signal to noise ratio (PSNR) and mean absolute
error (MAE) [9] have been utilized to measure restoration errors. The potential
function φ(t) =| t |1.3 has been applied in all experiments.

(a) (b)

(c) (d)

Fig. 1. Image with 30% noise (a). Restored images by ACWMF with s = 0.3 (b), our
method in 3 iterations (c), and in 4 iterations (d) with β = 3.0, s = 0.6 in 1-st it.,
s = 0.5 in 2-nd it., and s = 0.2 in the next iterations.
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(a) (b)

(c) (d)

Fig. 2. Image with 50% noise (a). Restored images by ACWMF with s = 0.1 (b), our
method in 3 iterations (c), and in 4 iterations (d) with β = 3.0, s = 0.6 in 1-st iteration
and s = 0.2 in the next iterations.

The results from Tab. 1-2 indicate that errors obtained by our method in 3
iterations are quite comparable with errors that have been obtained by method
[3] in four iterations. The method is several times faster than the mentioned
above method, see Tab. 3 where computation time of the LM procedure is re-
lated to processing time of ACWMF. The algorithms were implemented in C and
run on a PC workstation with a Pentium IV 2.4 GHz processor. The work [3]
reports that for 30% noise the minimization procedure takes 30 times more CPU
time than ACWMF. In our approach the optimization procedure takes about
3 times more CPU time than ACWMF. In comparison with ACWMF the pro-
posed algorithm yields superior subjective quality with respect to impulse noise
cancellation and image detail preservation. The SolvOpt optimization procedure
[10] that allows for minimization nonlinear, possibly non-smooth nonlinear func-
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tions has also been tested in our algorithm. However, the computation time of
this procedure is far longer than processing time of LM.

Table 1. Restoration errors at 30% noise

bridge camera goldhill lena
PSNR Noisy image 14.37 13.69 14.37 14.60

ACWMF 23.82 23.32 25.03 27.03
Our method 25.27 24.75 27.42 30.16

MAE Noisy image 22.24 23.42 21.87 21.42
ACWMF 6.47 5.06 4.90 3.35

Our method 5.92 3.97 4.11 2.31

Table 2. Restoration errors at 50% noise

bridge camera goldhill lena
PSNR Noisy image 12.00 11.54 12.23 12.40

ACWMF 19.19 18.11 20.02 20.98
Our method 22.68 22.26 24.46 25.93

MAE Noisy image 37.00 38.56 36.03 35.52
ACWMF 14.11 13.88 11.90 9.80

Our method 9.77 7.22 7.16 4.99

Table 3. Computation time [sec.]

ACWMF LM-1st. it. LM-2nd. it. LM-3rd. it.
30% noise 0.34 0.81 0.15 0.07
50% noise 0.35 1.04 0.46 0.21

In order to test how good the noise cancellation is we performed an optimi-
zation-based restoration of noisy images assuming that the noise detector is per-
fect. The LM procedure employing such perfect noise indicator and operating
on connected noise candidates restores in one iteration the image lena corrupted
by 30% and 50% impulse noise with PSNR=32.8 dB and PSNR=29.0 dB, re-
spectively.

Next, we compared our method with recently proposed techniques. In [11],
Luo reports restoration results in PSNR for images corrupted by 30% random-
valued impulse noise. For example, for standard image lena of size 256× 256 this
work reports the following restoration results: ACWMF - 27.18 dB, iterative pro-
cedure [3] - 28.33 dB, algorithm-based on alpha-trimmed mean [11] - 28.48 dB.
Taking into account results from Tab. 1 it is evident that our method provides
significant improvement over all other approaches.
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5 Conclusion

This paper considers the 2-phase methods in removal of impulse noise from
highly corrupted images. We propose a new method for eliminating random-
valued impulse noise from gray images. The main idea of our approach is to
gather the noisy candidate pixels into individual sets of connected pixels and
solve the minimization functional over these pixels. To minimize the functional
over each set of connected noise candidates we utilize the Levenberg-Marquardt
algorithm. The ACWMF filter is used to extract noise candidates and its output
is utilized as an initial guess for the optimization algorithm. Our method can
speed up the computations and the restored images are better. Experimental
results indicate that the images are restored with satisfactory quality even at
very high level of impulse noise. In our experiments with highly corrupted images
the proposed algorithm performed better on all test-images than other relevant
2-phase algorithms.

Acknowledgment

This work has been supported by Polish Ministry of Education and Science
(MNSzW) within the projects 3 T11C 057 30 and N206 019 31/2664.

References

1. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.V.: Angular multi-
channel sigma filter. In: IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing. (2003) 745–748

2. Chen, T., Wu, H.R.: Adaptive noise detection using center-weighted median filters.
IEEE Signal Proc. Letters 8 (2001) 1–3

3. Chan, R., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued
impulse noise. IEEE Signal Proc. Letters 11 (2004) 921–924

4. Chan, R., Ho, C., Nikolova, M.: Salt-and-pepper noise removal by median-type
noise detectors and detail-preserving regularization. IEEE Trans. Image Proc. 14
(2005) 1479–1485

5. Chan, R., Ho, C.W., Nikolova, M.: Convergence of Newton’s method for a mini-
mization problem in impulse noise removal. J. of Comp. Math. 22 (2004) 168–177

6. Haralick, R.M., Shapiro, L.G.: Computer and robot vision. Addison-Wesley (1992)
7. Black, M., Rangarajan, A.: On the unification of line process, outlier rejection,

and robust statistics with application to early vision. Int. J. Comput. Vision 19
(1996) 57–91

8. Charbonnier, P., Blanc-Fraud, L., Aubert, G., Barlaud, M.: Deterministic edge-
preserving regularization in computed imaging. IEEE Trans. Image Proc. 6 (1997)
298–311

9. Bovik, A.: Handbook of image and video processing. Academic Press, San Diego
(2000)

10. Kuntsevich, A., Kappel, F.: SolvOpt - The solver for local nonlinear optimization
problems. Inst. for Mathematics, Karl-Franzens University of Graz (1997)

11. Luo, W.: An efficient detail-preserving approach for removing impulse noise in
images. IEEE Signal Proc. Letters 13 (2006) 413–416


