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Abstract. This paper presents a model-based approach to monocular
tracking of human body using a non-calibrated camera. The tracking in
monocular images is realized using a particle filter and an articulated 3D
model with a cylinder-based representation of the body. In modeling the
visual appearance of the person we employ appearance-adaptive models.
The predominant orientation of the gradient combined with ridge cues
provides strong orientation responses in the observation model of the
particle filter. The phase that is measured using the Gabor filter con-
tributes towards strong localization of the body limbs. The potential of
our approach is demonstrated by tracking of the human body on real
videos.

1 Introduction

Accurate and reliable tracking of three-dimensional human body is an important
problem. It is particular substantial for service robots that should understand
and predict the behavior of humans’ beings in their vicinity. Although there exist
several methods to perform 3D body tracking [1][2][3], there is still a need to
improve the accuracy and reliability of such systems.

The method we utilize in our work relies on a 3D-2D matching between 3D
features of a generic human model and corresponding 2D features extracted in a
monocular image sequence. Given a 3D object model, the pose estimation prob-
lem can be defined as recovering and tracking the model parameters that include
translation, rotation, and joint angles, so that the back-projected 3D model prim-
itives match the 2D image features which have been extracted through an image
analysis. Extracting 3D body configurations from monocular and uncalibrated
video sequences is coupled with complex modeling as well as difficulties related to
feature extraction. The process of extraction of the features in a cluttered scene
and their matching to a self-occluding body model is an inherently complex task.
The non-observable states are due to motions of body segments towards or away
from the camera. The ambiguity, non-linearity, and non-observability make the
posterior likelihoods over human pose space multi-modal and ill-conditioned. Ef-
ficient locating the body features for the 3D-2D matching during estimating the
pose of the human body is therefore an important problem.
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This work is motivated by necessity of equipment of mobile robot with basic
capabilities of understanding and predicting some human behaviors. A service
robot that does not understand people behavior might be dangerous to people
and environment in a situation that has not been forecasted by a designer. Such
understanding capability is therefore a basic prerequisite for service robots.

In this work, we focus on real-time estimating the pose of the upper body
using a monocular and uncalibrated camera and a 3D model of human body.
The tracking of the 3D model is realized using a kernel particle filter. By us-
ing such a filter we avoid the need for a huge number of particles to represent
the probability distributions in high dimensional state space [4]. To accomplish
strong localization of the body parts we utilize phase that is measured on the
basis of Gabor filter responses. By using it our intent is to provide an alternative
to edge and ridge cues when they are unreliable, and to supplement them if they
are. In order to distinguish the person from the cluttered background effectively
we employ appearance-adaptive models. The ridge cue that is combined with
predominant orientation of the gradient in a window surrounding the feature
provides strong orientation responses in the observation model. In this context,
the novelty of our approach lies in the introduction of phase measured via the
Gabor filter, predominant orientation as well as adaptive appearance models
which results in an observation model with better localization of the limbs.

The paper is organized as follows. Next Section contains an overview of re-
lated work. Section 3. is devoted to a short presentation of the bases of proba-
bilistic tracking. The image processing is described in Section 4. We then describe
the components and details of the system. We present and discuss experimental
results in Section 6. The paper concludes with a summary in the last Section.

2 Related Work

One of the first applications to track a human body in real-time using a single
camera is the PFINDER system [5]. The applied body model is rather coarse and
tracking provides only information about the position of head, hands and feet.
Tracking of a human in 3D with limited computational resources on a mobile
robot was described by Kortenkamp et al. [1]. This approach used depth infor-
mation from a stereo camera to track a 3D body model. The work [6] employs an
articulated 3D body model built on truncated cones and a cost function-based
on edge and silhouette information. The images have been acquired using 3 cali-
brated cameras in scenarios with a black background. The experiments have been
conducted with 4000 particles using an annealing particle filter. The computa-
tion times of this system are far from real-time. Similarly to mentioned work the
multiple cameras are often employed to cope with body self-occlusions [7][8][9].
Some of the mentioned above approaches construct a probabilistic model of the
body [5][7], whereas other approaches are based on a body model [6][9]. Using a
body model only few authors have addressed the problem of 3D body tracking
on the basis of uncalibrated monocular cameras [4][6][10][11][12].
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3 Particle filtering

Particle filter is an inference technique for estimating the posterior distribution
p(xt | z1:t) for the object state xt at time t given a sequence of observations
z1:t. For nonlinear models, multi-modal, non-Gaussian or any combination of
these models the particle filter provides a Monte Carlo solution to the recursive
filtering equation p(xt | z1:t) ∝ p(zt | xt)

∫
p(xt | xt−1) p(xt−1 | z1:t−1)dxt−1.

With this recursion we calculate the posterior distribution, given a dynamic
model p(xt | xt−1) describing the state evolution and an observation model
p(zt |xt) describing the likelihood that a state xt causes the measurement zt.

The main idea of particle filtering is to represent the probability distribution
by a set of weighted particles S = {(x(n)

t , π
(n)
t ) | n = 1, ..., N} evolving over

time on the basis of simulation-updating scheme. The resampling selects with
higher probability particles that have a high likelihood associated with them,
while preserving the asymptotic approximation of the particle-based posterior
representation. Sequential Importance Sampling (SIR) is the basic algorithm
with resampling applied at every time step. The prior p(xt |x(n)

t−1) is used as the
importance density for drawing samples. Within the SIR scheme the weighting
equation takes the form π

(n)
t ∝ p(zt | x(n)

t ). This simplification gives a variant
of a well-known particle filter in computer vision, Condensation [13]. Since
the optimal importance density relies on both the present observation zt and
previous state xt−1 which are not considered in such a scheme, the SIR-based
sampling is not too effective.

4 Image Processing

At the beginning of this section, we show how low-level features for determining
the limb orientation are computed. Gabor filter will be presented as the second
topic. A description of appearance modeling ends this section.

4.1 Low-level features

The edge is employed in comparison of the gradient angle with the limb angle
β resulting from the 3D model. The gradient is computed at the position in the
image plane, where the edge of the considered limb is projected. The orientation
of the whole limb can be determined by averaging over the feature orientations
laying on the projected cylinder. The model is generated in a variety of possible
configurations and overlaid on the image to find the true body pose. The ridge
detection is based on the LoG filter. The variance of the Gaussian can be chosen
such that the feature of interest is highlighted. Therefore the ridge cues are
employed to find in the image the elongated structures of a specified thickness.
The response of the ridge cue depends on the size of the limb at the image and
thus it strongly depends on the distance of the limb to the camera. On the basis
of the estimated distance of the limb to the camera the appropriate level in the
Gaussian pyramid is chosen to obtain the suitable responses of the ridge filter.
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The steered response is calculated by applying an interpolation formula to the
second partial derivatives d:

fR(β) =
∣∣sin2 β dxx + cos2 β dyy − 2 sinβ cosβ dxy

∣∣ −∣∣cos2 β dxx + sin2 β dyy + 2 sinβ cosβ dxy
∣∣ . (1)

4.2 Predominant orientation of the feature

The orientation of a feature is assumed as the predominant orientation of the
gradient in a window around the considered feature. The predominant orienta-
tion is calculated as the quadratically interpolated maximum of the histogram of
the gradient orientations within a window around the feature. The histogram is
weighted both by the magnitude of the gradient and a Gaussian window centered
on the feature. Before determining the maximum the histogram is smoothed by
a moving average filter. In addition, each local maximum with a value above
0.8% of the global maxium is retained.

4.3 Gabor filter

The choice of Gabor filter responses is biologically motivated since they model
the response of human visual cortical cells [14]. Gabor filters extract the orienta-
tion-dependent frequency contents, i.e. edge like features. The main advantage
of Gabor wavelets is that they allow analysis of signals at different scales, or res-
olution, and further they accommodate frequency and position simultaneously.
Gabor filters remove most of variation in lighting and contrast. They are also
robust against shifts and small object deformations. The Gabor wavelet is essen-
tially a sinewave modulated by a Gaussian envelope. The 2-D kernel of Gabor
filter is defined in the following manner [15]:

f(x, y, θk, λ) = exp
[
−1

2

{
R2

1

σ2
x

+
R2

2

σ2
y

}]
exp

{
i
2πR1

λ

}
(2)

where R1 = xcosθk+ysinθk and R2 = −xsinθk+ycosθk, σx and σy are the stan-
dard deviations of the Gaussian envelope along the x and y dimensions, λ and
θk are the wavelength and orientation of the sinusoidal plane wave, respectively.
The spread of the Gaussian envelope is defined in terms of the wavelength λ.
θk is defined by θk = π(k−1)

n , k = 1, 2, ..., n, where n denotes the number of
orientations that are taken into account. For example, when n = 4, four values
of orientation θk are used: 0o, 45o, 90o, and 135o.

A Gabor filter response is achieved by convolving the filter kernel given by (2)
with an image. The response of the filter for sampling point (x, y) is as follows:

g(x, y, θk, λ) =
N−x−1∑

u=−(N−x)

N−y−1∑

v=−(N−y)

I(x+ u, y + v)f(u, v, θk, λ) (3)

where I(x, y) denotes a N ×N grayscale image.
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In this work four different orientations and four different wavelengths have
been utilized, see Fig. 1. The Gabor filter responses were used to locally measure
the phase. In contrast to work [16] we are not interested in determining the
highest score for the features being in the correspondence, but in determining a
weighting factor to express degree of similarity between potential matches. The
simplest way to achieve this goal is to use a Gabor filter with orientation θ and
scale λ to extract the phase φθ,λ of features i and j and then to compare the
considered features according to: exp (− | φθ,λ(i)− φθ,λ(j) |). Using the phase of
all filters we obtain the following correspondence measure:

Gij = c
∏

θ,λ

exp (− | φθ,λ(i)− φθ,λ(j) |) (4)

where c is a normalization constant ensuring that Gij varies between 0 and 1.

a) b)

Fig. 1. Test image of size 100 × 240 (a). Gabor decomposition of test image at four
different orientations and for real channels (b).

Figure 2 demonstrates pairs of images with some phase-based matching re-
sults. Left images in each pair depict the locations at the corners of the projected
model that have been employed in matching, whereas the right images depict
coherence probability between pixels at marked locations and image pixels from
Fig. 1a. The images illustrate the Gabor wavelet’s capability to match coherent
image structures in subsequent frames during human model tracking.

Fig. 2. Searching for pixel coherence using Gabor filter responses. Left images in the
pair demonstrate the locations of pixels undergoing matching, the right ones are prob-
ability images expressing coherence between the marked pixel and image at Fig. 1a.
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4.4 Visual appearance modeling using adaptive models

Our intensity-based appearance model was inspired by work [17] which proposed
the model WSL consisting of three components. The Wandering-Stable-Lost
components are employed to track an object while adapting to slowly changing
appearance and providing robustness to partial occlusions. During model adap-
tation eachWSL component votes according to its level of stability. The method
has been shown to yield reliable tracking of human faces.

By the usage of 3D human model in this method we can provide and addi-
tional support for handling self-occlusions and therefore restrict the adaptation
of parametric model to visible pixels. In our approach the model that is as-
signed to a single data observation dt consists of three components, namely, the
W -component expressing the two-frame variations, the S-component character-
izing the stable structure within all previous observations and C-component rep-
resenting a constant object template. The model represents thus the appearances
existing in all observations up to time t − 1. It is a mixture of Gaussians with
centers {µi,t | i = w, s, c} and their corresponding variances {σ2

i,t | i = w, s, c}
and mixing probabilities mt = {mi,t | i = w, s, c}. The mixture probability den-
sity for a new data dt conditioned on the past observations can be expressed
by

p(dt|dt−1, µs,t−1, σ
2
s,t−1,mt−1) = mw,t−1pw(dt|µw,t−1, σ

2
w) +

ms,t−1ps(dt|µs,t−1, σ
2
s,t−1) +mc,t−1pc(dt|µc,0, σ2

c ). (5)

In wandering term the mean is the observation dt−1 from the previous frame
and the variance is fixed at σ2

w. The stable component ps(dt|µs,t−1, σ
2
s,t−1) is in-

tended to express the appearance properties that are relatively stable in time. A
Gaussian density function with slowly accommodated parameters µs,t−1, σ

2
s,t−1

captures the behavior of such temporally stable image observations. The fixed
component accounts for data expressing the similarity with initial object appear-
ance. The mean is the observation d0 from the initial frame and the variance is
fixed at σ2

c

Similarly to [17] we assume that with respect to the contributions to cur-
rent appearance the previous data observations are forgotten according to ex-
ponential function. The update of the current appearance model At−1 to At
is done using the on-line EM algorithm. The posterior ownership probabilities
{oi,t | i = w, s, c} forming a distribution (with

∑
i oi,t(dt) = 1) are computed in

E-step for each data dt as follows:

oi,t(dt) = mi,t−1pi(dt|µi,t−1, σ
2
i,t−1) | i = w, s, c, (6)

Then the mixing probabilities are updated using an accommodation factor α
according to:

mi,t = αoi,t + (1− α)mi,t−1 | i = w, s, c. (7)

The higher the α value, the faster the model adapts to the new data. During
the M-step the ML estimates of the mean and variance are computed using the
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moments of the past observations. The first and the second-moment images are
computed recursively in the following manner:

M
(p)
t = αdjtos,t(dt) + (1− α)M (p)

t−1 | p = 1, 2. (8)

In the last step the mixture centers and the variances are updated as follows:

µs,t = M
(1)
t

ms,t
, µw,t = dt−1, µc,t = d0,

σ2
s = M

(2)
t

ms,t
− µ2

s,t, σ2
w,t = σ2

w,0, σ2
c,t = σ2

c,0.
(9)

In order to initialize the model the initial moment images are set using the
following formulas: M (1)

0 = ms,0d0 and M
(2)
0 = ms,0(σ2

s,0 + d2
0).

To demonstrate the usefulness of the adaptive appearance models in tracking
we performed various experiments on freely available test sequences. Figure 3
depicts some tracking results that were obtained on PETS-ICVS 2003 test se-
quence. The original images 768 pixels wide and 576 high have been converted to
size of 320× 240 by subsampling (consisting in selecting odd pixels in only odd
lines) and bicubic based image scaling. Inference was performed using 50 parti-
cles and Condensation algorithm. The observation likelihood was calculated
according to the following equation:

p(zt |xt) =
M∏

j=1

∑

i=w,s,c

mi,t(j)√
2πσ2

i,t(j)
exp

[
−dt(j)− µi,t(j)

2σ2
i,t(j)

]
, (10)

where dt denotes the value of gray pixel, M is the number of pixels, and i =
w, s, c. The samples are propagated on the basis of a dynamic model xt = xt−1 +
wt, where xt = {x, y} and wt is a multivariate Gaussian random variable. The
size of face pattern in this sequence is comparable to the size of face pattern
from Fig. 1a. We can observe that despite the fixed size of the object template
the method enables reliable tracking of the face. The cycle time of the tracking
at P IV 2.4 GHz is approximately 0.014 sec.

+10 +50 +100 +150 +180 +190 +200 +220 +230 +240 +250 +270 +300 +325 +350 +370

Fig. 3. Face tracking using adaptive appearance models (top row). The tracking starts
at frame #11000 and the images from left to right depict some tracking results in
frames #11010, #10050, etc. Next rows present the evolution of the mean of stable
(middle row) and wandering (bottom row) components during tracking.

Figure 4. illustrates how the mixing probabilities at two locations (x=7, y=10
and x=9, y=10) in the window of the tracker evolve over time. The static size
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template is not subject to drifting and algorithm adapts to changing appearances
of the face. The mixing probabilities change something more in the second part
of the sequence, i.e. starting at frame #11000 + 200, see also Fig. 3.
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Fig. 4. Mixing probabilities versus frame number.

5 3D body tracking

Modeling the appearance of humans will be presented as the first topic in this
section. The observation and motion models will be presented afterwards.

5.1 Modeling the visual appearance of humans

We use an articulated 3D body model composed of cylinders with ellipsoid cross
sections [10][4]. Such representation gives best outcomes when the cylinder is
observed by a camera from the side. The more the cylinder axis is parallel to the
optical axis of the camera, e.g. arm pointing directly into the camera, the more
the pose estimation is inaccurate. A given pose configuration is determined by the
relative joint angles between connected limbs and the position and orientation of
the torso. The kinematic structure is completed by individual joint angle limits,
which model the physical constraints of the human body. A typical model of
an upper body with two arms has 13 degrees of freedom. The 3D body model
is back-projected into the image plane through a pinhole-camera model. This
yields an approximate representation of the 3D body model in the image plane
consisting of 2D polygons for each limb. The model is generated in a variety of
possible configurations and overlaid on the image plane to find the true body
pose.

Given three coordinates and three angles determining the pose of the torso
we employed a simple cylindrical model depicted in Fig. 5a to re-render the
object texture into the requested object pose. Using such re-rendered images
and the adaptive appearance models we can compute the observation likelihoods.
In our approach the re-rendering is only applied to torso, see Fig. 5c, but for
demonstrational purposes we utilize face images to show the usefulness of re-
rendering in template matching, see Fig. 5b. The images from bottom row in
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Fig. 5b depict some re-rendered faces to frontal pose. These images demonstrate
that the usage of such simple cylindrical model consisting of only 12 triangles
can lead to better object representation for object matching based on a model
containing an initial template. In particular, we can observe that the re-rendered
face from the fifth bottom image in Fig. 5b would give a high similarity score in
case of comparison with the frontal face template.

a) b) c)

Fig. 5. 3D cylindrical face/torso model (a). The cylindrical model overlaid on face
images (b) and torso (c). Bottom images in the column (b) depict re-rendered images.

5.2 Motion and observation model

One way to model the transition of the state is using a random walk which can
be described by

xt+1 = xt + η, (11)

where η ∼ N(0, ν2), and ν2 is typically learned from training sequences. The
reason for not using a specific motion model in the particle filter is that we want
to track general human motions.

Assuming that the cues and limbs are independent the observation model
takes the form:

p(zt |xt) =
L∏

i=1

∏

k=r,a,g,d

p(i, k), (12)

where L denotes number of cylinders in the 3D model, r represents ridge,
a stands for adaptive appearance model, g accounts for phase, d is dominant
orientation and p(i, k) denotes the likelihood of the whole limb i for cue k.
The likelihood is calculated on the basis of the following Gaussian weighting:
p(zC | x) = (

√
2πσ)−1e−

1−ρ
2σ2 , where ρ denotes the response of the filter for the

considered cue. The filter responses are calculated on the basis of techniques
described in Section 4.

To exploit the structure of the probability density distribution and to reduce
the number of particles an iterative mode-seeking via the mean-shift is employed.
The density distribution is estimated through placing a kernel function on each
particle and then shifting the particles to high weight areas [4].
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6 Experiments

To test the proposed method of 3D body tracking in monocular images we
performed several experiments on real images. Experiments demonstrated that
through the tracking of the human legs the robot is able to detect collisions. We
have also looked at how the system tracks the upper body. The lower arms are
one of the hardest body parts to track because in comparison with legs they are
smaller and move faster. The modeling their motion is harder. In contrast, the
face has more features and textures than the legs and arms and can be tracked
easily.

During computation of likelihoods we utilize various combinations of cues.
The ridge cues as well as dominant orientations are not utilized in computation of
likelihoods of torso, face and hands. The torso and face are tracked in conjuction.
The phase is computed using the fast method [18] at four points of the lower
arm cylinders. The dominant orientation is extracted at 20 points, whereas the
ridge at 30 points of each cylinder.

In order to show the stability of our approach to images with complex back-
ground, we have performed experiments in a typical home/office environment.
Figure 6 shows some tracking results. The person depicted at this figure is wear-
ing a green shirt and is standing in front of plants. The color of the wall in the
background is similar to color of human skin. The mentioned above figure illus-
trates the behavior of the algorithm in such conditions. The tracking has been
done using the kernel particle filter doing 3 mean-shift iterations and built on 200
particles. The adaptive appearance models were employed in computation of the
likelihoods of torso, face and lower arms. Other experiments demonstrated that
this algorithm allows the tracking of the human body in cluttered environments
if no large self-occlusions occur.

Fig. 6. Tracking of the upper body using gray and monocular images. Every 10th frame
from the sequence is depicted.
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The algorithm can estimate a direction of pointing towards an object using
only 110 particles and doing 2-3 mean shift iterations. Using such settings the
algorithm calculates the estimate of 3D hand position at a frame rate about
8 Hz. A configuration of the algorithm with 500 and even 250 particles gives
repeatable results. The algorithm was tested on images of size 320x240 acquired
by EVI-D31 color camera. A typical laptop computer equipped with 2.4 GHz
Pentium IV is utilized to run the C/C++ software under Windows control.

Initial experiments demonstrate that a proposal distribution in form of a
Gaussian that is generated on the basis of the face position estimated in ad-
vance by a particle filter can lead to shorter computation time. In particular,
this particle filter can perform the tracking of the face using smaller number of
particles in comparison with the 3D tracker. Such configuration of the system
can be used in many scenarios with a person facing the camera. Comparing the
appearance-based cues with color we found that the former provides better re-
sults. The dominant orientation gives better estimates in comparison to edges.
The overall performance of the system built on adaptive appearance models and
dominant orientation is better in comparison to a configuration of system based
on color and edges. We expect a prior model of body motion can likely improve
robustness of the system further. Color images would provide additional infor-
mation in stabilization of the tracker. But determining which image features
are most informative requires more research. The initialization of the tracking
algorithm is done manually before starting the tracking. An occlusion test is per-
formed, particularly with respect to pixels for which the Gabor filter responses
are calculated.

7 Conclusions

We have presented a model-based approach for monocular tracking of the human
body using a non-calibrated camera. By employing ridge, dominant orientation,
phase and appearance the proposed method can estimate the pose of the upper
body using a monocular and uncalibrated camera. The proposed combination of
cues leads to higher performance of the system and better quality of tracking.
Once the human body is being tracked, the appearance model adapts according
to changes in appearance and therefore improves tracking performance. Experi-
mental results, which were obtained in a typical home/office environment show
the feasibility of our approach to estimate the pose of the upper body against
a complex background. The resulting system runs in real-time on a standard
laptop computer installed on a real mobile agent.
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