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Abstract. The most informative and hard to classify examples are close
to the decision boundary between object of interest and background.
Gentle AdaBoost built on regression stumps focuses on hard examples
that provide most new information during object tracking. They con-
tribute to better learning of the classifier while tracking the object. The
tracker is compared to recently proposed algorithm that uses on-line ap-
pearance models. The performance of the algorithm is demonstrated on
freely available test sequences. The resulting algorithm runs in real-time.

1 Introduction

Object tracking is a central theme in computer vision with applications ranging
from visual surveillance to human-computer interfaces. The goal is to find and
to follow moving objects between consecutive frames. For applications where
the observed appearance of a tracked object undergoes complex changes a learn-
ing algorithm can improve the tracking capabilities. Tracking algorithms should
poses learning abilities to overcome drifting.

Several algorithms have been proposed for object tracking. To cope with ob-
servable appearance variations many algorithms incrementally adjust models to
the changes of object or environment [1][2]. To improve the robustness of track-
ing many algorithms take into account the tracking environment and employ
information about the background [3][4][5]. Recently visual tracking has been
approached using classification methods such as support vector machines [3] or
AdaBoost-based [4][5]. In such methods a learning of the classifier while tracking
of the object takes place.

Automatically obtaining a set of both positive and negative examples for on-
line learning is a difficult task. Levin et al. [6] begin with a small set of manually
labeled data and then generate supplementary examples by applying co-training
of two classifiers. In order to avoid hand labeling the usage of motion detection
to obtain the initial training set was proposed by Nair and Clark [7]. In our
approach Gentle AdaBoost built on regression stumps focuses on hard examples
that provide most new information during object tracking. These pixels are
sampled on the basis of the confidence map calculated by the strong classifier.
In the training set we additionally include the most stable features as well as
features from the initial object template. The learning algorithm considers the
temporal coherence between images of object undergoing tracking.
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2 Learning in object tracking

When learned off-line classifiers are employed in a visual tracker the tracking can
be realized trough detection of the target. In [8], Okuma et al. proposes an ap-
proach that combines AdaBoost based detector using a color model to construct
a proposal distribution for the particle filter. In many tracking systems a bi-
nary classifier that discriminates the object and the background is employed. In
this context the Support Vector Machine that builds a hyperplane between two
classes of examples based on the criterion of large margin can be employed. Con-
sidering tracking as binary classification, Avidan [3] proposed a support vector
based tracker with learning capabilities built on the polynomial kernel. The score
of support vector machine is maximized for every frame. In the work of Williams
et al. [9] a system built on the relevance vector machine which employs temporal
fusion is described. The AdaBoost that belongs to group of large margin classi-
fiers is employed to learn the classifier in algorithm termed as ensemble tracking
[4]. The classifier represents the appearance model that is updated by adding
the recent features. Different approach is presented in work [10], which employs
image pairs and temporal dependencies into a learned similarity function instead
of learning a classifier to differentiate the object from the background. In [11],
Oza and Russel propose on-line version of boosting which simulates the boot-
strap process through updating each base model using multiple copies of each
new example. Some work has been done in the past to enable automatic labeling
of training data. Robust automatic labeling is a highly desirable property in any
learning based tracking system. Levin et al. [6] propose the so called co-training
approach which consists in starting with a small training set and increasing it
by co-training of two classifiers, operating on different features. Ensemble meth-
ods such as boosting and bagging have demonstrated significant advantages in
off-line settings. However little work has been done in exploring these methods
in on-line settings. Nair and Clark [7] use the motion detection for constructing
the initial training set and then the Winnow as a final classifier.

3 CamShift based object tracking

Bradski’s CamShift [12] is representative of a group of algorithms that exploit
the color cue to locate and subsequently track an object in video sequences. It
is very fast, it can deal with irregular object motion arising due to perspective,
uncalibrated cameras, image noise and so on. This general purpose tracking al-
gorithm is based on a robust non-parametric technique called mean-shift to seek
the nearest mode of probability distribution and requires minimal training. The
major advantage of CamShift based algorithms is that they can work with cheap
desktop cameras. Since our on-line learning based tracking algorithm is intended
to spend small number of CPU cycles, we decided to base the tracking on 2D
color cues, for example on RG or HS color components, similarly as in the men-
tioned above CamShift. Our tracking algorithm also employs the CamShift to
track the object of interest, but it additionally learns the color distributions us-
ing boosting. CamShift tracking algorithm is based on a robust non-parametric
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technique called mean-shift to locate density extrema or modes of a given proba-
bility distribution without doing an exhaustive search. The locating starts from
the final location in the previous frame and proceeds iteratively to find the near-
est mode. Given a previous location (x, y) of the kernel the local mean shift
vector represents a translation towards the nearest mode along the direction
of maximal increase of the underlying density. The local density is estimated
within a local neighborhood of this location via kernel density estimation where
the kernel weights are multiplied by weights that are associated with data. The
mean-shift based mode seeking can lead to fast trackers as well as effective kernel
particle filters where a movement of particles towards the modes of the posterior
probability density takes place [1][13].

In CamShift a uniform kernel is employed and the algorithm operates on
probability images. Each pixel value in the probability image P (x, y) represents
the probability of membership of the pixel to the object of interest. The object
probability density image was extracted through thresholding the confidence
score of the AdaBoost classifier.

The mean location of the distribution within the kernel is computed using
moments [12]. It is given by:
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where x, y range over the kernel. Assuming an elliptical approximation of the un-
derlying distribution the eigenvalues (major length and width) of the probability
distribution are calculated as follows [12]:
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Using the uniform kernel the zeroth and first order moments are computed im-
plicitly.

The algorithm repeats the computation of the centroid and repositioning of
the kernel until the position difference converges to some predefined value, that
is, changes less than some assumed value. The size of the mean shift kernel is
updated on the basis of l and w. Therefore the size of the kernel is adjusted
according to the shape of the underlying distribution. The algorithm requires
a selection of the initial location and size of the region of interest. The mean
shift iterations are typically carried out starting from a smaller window size with
regard to the final window size from the previous frame. The algorithm outputs
the position, dimensions, and orientation of object undergoing tracking. The
number of mean-shift iterations needed to find a mode is relatively small and
ranges between 2 and 5. CamShift is able to handle noisy images without the
need for extra filtering or adaptive smoothing.



B. Kwolek

4 Boosting

Boosting originates from a machine learning model known as Probably Approx-
imately Correct (PAC). Boosting algorithms combine simple decision rules into
more complex ones. They aim at finding an accurate classifier consisting of many
base classifiers, which are only moderately accurate. A typical algorithm con-
sists of a boosting algorithm and a learning algorithm. The boosting algorithm
executes the base learning algorithm multiple times to achieve the desired clas-
sification performance. During iterations the weights are updated dynamically
according to the errors in previous round of learning. The base learning algorithm
takes into account a weight coupled with each training instance and attempts
to find a learned hypothesis that minimizes the weighted classification error.
The learning algorithm generates classification rules that are combined by the
boosting algorithm into the final classification rule. In the first step a boosting
algorithm constructs an initial distribution of weights over the training set. The
weights are greater than zero, sum to one and constitute a distribution over the
training set. Using the weighted training set the algorithm searches for a classifi-
cation rule consisting in a selecting a base classifier that gives the least weighted
error. The weights of the data that are misclassified by the selected base clas-
sifier are increased. This leads to selection of classifier that performs better on
examples misclassified previously. Each weak classifier predicts the label of the
data. In consequence, AdaBoost [14], which is the adaptive version of boosting
minimizes the following exponential loss function:

J(F ) = E(e−yF (x)), (3)

where E denotes the expectation and the strong classifier F (x) is a linear com-
bination of T weak classifiers fi(x):

F (x) =
T∑

i=1

αifi(x), (4)

with parameters αi to balance the evidence from each feature. The two terms in
classification function, the set of decision rules {fi}Ti=1 and combining coefficients
{αi}Ti=1 are learned. AdaBoost was applied by Viola et al. to face detection [15]
and recently pedestrian detection [16] with impressive results.

4.1 Gentle AdaBoost

We employ in our tracking algorithm a version of boosting called Gentle AdaBoost
[17], because it requires fewer iterations to achieve similar classification perfor-
mance in comparison with other methods. Given a set of training instances X
and a corresponding weight distribution D the boosting algorithm calculates a
weak hypothesis f : X 7→ R, where the sign of f determines the predicted label
y of the instance x ∈ X . The magnitude |f(x)| expresses the confidence of the
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prediction. Suppose we have a current ensemble hypothesis F (x) =
∑T
t=1 ft(x)

and seek better one F + f by minimizing the following criterion:

J(F + f) = E[e−y(F (x)+f(x))], (5)

where E denotes the expectation. Gentle AdaBoost minimizes this equation by
employing adaptive Newton steps [17], which corresponds to minimizing at each
step a weighted squared error. At each step m the current ensemble hypothesis
F is updated as follows F (x)← F (x) + fm, where fm is selected to minimize a
second order Taylor approximation of the cost function. Replacing the weighted
conditional expectation E[y |x ] in (5) with an empirical expectation over the
training data leads to minimizing the weighted squared error:

J =
N∑

i=1

wi(yi − fm(xi))2, (6)

where wi = e−yiF (xi) and the summation is over the training exemplars.

4.2 Regression stumps based week learner

The week learners we employ in our approach are regression stumps of the fol-
lowing form:

fm(x) = aδ(x(k) > θ) + b (7)

where x(k) denotes the k-th coordinate of K dimensional feature vector x, δ
is the Kronecker delta function, θ is a threshold, and a, b are regression para-
meters. Such binary regression stumps were employed in [15][18]. The following
parameters of a regression stump minimize the function (6):
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This means that in each iteration m we should determine four parameters of
the regression stump (7), namely a, b, θ and k. At the beginning, we determine
parameters a and b with respect to each possible threshold θ
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Next, we calculate the error according to the following formula:

e
(k)
i =

N∑

j=1

wj(yj − a(k)
i δ(x(k)

j > x
(k)
i ) + b

(k)
i )2. (10)

Then for each dimension k we seek for thresholds θ(k) = x
(k)

i∗(k) , which minimize
the error function given by (10). This operation can be expressed as follows:

i∗(k) = arg max
i=1,2,...N

{e(k)
i }. (11)

In the last step of selecting the best regression stump we determine the coordi-
nate k∗ for which the error function (10) takes the minimal value:

k∗ = arg max
k=1,2,...K

{e(k)

i∗(k)}. (12)

In order to speed up the process of selecting θ the computations were conducted
using K sorted vectors x. In order to reduce number of the summations during
fitting of the regression stumps we employed the cumulative sums of wj and
wjyj .

5 On-line learning during tracking

The most informative and hard to classify examples are close to the decision
boundary between object of interest and background. Therefore an on-line Ad-
aBoost that is employed in our algorithm focuses on hard examples that provide
most new information than easy ones. They cause the base learner to concen-
trate on unseen examples. In this context the major difference of our work from
relevant research is that weak classifiers are not trained from the same data sets
within rectangles covering the object and background, but only a small por-
tion of the newly available training sets. This makes a difference between our
learning based tracking algorithm and algorithms relying on linear adaptation
or learning, where updating of the object model is done on the basis of all newly
extracted pixels.

An on-line learning algorithm does not need all the training data processed so
far to calculate a current hypothesis, rather it process data as it become available
without the need for storage, through reusing previously learned weak classifiers
to learn new classifier from new data. In our algorithm we train the classifier
on the labeled pixels and then apply the classifier to the sampled pixels from
unlabeled and newly available ones. The foreground and background pixels are
extracted using center-surround approach in which an internal rectangle covers
the object, while a larger surrounding rectangle represents the background. The
classifier is trained both off-line and on-line using the weak learner that was
described in subsection 4.2.

The algorithm that has been proposed in work [4] maintains a list of clas-
sifiers that are trained over time. During tracking the algorithm removes old
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classifiers, trains new classifiers on a confidence map generated by the strong
classifier and then adds them to the ensemble. However, through removing the
oldest classifiers this algorithm omits important information contained in the
initial object template [19] as well it is not able to detect features being stable
during tracking. The importance of such stable features during tracking has been
highlighted by several authors, among others by [2]. In the algorithm described
in [5] the selectors are updated when a new training sample is available. This
operation needs considerable computations since the strong classifier contains 50
selectors and each can choose from 250 selectors. This in turn can even lead to
slower boosting algorithm in comparison with an off-line algorithm applied to
learn on-line. The average number of calculations per feature in this algorithm
is far larger than in an off-line AdaBoost.

Before starting the tracking the foreground and background pixels are ex-
tracted using center-surround approach. The initial object template is con-
structed on the basis of the internal rectangle covering the object of interest.
A number of representative pixels that are sampled from the object of interest
are then utilized during tracking. Such an object template holds information
about initial object appearance and prevents from model drift. A strong clas-
sifier is used to label the pixels as either belonging to the object of interest or
background. On the basis of the confidence map calculated by the strong classi-
fier we sample from the current frame a set of foreground pixels that are hardest
to classify. Using a histogram holding information about all pixels seen so far
in the object rectangle we extract a set of the most stable pixels in the current
frame and add it to the set representing the current frame. Having in disposal
a set of pixels from the previous frame that were extracted in the same man-
ner the algorithm considers the temporal coherence between images of object
undergoing tracking. The background is represented by pixels laying in close to
decision boundary as well as collection of uniformly sampled pixels both from
the current and previous frame. During tracking a simple procedure is responsi-
ble for removing the pixels belonging to previous frame and inserting the pixels
from the new frame as well as maintaining proportions between the mentioned
above ingredients of the training vector at possibly the same level. The length
of the list containing training pixels is constant.

During boosting iterations the weights that are employed by weak learner
are calculated as follows:

w ← w exp(−y fm) (13)

The total score produced by AdaBoost is normalized through soft identity func-
tion to range between -1 and 1 in the following manner:

s = tanh(F (x)) = tanh(
T∑

m=1

fm(x)) (14)

Such a normalized score can be used as a measure of prediction confidence [20].
Therefore we employ it to determine the object likelihood images.
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6 Vision system

The presented algorithm has been integrated into our system providing a support
for human-machine interaction. The system consists of a mobile robot Pioneer
2DX, which is equipped with SRI’s binocular Megapixel Stereo Head as well
as Sony EVI-D31 PTZ (pant/tilt/zoom) camera. Our experimental platform is
also supplied with a laser range finder as well as an on-board laptop computer
equipped with Intel Core Duo, 2.16 GHz processor. All tasks and threads run
asynchronously, but can be synchronized via messages or events. The system
can operate autonomously but in a number of configurations, especially when
the self-localization of the robot is needed, parallel computations can be realized
on external computers with an integration support of Common Object Request
Broker Architecture (CORBA). The system is capable to detect human faces,
select a person for interaction and then perform several tasks consisting in person
following, simultaneous tracking of user’s face and hands. On the basis of a 3D-
model the user’s head pose can be determined as well.

During person following the controller of the active camera keeps the face on
desired location in the image. The current pan angle of the camera is used as
input for the orientation controller of the robot. This controller in turn minimizes
the angle between the axis of the camera and of the robot. The mentioned above
control strategy guaranties smooth behaviors of the robot in response to a rapid
movement of the tracked person.

The probability image which is peaked at the correct location of the target
allows us to integrate our tracking algorithms. It confirmed also its great use-
fulness in evaluating performance of different tracking algorithms, but operating
on the same set of cues. On the basis of probability images of foreground and
background the selection of discriminative histograms takes place.

7 Experiments

To test the proposed method we performed various experiments on real images.
Figure 1. depicts some tracking results that were obtained on sequence1 of im-
ages 288 high and 384 pixels wide. It can be observed that our on-line learning
algorithm performs better than the algorithm with no learning. The probabil-
ity images illustrate the potential of our learning algorithm as well as how the
confidence maps picks the person’s shape over time. In frames that were gener-
ated by learning-based algorithm the jitter of rectangular ROI is smaller and it
is located near the true location in most frames, see also Fig. 1. and compare
images from the last column in rows 1 and 2. Bottom row in Fig. 1. depicts
the behavior of the tracking algorithm [2] that has been initialized in the same
manner and configured to run with 100 particles. The algorithm looses track
of the pedestrian in frame #1226. Figure 2. demonstrates tracking results that
were obtained with on-line learning in another sequence2.
1 Downloaded from site at: http://groups.inf.ed.ac.uk/vision/CAVIAR/
2 Downloaded from site at: http://i21www.ira.uka.de/image sequences/
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#700 #1100 #1200 #1300/#1226

Fig. 1. Pedestrian tracking with no learning (upper row), on-line learning (middle row,
last frame #1300) and using algorithm [2] (bottom row, last frame #1226)

.

#1 #5 #210

Fig. 2. Car tracking with on-line learning on noisy images

Our algorithm is about 2.2 times slower than [2] and runs with 320 × 240
images at about 10 fps on 2.4 GHz Pentium IV. It can be easily extended to run
with other features, for example integral images or orientation histograms. A
modification consisting in replacing the CamShift by a particle filter operating
on the probability images is also straightforward.

8 Conclusions

We have presented an approach for on-line learning during tracking. The elab-
orated method focuses on hard examples that provide more new information
than easy ones. The major difference of our work from relevant research is that
weak classifiers are not trained from the same data but only a portion of newly
available pixels. To avoid drift the on-line training is conducted using pixels of
the object template. During learning we also employ stable pixels seen so far.
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