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Abstract— In this paper we present a face detection and
tracking-based scheme to enhance the perceptual quality of
face regions in face-to-face teleconference applications using
H.264. The tracking is realized using a particle filter. The
weights of the particles are determined on the basis of intensity
gradient near the edge of the ellipse, appearance difference
and Bhattacharyya distance between weighted histograms. We
assign smaller weights to particles which are farther away
from the centers of detected faces. We employ a reliability
factors of the utilized cues to control the noise variance as
well as to supervise the number of particles. After classifying
the macroblocks into face and non-face categories we perform
a quantization. This requires some modifications in H.264
encoder but requires no modifications to the decoder.

I. INTRODUCTION

The H.264/AVC video coding standard has been devel-
oped to accomplish considerable improvements over the ex-
isting standards in the compression performance. It provides
an increase in compression efficiency of up to 50% over
a broad range of transmission rates and image sizes. The
video coding still uses the concept of block-based motion
compensated prediction to remove temporal correlations and
transform-based residual coding to remove spatial redundan-
cies [15]. Each frame of an input video stream is divided
into macroblocks. H.264 encodes the video without specific
knowledge of the semantic content of the frames and assigns
equal importance to each image block. It particular, H.264-
based video coding does not pay any special attention to
facial regions in order to obtain better perceptual quality at
the sacrifice of the quality of non-face regions.

The overall perceptual quality of video transmitted at
low bitrates can be improved by encoding the face region
with higher bitrate that less relevant background regions
[2][6][12]. In order to provide by decoder the perceptually
pleasing images where faces are sharper than the background
a skin-based face segmentation method has been applied in
work [2]. The work [8] also proposed a skin-color based
face detection approach and utilized a dynamic weighting
adjustment scheme for preferential enhancing the face re-
gions by dropping the static non-face regions. However,
skin-like background can lead to many false detections and
in consequence to reduction of the efficiency of the coder.
An ellipse fitting technique has been used to extract face

regions in a teleconferencing application [6]. Approaches
that rely solely on intensity information and elliptical shape
frequently fail because elliptical shape features appear in
multiple non-facial structures. A fast algorithm to detect
face regions directly in MPEG video streams has been
described in [14]. To enhance the visual quality of the face
regions a visual sensivity-based quantization scheme has
been proposed in work [4]. This method is incompatible
with H.263 standard because the description of the region
of interest needs to be extra transmitted to the decoder.

In this paper we present an approach which incorporates
the prior knowledge about faces into H.264 encoder to
improve the quality of video through selective quantization.
We use face detection and particle-based tracking algorithms
to locate a rectangular box containing face. After classifying
the macroblocks into face and non-face regions we perform
a selective quantization. The quantization step is where a
significant compression takes place. In H.264-based encoder
a fifty-two different quantization step sizes can be chosen
and applied to each block separately. The quantization step
size is chosen by so called quantization parameter which
supports 52 different quantization coefficients. An increment
of QP by 1 results in an increase of the required data rate
of approximately 12.5% [1][15].

Fast and robust face tracking in an image sequence is
highly desirable capability for many multimedia interfaces.
Face tracking permits background regions of the image to
be discarded and allows the algorithm to concentrate on
desirable object-like regions. The tracking provides a focus-
of-attention mechanism [12]. To reliably track a face in
video sequences we fuse color and shape within a particle
filter-based framework. The tracked face is represented by a
weighted histogram carrying information about the color
and the shape. The histograms are compared using the
Bhattacharyya distance. The color distribution is extracted
in interior of the ellipse modeling the outline of the tracked
head. The color histogram and the parameters of the ellipse
are updated over time. To realize robust visual tracking and
recognition we incorporate into particle filter an appearance
model of the face. Relying on face detection results we
assign smaller weights to particles which are farther away
from the centers of detected faces. We employ the reliability



factors of the utilized cues to set the noise variance as
well as to control the number of particles. Thanks to face
detection the system automatically initializes without user
intervention, and can reinitialize when the tracking is lost.

The paper is organized as follows. In the next section we
briefly outline particle filtering. Section 3 presents the imple-
mentation of the particle filter. The quantization strategy is
explained in section 4. Section 5 illustrates the performance
of the tracking algorithm. The paper is ended with some
concluding remarks.

II. PARTICLE FILTERING

The effectiveness of object tracking in image sequences
has been greatly improved with the development of particle
filtering. The particle filter is an algorithm for estimating
the posterior state of a dynamic system over time where
the state cannot be measured directly, but may be estimated
at the current time-step t. Particle filters are attractive for
nonlinear models, multi-modal, non-Gaussian or any com-
bination of these models for several reasons. They utilize
imperfect observation and motion models and incorporate
noisy collection of observations through Bayes rule. The
ability to represent multimodal posterior densities allows
them to globally localize as well as relocalize the object of
interest in case of failure during tracking. Particle filters are
any-time because by supervising the number of samples on-
line they can adapt to the available computational resources.

Two important components of each particle filter are
motion model p(xt | xt−1) describing the state propagation
and observation model p(zt | xt) describing the likelihood
that a state xt causes the observation zt. Starting with
a weighted particle set S =

{

(x(n)
t−1, π

(n)
t−1) | n = 1...N

}

approximately distributed according to p(xt−1 | z1:t−1)
the filter operates through predicting new particles from
a proposal distribution. To give a new particle representa-
tion S =

{
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of the posterior density

p(xt | z1:t) the weights of particles are set to π
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t−1, zt). When the
proposal distribution from which particles are drawn is
chosen as the distribution conditional on the particle state at
the previous time step, the importance function reduces to
q(x(n)

t |x(n)
t−1, zt)= p(x(n)

t |x(n)
t−1) and the weighting function

takes the form π
(n)
t ∝ p(zt | x(n)

t ). This simplification leads
to a variant of a particle filter, CONDENSATION [7]. From
time to time the particles should be resampled according to
their weights to avoid degeneracy [5].

III. STATE SPACE AND OBSERVATION MODEL

The observation model integrates three different visual
cues. In this section we present the motion model and
demonstrate how we construct the adaptive observation
model.

A. State space and dynamics

The outline of the head is modeled in the 2D-image
domain as a vertical ellipse that is allowed to translate and
scale subject to a dynamical model. The object state is given
by {x, ẋ, y, ẏ, sy, ṡy}, where {x, y} denotes the location of
the ellipse center in the image, ẋ and ẏ are the velocities
of the center, sy is the length of the minor axis of the
ellipse and ṡy is the rate at which sy varies. We use a
first-order auto-regressive dynamic model xt = Axt−1 +wt,
where A is state-transition matrix, wt is 6−dimensional zero
mean Gaussian i.i.d. noise, independent of state and with
covariance matrix U which specifies the extent of noise.

B. Shape and color cues

The contour cues can be very useful to represent the
appearance of the tracked objects with distinctive silhouette
when a model of the shape can be learned off-line and then
adapted over time. The shape of the head is one of the most
easily recognizable human parts and can be reasonable well
approximated by an ellipse. In our approach the oval shape
of each head candidate is verified using the sum of intensity
gradients along the ellipse’s boundary.

When the contour information is poor or is temporary
unavailable, color information can be very useful alter-
native to extract the tracked object. Color as a cue is
computationally inexpensive. A color histogram including
spatial information can be extracted on the basis of a 2-
dimensional kernel centered on the target [3]. In order
to assign smaller weights to the color of pixels that are
further away from the center of the kernel a nonnegative
and monotonic decreasing function k : [0,∞) → R can be
utilized [3]. The probability of particular histogram bin u at
location x = {x, y} is determined by the following formula:
d
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∑L
l=1 k
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∥

∥
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)

δ [h(xl) − u] where xl are
pixel locations, L is the number of pixels in the considered
kernel, r is the radius of the kernel, δ is the Kronecker
delta function, and the function h : R2 → {1, ...,K}
associates the bin number. The normalization factor Cr

ensures that
∑K

u=1 d
(u)
x = 1. It can be precalculated for

the utilized kernel and assumed values of r [3]. The 2-
dimensional Gaussian kernels have been prepared off-line
and then stored in lookup tables for the future use. The color
representation of the target has been extracted by quantizing
the ellipse’s interior colors into K bins and extracting the
weighted histogram. To make the histogram representation
of the tracked head less sensitive to lighting conditions the
V component obtained the 4-bin representation while the
remaining components of the HSV color space have been
represented by 8 bins.

To compare the histogram Q representing the tracked
face to histogram I obtained from a particle configuration
we utilized the metric

√

1 − ρ(I,Q) that is derived from
Bhattacharyya coefficient ρ(I,Q) =

∑K

u=1

√

I(u)Q(u).



The work [3] showed that the used metric is invariant to the
scale of the target and therefore is superior to other mea-
sures. Using the Bhattacharyya coefficient we defined the
color observation model as p(zC | x) = (

√
2πσ)−1e−

1−ρ

2σ2 .
Thanks to such weighting we favor head candidates whose
color distributions are similar to the distribution of the
tracked head. The second ingredient of the observation
model reflecting the edge strength along the elliptical
head boundary has been weighted in a similar manner:
p(zG | x) = (

√
2πσ)−1e−

1−φg

2σ2 , where φg denotes the
normalized gradient along the ellipse’s boundary.

C. Appearance model of the face

The appearance model of the face holds a sample of RGB
color components for each pixel in the ellipse’s interior and
uses this sample to estimate the probability density function
of pixel’s color in the current frame. If C

(j)
x = {c(j)
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(j)
2 ,

..., c
(j)
M } is a recent sample of a color component j for a

pixel at location x, the probability density function that the
component j of this pixel will have value c

(j)
t at time t

can be non-parametrically estimated using the kernel Kh
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i ). For Gaussian kernel

Kh = N (0,Σ) and a given sample C
(j)
x from a distribution

with density p(c(j)), where Σ= (σ(j))2 is the kernel band-
width, an estimate of this density at c(j) can be calculated

as follows: p(c(j)) = 1
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The kernel bandwidth should express the local variation in
the value. In our approach the bandwidth assumes different
values over the face region and changes over time. Assuming
that c(j) is distributed according to N (µ, σ2), the distribu-
tion of deviation for each consecutive pair c

(j)
i − c

(j)
i+1 is

N (0, 2σ2). Hence the standard deviation can be estimated as
σ(j) = 1

0.68
√

2
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∑M−1
i=1 |c(j)

i − c
(j)
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independence between the pixel color components in the
considered RGB color space, the probability estimate that
the examined pixel belongs to face can be expressed as fol-

lows: p(c) = 1
M
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The pixel is considered as belonging to face area if
p(c) < th, where th is a global threshold over the el-
lipse’s interior. We assumed the following observation model
p(zA | x) = 1

L

∑L

l=1 δ [p(cxl
) < th], where L is the number

of pixels in the interior of the model ellipse of fixed size.

D. Probabilistic integration of cues

The aim of probabilistic multi-cue integration is to en-
hance visual cues that are more reliable in the current
context and to suppress less reliable ones. Assuming that the
observations are conditionally independent given the state
we obtain the equation p(zt | xt) = p(zG

t | xt) · p(zC
t | xt) ·

p(zA
t | xt) which allows us to accomplish the probabilistic

integration of cues. To achieve this we compute at each time
t the L2 norm-based distances D

(d)
t , between the individual

cue’s centroids and the centroid obtained by integrating the

likelihood from utilized cues [11]. The reliability factors
of the cues α

(d)
t are then calculated on the basis of the

following leaking integrator: ξα̇
(d)
t = η

(d)
t − α

(d)
t , where

ξ denotes a factor that determines the adaptation rate and
η
(d)
t = 0.5 ∗ (tanh(−aD

(d)
t ) + b). In the experiments we

set a = 0.3 and b = 3. Using the reliability factors
the observation likelihood has been determined as follows:
p(zt | xt) = [p(zG

t | xt)]
α

(1)
t · [p(zC

t | xt)]
α

(2)
t · [p(zA

t | xt)]
α

(3)
t ,

where 0 ≤ α
(d)
t ≤ 1.

E. Face detection-based proposal for particle filter

The face detection algorithm can be utilized to form a
proposal distribution for the particle filter in order to direct
the particles towards most probable locations of the objects
of interest. The employed face finder is based on object
detection algorithm described in work [13]. Taking the
location and the size of the window containing the face we
construct a Gaussian distribution p(xt | xt−1, zt) in order to
reflect the face position in the proposal distribution. The
formula describing the proposal distribution has the fol-
lowing form: q(xt | xt−1, zt) = βp(xt | xt−1, zt) + (1 − β)
p(xt | xt−1). The parameter β is dynamically set to zero if
no face has been detected during tracking. In such a situation
the particle filter takes the form of the CONDENSATION [7].

F. Adaptation

The color histogram has been updated over time in the
following manner: Q

(u)
t =(1 − γ)Q

(u)
t−1 + γI

(u)
t , where γ is

an accommodation rate, Qt−1 is the previous histogram rep-
resenting the tracked face, It denotes the histogram from the
interior of ellipse determined by the state estimate, whereas
u = 1, ...,K. In the appearance model the oldest sample
element is discarded and a new one is added as it becomes
available. The extent of noise that is added to x, ẋ, y, and
ẏ during the prediction stage has been determined on the
basis of the reliability factors α

(d)
t . Since fewer particles are

needed for noise with small variance the number of particles
has also been adjusted with respect to α

(d)
t .

IV. QUANTIZATION STRATEGY

The H.264/AVC reference software JM 2.2 was modified
to include our face tracking system. Different quantization
parameters have been used for macroblocks belonging to the
face region and macroblocks that belong to the background.
The quantization parameters have been first optimized for
a target face quality in terms of PSNR. The quantization
step Qi for the ith face macroblock was determined in the

following manner [9]: Qi =
√

12
Dtarget

E

Nf σi
∑

Nf

i=1
σi

, where

Nf is the number of face macroblocks, Dtarget = 2552 ·
10−

P SNR
10 , σi is the standard deviation, and E is the ratio

between the true distortion and a model distortion. The true
distortion is known at the end of the frame encoding and
the model distortion is given as: Dmodel = 1

Nf

∑Nf

i=1
Q2

i

12 .



A redistribution of available bits has been dictated by
the given bit budget constraint. The foreground quality was
overspecified if the bit budget for the frame was less than
the total number of bits allocated for the face encoding.
In such a situation the background was encoded with the
worst possible quality. To minimize the subjective quality
degradation along detected face borders the PSNR of the
background macroblocks has been determined as a function
of their distance to the foreground macroblocks. To satisfy
the bit-rate as closely as possible a rate of gradual decrease
of the background PSNR has been accommodated over time.

V. EXPERIMENTS

To test the proposed method of face tracking we per-
formed various experiments. We utilized the MissAm se-
quence as our first test set. The face has been found in all im-
ages and the system tracked the face in the whole sequence.
The Carphone sequence is challenging for face detection
algorithm because it contains a non-upright face expressing
several emotions. The detection algorithm which has been
trained to detect only upright faces has detected about 50%
face-regions in the discussed sequence. To improve the de-
tection performance each image in the sequence has additio-
nally been rotated about 20 deg and then verified in respect
of face presence. For algorithm operating on both rotated and
non-rotated images only 4 of 381 face-regions have not been
detected and only one false detection has been observed. The
track of the face has been correctly kept in all frames of the
sequence. In the Foreman test sequence all faces has been
detected in the first 100 frames of sequence. In the first 200
frames of the sequence the face has not been detected in 40
frames and no false detection has been observed. The system
tracked the face in all images of the sequence. It is worth
to note that using the above mentioned test sequences the
face can be successfully tracked using the CONDENSATION
algorithm and the following observation model: p(zt | xt) =

[p(zG
t | xt)]

α
(1)
t · [p(zC

t | xt)]
α

(2)
t . The observation model

presented in section 3.4 has acknowledged its usefulness
in experiments consisting in tracking a face with an active
camera in front of wooden doors or furniture. The reliability
factor α

(3)
t is particularly helpful in determining the extent

of noise as well as the quantity of particles.
The H.264 encoder was used to perform intraframe coding

at a target bitrate of 45 kbps. At a somewhat smaller bitrate
the Y-PSNR of the facial region in the Foreman sequence
was improved by 2.4 dB, whereas the image quality of
the non-facial region was degraded by only 1.6 dB. Fig.
1 presents the frame #100 of the Foreman sequence that
was encoded with unmodified and modified H.264 encoder.

VI. CONCLUSIONS

In this paper a face detection and tracking algorithm has
been used to provide the region of interest for the H.264
encoder. The algorithm operates within the syntax of H.264

Fig. 1. Foreman frame #100 encoded with unmodified H.264 (left) and
modified H.264 (right)

and no decoder modifications are required. At the same
bitrate a higher quality of the facial region was obtained. The
appearance model of face improves the reliability of tracking
and can be useful for control the number of particles.
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