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Abstract. In this paper we propose a video segmentation algorithm
that in the final delineation of the object employs the graph-cut. A par-
titioning of the image based on pairwise region comparison is done at
the beginning of each frame. A set of keypoints is tracked over time via
optical flow to extract regions, which are likely to be parts of the object
of interest. The tracked keypoints contribute towards better temporal
coherence of the object segmentation. A probabilistic occupancy map
of the object is extracted using such initial object segmentation and a
probabilistic shape model. The map is utilized in a classifier that oper-
ates both on pixels and regions. The aim of the classifier is to extract
a trimap consisting of foreground, background and unknown areas. The
trimap is employed by graph-cut. The outcome of the graph-cut is used
in on-line learning of the shape model. The performance of the algorithm
is demonstrated on freely available test sequences.

1 Introduction

Automatic segmentation of monocular video is a very challenging task. The
graph-cut technique of Boykov and Jolly [1] has stimulated an explosion of in-
terest toward automatic segmentation, rising quickly to become one of the most
influential and leading algorithms for interactive image segmentation [2]. Seg-
mentation of object in video is different from a segmentation of object in a
single image. Video segmentation should preserve temporal consistency among
segmentations and in consequence should indicate that extracted segments be-
long to the same objects. Recent research in this area led to compelling, real-time
algorithms, either based on motion [3] or stereovision [4].

Extraction of foreground objects in monocular video is less constrained and
often requires additional assumptions. Research termed as layer motion segmen-
tation [5][6] received considerable interest of the computer vision community in
the past decades. The general objective of methods falling into this category is
to automatically extract motion coherent regions. However, such methods are
computationally expensive and often require off-line learning as well as batch
processing of the whole sequences. Segmentation of objects in video under as-
sumption that the background is static [7][8] may yield confused results due to
moving background objects, shadows, etc.

Most of the current approaches to image/video segmentation rely primarily
on image-based criteria, such as color, gray level, or texture regularity of image
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regions in context of smoothness and continuity of bounding outlines. In bottom-
up approaches an image is first segmented into regions and then identification
which regions correspond to single object takes place with regard to continuity.
In complementary approach referred to as top-down segmentation, prior knowl-
edge about an object, such as its possible shape, color, or texture is utilized to
guide the segmentation. The difficulties inherent in pure low-level segmentation
stimulated elaboration of top-down, class-specific segmentation algorithms [9].
In the algorithm [10] the training is done on a set of learned pictorial structures
(LPS). The learned models are then used in a detection cascade. The obj-cut
algorithm provides excellent segmentations by the use in min-cut a good initial-
ization, which was obtained by LPS.

In [1] the video segmentation is achieved by passing a complete set of frames
to the algorithm and treating the entire sequence as 3D grid of pixels. Motion in-
formation has been used for video segmentation for a long time [11][7][12]. The
motion segmentation algorithms assume that the foreground and background
objects have unlike motion patterns. The objective of methods termed as layer-
based motion segmentation is to automatically extract motion coherent regions
[7][5]. However, certain methods falling into this category require off-line learn-
ing and batch processing of the whole video [7][5]. Occlusions make the motion
based segmentation algorithms prone to errors, in particular at object bound-
aries. Therefore some work has been done to elaborate methods dealing with
such errors [5]. The segmentation algorithm [11] is based on Markov Random
Fields (MRF) that are built on three energy terms, namely motion, intensity
and boundary. The assumption behind the MRF based model is that pixels spa-
tially close to one another have a tendency to be in an identical layer. With
the help of MRF the holes in the segments are suppressed and regular bound-
ary shapes are preferred. However, the calculation of MRF-like constraints is
computationally expensive. In [13] a simple body model and MRF are utilized
in video segmentation at the blob level. Temporal consistency over segmented
blobs is maintained by the usage of weighted bipartite matching. However, while
segmentation of videos with real-world content, some blobs can be merged into
single one, whereas a single blob can be split into multiple blobs and in the last
resort it can disappear. The mentioned phenomena make blob tracking a chal-
lenging task. In [3] a spatio-temporal derivatives based model, which has been
learned off-line from labeled data is employed in a classifier operating jointly on
intensity change and contrast to distinguish between motion and non-motion.
The priors for segmentation are represented by a second order, temporal Hid-
den Markov Model and spatial MRF. Finally, the layer segmentation is done by
graph-cut. However, this algorithm needs to be trained by the use of ground-
truth and is relatively slow.

In the algorithm presented in this work, the final delineation of the object
is done via graph-cut. Using the object mask extracted via graph-cut a prob-
abilistic shape model is learned on-line. A partitioning of the image based on
pairwise region comparison takes place at the beginning of each frame. Using
a collection of the tracked point features we extract adjacent segments, which
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are likely to be parts of the object of interest. Next, using a component con-
sisting of such segments a distance function is constructed. Given the motion
of the object, which is determined on the basis of the tracked features an ad-
justment of the probabilistic shape model to likely location of the object takes
place. Afterwards, we extract a probabilistic occupancy mask of the object. It
is constructed on the basis of the adjusted probabilistic model of the object
shape and the object distance function. A classifier operating on (i) probabilis-
tic occupancy map, (ii) mean colors of the segments and (iii) the quantity of the
tracked features in each segment constructs a trimap consisting of foreground,
background and unknown areas. The graph-cut responsible for final delineation
of the object is built on such a trimap. The smoothness term in the energy
model is adapted gradually according to the occupancy map. The segments only
partially covered by probabilistic occupancy map or holding too few features are
classified as background. In particular, some segments arising during changes of
object appearance have typically no successfully tracked features or the number
of features is too small to assign such segment to the object. But with support
of the classifier such feature-less object fragments obtain keypoints for tracking.
At last such features contribute significantly to better object segmentation as
well as temporal coherence in segmentation.

The proposed method is different from recent algorithms making use of graph-
cut in video segmentation. Most of the relevant work is concerned with improving
the efficiency of graph-cut [14], the use of various image attributes [15] and
models [3][8], which are used in a single-step segmentation via graph-cut only.
In our approach, in several segmentation steps we employ tracking of object
fragments, a classification at intermediate level, on-line learning of the object
shape, and in particular, we operate not only at pixel level but also use regions.

The rest of the paper is organized as follows. In the next Section we briefly
describe video segmentation via pairwise region comparison. Section 3. is devoted
to on-line learning of a probabilistic model of the object shape. The video seg-
mentation via graph-cut built on the tracked object fragments and the learned
shape model is explained in Section 4. In Section 5. we report results, which were
obtained in experiments. Finally, some conclusions follow in the last Section.

2 Spatio-temporal figure-ground segmentation via
pairwise region comparison and point matching

Figure-ground segmentation refers to a delineation of a region in an image such
that it contains the object of interest. Spatio-temporal segmentation consists
in delineating one or multiple objects from images rather than partitioning
video into disjoint regions. Video segmentation should keep temporal consis-
tency among segments in consecutive frames. This means that segments of a
given image should relate to the segments of the previous one such that they do
not belong to different objects.

Exact estimation of optical flow is computationally costly due to extensive
search in the neighborhood of every image pixel. Therefore, in order to achieve
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segmentation of video in real-time as well as to preserve temporal consistency of
the segmentation, our algorithm relies on propagating the object seed features
to the next frame. A set of adjacent blobs selected manually or automatically
in the initialization step constitutes an object to be tracked. In each frame the
algorithm first partitions the image into regions, then using the tracked features
it identifies the image regions that correspond likely to the object of interest.

The input image is partitioned into segments using method from work [16].
It selects edges from an undirected graph G = (V, E), in which every pixel cor-
responds to a node vi ∈ V and neighboring pixels are connected by unidirected
edges (vi, vj) ∈ E . The segmentation consists in partitioning of vertices V into
components such that each component corresponds to a connected component
in the graph G′ = (V, E ′), where E ′ ⊆ E . The evidence for a boundary between
components is based on (i) intensity differences along the boundary and (ii)
intensity differences between neighboring pixels within regions.

The internal difference Int(C) of a component C ⊆ V is defined in the follow-
ing manner:

Int(C) = max
e∈MST (C,E)

w(e), (1)

and it is the largest weight in the minimum spanning tree MST (C, E) of the
component. A component remains connected if it consists of edges with weights
at least Int(C). The difference between two components C1, C2 ⊆ V is defined as
the minimum weight edge in the following manner:

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj). (2)

In case when there is no edge connecting C1 and C2 the difference takes ∞. The
minimum internal difference MInt, which is defined as follows:

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (3)

is employed to verify if there is a boundary between a pair of components,
where τ(C) = κ/| C |, and κ is a threshold. The running time of the algorithm
is nearly linear and the algorithm is fast in practice. In a preprocessing stage a
Gaussian filter has been applied in order to smooth the images to be segmented.
During postprocessing a merging of very small components to their neighbors
has been realized. In our implementation the edge set E has been constructed
from pairs of neighboring 8-connected pixels. The edge weights assume the values
of the Euclidean distance (L2 norm) between color components in RGB space.
Figure 1 depicts some segmentation results of the Foreman image for two different
thresholds parameters κ, which were set to κ = 50 and κ = 160, respectively.
We can observe that despite similar colors of the background and the helmet,
for κ = 50 the algorithm quite accurately delineated the foreground boundary.

Owing to graph based representation of the segmented image a single click
on the mouse can activate or deactivate the whole segments. Such active seg-
ments are overlaid transparently on the input image. They constitute a very
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Fig. 1. Image segmentation via pairwise region comparison using different values κ.

simple and intuitive way to adjust the initial object segmentation to the user
liking. Given the user delineation of the object in the first frame, the algorithm
extracts object keypoints using method [17], which focuses on selecting good
features for tracking. Next, some additional point features are spread evenly to
cover the whole object of interest. During generation of such features a pre-
defined minimum distance to the closest feature is taken into account. At this
stage the algorithm verifies if each segment contains sufficient number of point
features with respect to its area. The complete feature set consists of both such
keypoints and good features. Tracking of the feature set across images allows the
algorithm to find the object from one image to another. On the other side, the
segmentation information supports following the entire object instead of just
a few features on it. Instead of calculating an optical flow for the whole im-
age the algorithm calculates the local displacement vector for each feature. The
mean location of all valid features is used in calculating the object motion. A
validity checking is performed to estimate wrong inter-frame correspondences
among point features. If the color difference between keypoints at the current
and previous location is above a threshold the feature is rejected. The median
direction of remaining features is calculated. All features that differ more than a
predefined value from such direction are rejected. Next, using the valid features
the motion of the object is calculated. The tracking of point features is done
on the basis of pyramidal implementation of the optical flow [18]. The optical
flow is computed with sub-pixel accuracy on the basis of bilinear interpolation.
Owing to pyramidal implementation of the optical flow the object segmentation
can cope with large motions.

3 On-line learning of probabilistic model of the shape

The object segmentation obtained by graph-cut may drift and thus evolve into
arbitrary shapes due to clutter and ambiguous backgrounds. Severe segmentation
ambiguities may occur when the images are noisy or the illumination changes.
Recent approaches also employ spatial Gaussian mixture models (GMM) in video
segmentation [7]. However, most existing algorithms do not learn on-line or relies
on small motion assumption. Hence, they assume that the mixture models from
the current frame can be applied to segmentation of the next frame. In our
approach a dynamic Gaussian prior imposes preferences for shapes similar to
examples that have been seen just before, as it propagates hypotheses about the
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object shape. In particular, the proposed dynamic Gaussian prior can also encode
the knowledge about the initial shape of the object. In the final delineation of
the object the GMM model can give an estimate of the desired segmentation.
At this stage it prevents the object shape from evolving into the arbitrary shape
in the course of segmentation, particularly when there is a significant overlap
between foreground and background pixels.

In our approach the compact object shape consists of N points {ξi}Ni=1 of
dimensionality d = 2. The shape is modeled with a mixture of K components.
The likelihood that a pixel j belongs to the object can be expressed in the
following manner:

p(ξj) =
K∑

k=1

p(k)p(ξj |k) (4)

where p(k) is the prior of the k-th component and p(ξj |k) is the conditional den-
sity function. In the sequel, for probability density function consisting of Gaus-
sians, the parameters in (4) are denoted as p(k) = πk, p(ξj |k) = N (ξj ;µk, Σk),
where µk and Σk are parameters of the model. The conditional density function
p(ξj |k) takes the following form:

p(ξj |k) =
1

(2π)
d
2 |Σk| 12

e− (ξj − µk)TΣ−1
k (ξj − µk)

2
(5)

where d is dimensionality, {πk, µk, Σk}Kk=1 are parameters of the model and
denote prior, mean vector and covariance matrix, respectively. Given the initial
object shape the full-covariance Gaussian mixture can be learned off-line using
iterative Expectation Maximization (EM) algorithm. The k-means clustering
algorithm can be used to provide a rough estimate of the model parameters. In
the EM algorithm the parameters are estimated iteratively as follows:

E-step: p
(i+1)
k,j =

π
(i)
k N (ξj ;µ

(i)
k , Σ

(i)
k )

∑K
l=1 π

(i)
l N (ξj ;µ

(i)
l , Σ

(i)
l )

(6)

M-step: π
(i+1)
k =

∑N
j=1 p

(i+1)
k,j

N
(7)

µ
(i+1)
k =

∑N
j=1 p

(i+1)
k,j ξj

∑N
j=1 p

(i+1)
k,j

(8)

Σ
(i+1)
k =

∑N
j=1 p

(i+1)
k,j (ξj − µ(i+1)

k )(ξj − µ(i+1)
k )T

∑N
j=1 p

(i+1)
k,j

(9)

In each iteration i the algorithm computes the average log-likelihood as follows:

L(i) =
1
N

N∑

j=1

log π(i)
k N (ξj ;µ

(i)
k , Σ

(i)
k ) (10)



Foreground segmentation 7

The algorithm stops if L(i+1)/L(i) < th, where th is a predefined value.
Let us assume that in time t the learning algorithm outlined above con-

verged in iteration ii. Given the parameters {E(ii)
k , µ

(ii)
k , Σ

(ii)
k }Kk=1, which were

obtained in the iteration ii and stand for the cumulated posterior probabilities
E

(ii)
k =

∑N
j=1 p

(ii)
k,j , mean vector and covariance matrix, respectively, we define

the following parameters: E(ii)
µk = µ

(ii)
k

∑N
j=1 p

(ii)
k,j , E(ii)

Σk
= Σ

(ii)
k

∑N
j=1 p

(ii)
k,j . As-

suming that posterior probabilities remain the same, i.e. the parameters E(ii)
k

do not change their values, when in time t+ 1 new data {ξj}Mj=1 are considered
by the model, the model can be updated according to the following steps:

E-step: p
(i+1)
k,j =

π
(i)
k N (ξj ;µ

(i)
k , Σ

(i)
k )

∑K
l=1 π

(i)
l N (ξj ;µ

(i)
l , Σ

(i)
l )

(11)

M-step: π
(i+1)
k =

E
(ii)
k +

∑M
j=1 p

(i+1)
k,j

N +M
(12)

µ
(i+1)
k =

E
(ii)
µk +

∑M
j=1 p

(i+1)
k,j ξj

E
(ii)
k +

∑M
j=1 p

(i+1)
k,j

(13)

Σ
(ii,i+1)
k = (µ(ii)

k − µ(i+1)
k )(µ(ii)

k − µ(i+1)
k )T (14)

Σ
(i+1)
k =

E
(ii)
Σk

+ E
(ii)
k Σ

(ii,i+1)
k +

∑M
j=1 p

(i+1)
k,j (ξj − µ(i+1)

k )(ξj − µ(i+1)
k )

E
(ii)
k +

∑M
j=1 p

(i+1)
k,j

T

(15)

The update of the model stops when the ratio of the average log-likelihoods from
iteration i and i+ 1 is below a predefined threshold.

Figure 2 depicts the ability of GMMs to model the compact object shapes.
The tests have been carried out using the standard Foreman test sequence. In
the input images #1 and #2 (left column) the ellipses resulting from the shape
model are overlaid transparently. The shape model has been trained via the EM,
initialized by k-means, using pixel locations taken from an object map (see image
in top row and middle column). Then the shape model has been updated via
the use of pixel locations from an object map reflecting a segmented foreground
(bottom row). Looking at the ellipses at bottom left part of the object map,
which cover the missing part of the torso we can observe how the model adapts
to the changes of the shape. This capability can also be observed in the object
probability map that is depicted in the third column. It can be observed that
due to the missing part of the torso the likelihood is something smaller in this
part of the image.

The object likelihood has been constructed as a product of two mixtures of
Gaussians. It is constructed under assumption that object color is not dependent
on its location. The first mixture consists of 20 spatial Gaussians. The second one
approximates the color distribution in RGB color space. The fixed color model
has been built using 10 Gaussians. By the change of significance of spatial part
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Fig. 2. Modeling the object shape with color-spatial GMMs.

in the color-spatial probabilistic model we can accommodate the model to the
object speed, shape variability, etc. Examples shown in Fig. 3 illustrate the effect
of balancing between color and spatial part in the model.

Fig. 3. Balancing between color and the spatial part in the object model.

Using the current object shape, the object likelihood map can be constructed
in several ways. As discussed above, it can be composed on the basis of the
current frame and former one. Given the motion of the object the spatial model
from the previous frame can be projected forward in time trough adjustment of
µ(ii) parameter. Given the pose of the object undergoing segmentation the shape
model from the first frame can be employed in the update of the model. In most
cases the first and simplest approach has proven to be effective and sufficient.

4 Video segmentation via graph-cut using tracked object
fragments and learned shape model

The image segmentation X can be uniquely determined by minimum cut C on
the graph G with two terminal nodes such that the terminals are separated on the
induced graph G = (V, E\C) [1]. The minimization is done using Gibbs energy
function that is formulated over the unknown labels X as the sum of data term
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and boundary term:

E(X ) = Edata(X ) + λEsmooth(X )

=
∑

i∈V
E1(xi) + λ

∑

{i,j}∈N
E2(xi, xj), (16)

where V is the set of all vertices in graph G, whereas N is the neighborhood
formed from the vertex connectivity. The regularization factor λ balances the
data term E1 and the smooth cost E2. The data term E1 is a likelihood en-
ergy, which expresses cost of assigning label xi to node i. The prior term E2

encodes the cost when the adjacent nodes i and j have the labels xi and xj , re-
spectively. The min-cut of the weighted graph determines the segmentation that
best separates the object from its background. In our work we use the recent
max-flow/min-cut implementation from work [19].

The weight of a t-link connecting a terminal with the pixel corresponds to
cost of assigning the label to this pixel. There are two t-links for each pixel. The
weights of these links depend on the state of the object trimap. If a pixel belongs
to object, the value of background t-link is set to 0, whereas the foreground t-link
is set to K. If a pixel has been classified as background the value of background
t-link is set to K and the value of foreground t-link is set to 0. The value of K
is set as follows: K = 1 + maxi∈V

∑
j:{i,j}∈N E2(xi, xj). To set the weights of

t-links for pixels of unknown state we use the probabilities obtained from two
separate GMMs. The first GMM is used to model the distribution of background
color. The second one is the model used in determining the object likelihood,
discussed in Section 3. The data cost is the negative log likelihood of the color
given the label. The smoothness term is a standard Potts model: E2(xi, xj) =
dist(i, j)−1exp(−β‖C(i)− C(j)‖2) + λ2, where dist(i, j) stands for the distance
between pixels i and j, C(i), C(j) are RGB colors of two neighboring pixels i
and j, λ2 is set to 10. β is a robust parameter that is set to (〈‖C(i)−C(j)‖2〉)−1

[2], where the expectation stands for an average over the image. The distance
term dist(·) is used to reduce a tendency of the segmentation algorithm towards
diagonal cuts, whereas the aim of λ2 is to discard small and high-contrasted
regions.

In order to generate the trimap with very likely object pixels we employ a
classifier that operates both on pixels as well as on segments. The outcome of
the classifier is a binary mask of the object, background pixels and pixels of
unknown state. We utilize a decision tree classifier, which input consists of: the
graph constructed during segmentation via pairwise region comparison in order
to calculate the quantities given by (2) and (3), the number of valid features on
each segment, the probabilistic occupancy map of the object, and the quantities
d̃Fk , d̃Bk that are explained below.

As we already mentioned, at the initialization stage we manually extract
foreground and background segments. For each segment we compute the mean
colors and the clustering takes place separately for foreground and background.
As a result we obtain cluster centroid colors {PFn }Nn=1 and {PBn }Mm=1, where
N and M stand for the number of foreground and background clusters, re-
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spectively. At this stage we use the well-known k-means algorithm because it
acknowledged its usefulness in image segmentation [20]. At run-time, just before
the classification, for each candidate segment k we compute the minimum dis-
tance from its mean color Ck to foreground and backgrounds clusters as follows:
dFk = arg minn ‖Ck − PFn ‖, dBk = arg minm ‖Ck − PBm‖. Then we compute the
mentioned quantities: d̃Fk = dFk /(d

F
k + dBk ), d̃Bk = dBk /(d

F
k + dBk ).

The graph-cut extracts a binary map representing the object of interest. In
the course of segmentation it adapts the value of β with reference to the proba-
bilistic occupancy map of the object. The larger the distance of the considered
background pixel to the object, the smaller the probability of the cut is. Using
pixels belonging to the object map the probabilistic model of the object shape
is learned on-line as discussed in Section 3. With the support of the object mask
the keypoints with tentative matches are replaced by newly generated keypoints.

5 Experiments

To test the effectiveness of the proposed algorithm we performed various exper-
iments on several test sequences. We tested feature tracking via Kalman filter
and a linear motion model. The confidence measure that the candidate keypoint
corresponds to the tracked one was built on: (i) scaled differences between gra-
dient vectors at the tracked and candidate locations, scaled by the standard
deviation of the gradient, (ii) difference between the predicted keypoint loca-
tion and the candidate keypoint location, scaled by the standard deviation in
position, (iii) cross-correlation between color patches. The standard deviation
was used to express the reliability of the measure and was extracted from the
covariance matrix of the Kalman filter. The method permits reliable keypoint
matching. However, computation burden of this method is significant because
for each tracked keypoint it adds every candidate keypoint to the list of possi-
ble matches. Our research findings show that for our algorithm the optical-flow
based feature tracking is effective and sufficient.

At image partitioning stage we tested the well-known mean-shift segmenta-
tion algorithm [21]. This algorithm determines spatio-temporal segments with
better coherence. But such stable segments were important in an earlier version
of the algorithm, which has only been based on feature tracking and graph-cut in
the final segmentation. The segments, which are obtained by the current method
usually correspond to large homogenous fragments of object parts. Given an ini-
tial set of image pixels corresponding to the visible area of an object, we can
track it over subsequent frames, even if the viewpoint changes and different parts
of the object come into and out of view. It is worth to note that the computation
time of the mean-shift based segmentation is several times larger in comparison
to the method currently used.

Figure 4 depicts some segmentation results that were obtained using the
Foreman test sequence. The person is segmented as complete entity, despite
non-stationary background, ambiguous and cluttered background as well as vari-
ability of the object shape.



Foreground segmentation 11

#2 #15 #30 #45 #60

#70 #75 #90 #105 #120

Fig. 4. Video segmentation using Foreman test sequence.

In order to conduct comparison tests we implemented the algorithm [3]. This
method requires training with ground-truth of different environments. Moreover,
the weights of the four energy terms need to be tuned for the segmented sequence.
Experiments done at AT sequence1 showed that the discussed method does not
work well if the foreground has similar colors as the background, in particular
when there is little motion in the foreground. Figure 5 shows some segmenta-
tion results, which were obtained by our method on the mentioned above test
sequence. The number of background pixels with similar color to the foreground

#20 #30 #40 #50

Fig. 5. Video segmentation using AT sequence.

color, which were labeled as the object is far smaller. Our experiments demon-
strated that the objects are segmented as complete entities, despite considerable
variability of the object shape as well as cluttered background. The method can
even handle situations in which object boundary shares similar colors with the
background.

6 Conclusions

The strength of our algorithm lies in multi-stage segmentation. In several seg-
mentation steps we employ tracking of object fragments, classification at inter-
1 Available on: http://research.microsoft.com/vision/cambridge/i2i
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mediate level, on-line learning of the object shape, and in particular, we operate
not only at pixel level but also utilize regions. The algorithm is robust to image
noise and can achieve accurate region boundaries. One of the future research
directions of the presented approach is to explore the object delineation via a
graph-cut built on pre-segmented images as a means to reduce the computational
cost.
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