
GPU-Supported Object Tracking Using
Adaptive Appearance Models and Particle

Swarm Optimization

Boguslaw Rymut? and Bogdan Kwolek

Rzeszów University of Technology
W. Pola 2, 35-959 Rzeszów, Poland

http://www.prz.edu.pl

Abstract. This paper demonstrates how CUDA-capable Graphics Pro-
cessor Unit can be effectively used to accelerate a tracking algorithm
based on adaptive appearance models. The object tracking is achieved
by particle swarm optimization algorithm. Experimental results show
that the GPU implementation of the algorithm exhibits a more than
40-fold speed-up over the CPU implementation.

1 Introduction

While the central processing unit (CPU) is a general purpose microprocessor,
which carries out the instructions of a computer program and is capable of pro-
cessing a wide range of instructions, a graphics processor unit (GPU) is a dedi-
cated microprocessor for the performing of graphical operations of the program.
Modern GPUs are designed to operate in a SIMD fashion, which is a natural
computational paradigm for graphical tasks. Recent research demonstrates that
they are capable of accelerating a much broader scope of applications than the
real-time rendering applications for which they were originally designed. GPUs
offer potential for considerable increase in computation speed in applications
that are data parallel.

Object tracking is an important problem in computer vision. It is a pre-
requisite for analyzing and understanding visual data, and has been an active
research topic in the computer vision community over the last two decades. The
goal of the object tracking is to automatically find the same object in an adja-
cent frame from an image sequence once it is initialized. Tracking algorithms are
now employed in a wide variety of domains, such as robotics, human-computer-
communication, vehicular traffic and surveillance. The challenge is to track the
object irrespective of scale, rotation, perspective projection, occlusions, changes
of appearance and illumination. Therefore, reliable vision-based object track-
ing is typically time-consuming process. However, it should be fast enough to
maintain transparent interaction with the user.

? B. Rymut is currently a student, doing his MSc thesis on GPU-based object tracking

Bayesian filtering techniques are often employed to achieve reliable tracking.
For example, the Kalman filter has been used to track object in [1]. Unfortu-
nately, object tracking in real-world environment rarely satisfies Kalman filter’s
requirements. Particle filtering [2] is superior to Kalman filtering without being
constrained to linear models and Gaussian observations. However, particle filter
(PF) being a sequential Monte Carlo method is time-consuming tracking tech-
nique. One of the major drawbacks of particle filters is that a huge number of
particles are usually required for accurate estimation of state variables lying in
a high dimensional space.

One way to achieve object tracking is searching for the best match of the
predefined object model in the image. Recently, particle swarm optimization
(PSO), a population based stochastic optimization technique has received con-
siderable attention. Unlike the independent particles in the PF, the particles
in a PSO interact locally with one another and with their environment in the
course of searching for the best solution. Each particle in the swarm represents
a candidate solution to the optimization problem. The most time consuming op-
eration in PSO-based object tracking is evaluation of the fitness function. Since
multiple candidate solutions are evaluated in each iteration, PSO-based tracking
algorithms are computationally demanding for real-time applications.

Adaptive appearance models have acknowledged their great usefulness in vi-
sual tracking. In [3], the appearance model is based on phase information derived
from the image intensity. Similar to this work, the appearance models that are
utilized in [4][5] consist of three components, W,S, F , where the W component
models the two-frame variations, the S component characterizes temporally sta-
ble images, and the F component is a fixed template of the target to prevent
the model from drifting away. The algorithms mentioned above produce good
tracking results, but are quite time-consuming. This motivated us to develop
a GPU implementation of the tracking using particle swarm optimization with
adaptive appearance models. Since in adaptive appearance model based tracking
the objects are represented as 2D arrays of pixels data, our algorithm takes the
advantage of SIMD architecture effectively.

2 Visual appearance modeling using adaptive models

Our intensity-based appearance model consists of three components, namely, the
W -component expressing the two-frame variations, the S-component character-
izing the stable structure within all previous observations and F component
representing a fixed initial template. The model At = {Wt, St, Ft} represents
the appearances existing in all observations up to time t − 1. It is a mixture
of Gaussians [3] with centers {µk,t | k = w, s, f}, their corresponding variances
{σ2

k,t | k = w, s, f} and mixing probabilities {mk,t | k = w, s, f}.
Let I(p, t) denote the brightness value at the position p = (x, y) in an image

I that was acquired in time t. Let R be a set of J locations {p(j) | j = 1, 2, ..., J}
defining a template. Yt(R) is a vector of the brightness values at locations p(j)

in the template. The observation model has the following form:

p(zt|xt) =
J∏

j=1

∑

k=w,s,f

mk,t(j)√
2πσ2

k,t(j)
exp

[
−1

2

(
Yt(j)− µk,t(j)

σk,t(j)

)2
]

(1)

where zt is the observation corresponding to template parameterization xt. In
the object likelihood function we utilize a recursively updated appearance model,
which depicts stable structures seen so far, two-frame variations as well as initial
object appearance. Owing to normalization by subtracting the mean and dividing
by standard deviation, the template becomes invariant to global illumination
changes.

The update of the current appearance model At to At+1 is done using the
Expectation Maximization (EM) algorithm [6]. For a template Ŷt(R), which was
obtained from the image I using the estimated parameterization x̂t, we evaluate
the posterior contribution probabilities as follows:

ok,t(j) =
mk,t(j)√
2πσ2

k,t(j)
exp


−1

2

(
Ŷt(j)− µk,t(j)

σk,t(j)

)2

 (2)

where k = w, s, f and j = 1, 2, ..., J . The posterior contribution probabilities
(with

∑
k ok,t(j) = 1) are utilized in updating the mixing probabilities in the

following manner:

mk,t+1(j) = γok,t(j) + (1− γ)mk,t(j) | k = w, s, f (3)

where γ is accommodation factor. Then, the first and the second-moment images
are determined as follows:

M1,t+1(j) = (1− γ)M1,t(j) + γos,t(j)Ŷt(j) (4a)

M2,t+1(j) = (1− γ)M2,t(j) + γos,t(j)Ŷ 2
t (j) (4b)

In the last step the mixture centers and the variances are calculated as follows:

µs,t+1(j)=
M1,t+1(j)
ms,t+1(j)

, σs,t+1(j) =

√
M2,t+1(j)
ms,t+1(j)

− µ2
s,t+1(j) (5)

µw,t+1(j)=Ŷt(j), σw,t+1(j) = σw,1(j) (6)

µf,t+1(j)=µf,1(j), σf,t+1(j) = σf,1(j) (7)

In order to initialize the model A1 the initial moment images are set using the
following formulas: M1,1 = ms,1Yt0(R) and M2,1 = ms,1(σ2

s,1 + Y 2
t0(R)).

3 PSO-based object tracking

PSO is a population based algorithm that exploits a set of particles representing
potential solutions of the optimization task [7]. The particles fly through the
n-dimensional problem space with a velocity subject to both stochastic and de-
terministic update rules. The algorithm seeks for the global best solution through
adjusting at each time step the location of each individual according to personal
best and the global best positions of particles in the entire swarm. Each particle
keeps the position pbest in the problem space, which is associated with the best
fitness it has achieved personally so far. Additionally, when a particle considers
all the population as its topological neighbors, each particle employs gbest lo-
cation, which has been obtained so far by any particle in the swarm. The new
positions are subsequently scored by a fitness function f . The velocity of each
particle i is updated in accordance with the following equation:

v
(i)
j ← wv

(i)
j + c1r1,j(pbest

(i)
j − x(i)

j) + c2r2,j(gbestj − x(i)
j) (8)

where v
(i)
j is the velocity in the j−th dimension of the i−th particle, c1, c2

denote the acceleration coefficients, r1,j and r2,j are uniquely generated random
numbers in the interval [0.0, 1.0]. The new position of a particle is calculated in
the following manner:

x
(i)
j ← x

(i)
j + v

(i)
j (9)

The local best position of each particle is updated as follows:

pbest(i) ←
{

x(i), if f(x(i)) > f(pbest(i))
pbest(i), otherwise

(10)

and the global best position gbest is defined as:

gbest← arg max
pbest(i)

{f(pbest(i))} (11)

The value of velocity v(i) should be restricted to the range [−vmax, vmax] to
prevent particles from moving out of the search range. In some optimization
problems the local best version of PSO, where particles are influenced by the
best position within their neighborhood, as well as their own past experience can
give better results. While such a configuration of the PSO is generally slower
in convergence than algorithm with gbest, it typically results in much better
solutions and explores a larger part of the problem space.

At the beginning of the optimization the PSO initializes randomly locations
as well as the velocities of the particles. Then the algorithm selects pbest and
gbest values. Afterwards, equations (8)-(11) are called until maximum iterations
or minimum error criteria is attained. After that, given x̂t = gbest we calculate
Ŷt, and then update of the object model using formulas (2)-(7).

In the simplest solution the object tracking can be realized as deterministic
searching of window location whose content best matches a reference window

content. PSO allows us to avoid such time consuming exhaustive searching for the
best match. It provides an optimal or sub-optimal match without the complete
knowledge of the searching space. In PSO based tracking, at the beginning of
each frame in the initialization stage, an initial position is assigned to each
particle

x
(i)
t ← N (gbest,Σ) (12)

given the location gbest that has been estimated in the previous frame t − 1.
In the evaluation phase the fitness value of each particle is determined by a
predefined observation model according to the following formula:

f(x(i)
t) = p(z(i)

t |x(i)
t) (13)

4 Programming of GPU

In this section we outline the architectural properties of G80 [8], which are
the most relevant to our implementation. CUDATM is a new language and
development environment developed by NVIDIA, allowing execution of programs
with thousands of data-parallel threads on NVIDIA G80 class GPUs [9]. Such
threads are extremely lightweight and almost no cost for creation and context
switch is needed. In CUDA, programs are expressed as kernels and GPU is viewed
as a device, see Fig. 1, which can carry out multiple concurrent threads. Each
kernel consists of a collection of threads arranged into blocks. A thread block is
a group of threads, which can cooperate jointly through efficiently sharing data
via some fast shared memory, and synchronizing their execution to coordinate
memory accesses. A kernel should have enough blocks to simultaneously utilize
all the multiprocessors in a given GPU. Many thread blocks can be assigned to a
single multiprocessor, which are executed concurrently in a time-sharing fashion
to keep GPU as busy as possible.

Texture Memory

Constant Memory

Streaming Multiprocessor (SM)

Shared memory

Registers

Local Memory

Texture Cache

Constant Cache

CORE CORE CORE CORE

...

Shared memory

Registers

Local Memory

Texture Cache

Constant Cache

CORE CORE CORE CORE

Streaming Multiprocessor (SM)

Shared memory

Registers

Local Memory

Texture Cache

Constant Cache

CORE CORE CORE CORE

Streaming Multiprocessor (SM)

Shared memory

Registers

Local Memory

Texture Cache

Constant Cache

CORE CORE CORE CORE
Glabal Memory

DeviceHost

Memory

CPU

Copy processing data

Copy processing data

Copy the result

Instruct the processing

B
in

d
 m

e
m

o
ry

Fig. 1. G80 GPU architecture

As is illustrated in Fig. 1, both the host and the device maintain their own
DRAM, referred to as host memory and device memory, respectively. On the
device side the data structures can be mapped to the texture memory to take
advantages of special hardware on the GPU, which supplies a small amount of
on-chip caching and a little more efficient access to off-chip memory. The device
memory is accessible by all multiprocessors. Each multiprocessor has a set of
registers, shared memory, constant cache, and texture cache. Constant/texture
cache are read-only and have faster access than shared memory. Because only
threads within the same block can cooperate via shared memory and thread
synchronization, the user must partition the computation into multiple blocks.
The number of threads per block is restricted by the limited memory resources
of a multiprocessor core. On current GPUs, a thread block may contain up to
512 threads. In general, the more threads per block, the better the performance
because the hardware can hide memory latencies. High arithmetic intensity also
hides the memory latency. Storing the data locally reduces the need to access
off-chip memory, thereby improving the performance.

5 Implementation details

Writing effective computer vision applications for GPU is not a trivial task.
One should make careful decisions according the data layout, data exchange and
synchronization to ensure that the program can take the full advantages of the
available resources. In order to decompose the algorithm into GPU we should
identify data-parallel portions of the program and separate them as CUDA ker-
nels. The decomposition was done with regard to the main steps of the algorithm:

1. Assign each particle a random position in the problem hyperspace.
2. Evaluate the fitness function for each particle by applying (13).
3. For each particle i compare the particle’s fitness value with its f(pbest(i)).

If the current value is better than the value f(pbest(i)), then set this value
as the f(pbest(i)) and the current particle’s position pbest(i) as x(i).

4. Find the particle that has the best fitness value gbest.
5. Update the velocities and positions of all particles according to (8) and (9).
6. Given gbest, update of the object model using formulas (2) - (7).
7. Repeat steps 2− 6 until maximum number of iterations is attained.

At the beginning of each frame we generate pseudo-random numbers using
the Mersenne Twister [10] kernel provided by the CUDATM SDK. From uniform
random numbers we generate a vector of normal random numbers using Box
Mueller transform based on trigonometric functions [11] in order to initialize
the particle’s positions in the problem hyperspace. The positions are generated
using equation (12). The initialization is executed in 32 blocks and each block
consists of 128 threads, where each thread generates two random numbers. The
evaluation of the fitness function is done in two separate kernels. The first kernel
performs the normalization of the pixels in the template to the unit variance,
whereas the second thread is executed after the first one and calculates the fitness

score. In both kernels each thread processes a single column of the template, and
the parallel reduction technique [9] is used to obtain the final results. The results
achieved by the first kernel are stored in the shared memory. Both kernels operate
on textures. After the computation of the fitness score the calculation of the pbest
locations and their corresponding fitness values takes place. Identical number of
threads and blocks is used in this and in the initialization stage. Afterwards, the
gbest value is calculated. Finally, the algorithm updates in parallel the velocities
and the locations.

6 Experimental results

The experiments were conducted on a PC with 1 GB RAM, Intel Core 2 Quad,
2.66 GHz processor with NVIDIA GeForce 9800 GT graphics card. The graphics
card has 14 stream multiprocessors with 1.5 GHz, each with 8 cores, see Fig. 1.
It is equipped with 1024 MB RAM, 64 KB constant memory and 16 KB common
memory. We implemented the algorithm in CUDA and compared the runtimes
with its counterpart that was implemented in C and executed on the CPU. The
CPU code was compiled with Visual Studio 2005 with the SSE2 (Streaming
SIMD Extensions 2) option and O2 optimization turned on. Table 1 shows the
running times of the tracking algorithm both on CPU and GPU as well as the
speed-up. The communication delays for copying images from CPU to GPU
and vice versa have not been taken into account. The most time-consuming
operation of the tracking algorithm is calculation of the fitness function (13).
This operation amounts to 0.9 of the whole processing time.

Table 1. Tracking times [sec.] and speed-up obtained on CPU (Intel Core 2, 2.66 GHz)
and a GPU (NVIDIA GeForce 9800 GT)

#particles 32 64 128 256

CPU(2.66 GHz) 30.6 ms 60.0 ms 117.9 ms 234.2 ms

GPU(GF 9800 GT) 1.4 ms 1.9 ms 3.4 ms 5.6 ms

CPU/GPU 22.4 31.5 38.8 41.5

In object tracking experiments we employed various number of particles,
see Table 1. We can notice that for larger number of particles the speed-up of
the GPU algorithm is larger. The tracking is done in three dimensional space,
i.e. we track the location of the template as well as its scale. The scaling is
achieved via bilinear interpolation, which is extension of the linear interpolation
for interpolating functions of two variables on the regular grid of pixels. Figure 2
depicts some tracking results, which were obtained on color images1. The first
1 Thanks Dr. Birchfield for this sequence, obtained from

http://robotics.stanford.edu/˜birch/headtracker

image shown in Fig. 2 contains a face in the front of the background with colors
that are similar to skin color. The size of the reference frame is 32 × 42. The
change of template size between successive frames is ±1 pixel. The experimental
results depicted on Fig. 2 were obtained using 32 particles.

Fig. 2. GPU-based face tracking using adaptive appearance models

7 Conclusions

In this paper, we have shown how the adaptive appearance based tracking algo-
rithm can be accelerated significantly using programmable graphics hardware.
The results showed that our algorithm using GPU is about 40 times faster than
a CPU implementation. As a result the tracking algorithm runs at frame-rates
exceeding 60 frames per second.

References

1. Weng, S., Kuo, C., Tu, S.: Video object tracking using adaptive Kalman filter. J.
Vis. Comun. Image Represent. 17 (2006) 1190–1208

2. Isard, M., Blake, A.: Condensation - conditional density propagation for visual
tracking. Int. J. of Computer Vision 29 (2006) 5–28

3. Jepson, A.D., Fleet, D.J., El-Maraghi, T.: Robust on-line appearance models for
visual tracking. IEEE Trans. on PAMI 25 (2003) 1296–1311

4. Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm
optimization for visual tracking. In: IEEE Int. Conf. on CVPR. (2008) 1–8

5. Kwolek, B.: Particle swarm optimization-based object tracking. Fundamenta In-
formaticae 95 (2009) 449–463

6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. of the Royal Statistical Society. Series B 39 (1977) 1–38

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks, IEEE Press, Piscataway, NJ (1995) 1942–1948

8. Wasson, S.: Nvidia’s GeForce 8800 graphics processor. Technical report, PC
Hardware Explored (2006)

9. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. ACM Queue 6 (2008) 40–53

10. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Transactions on Model-
ing and Computer Simulation 8 (1998) 3–30

11. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
The Annals of Mathematical Statistics 29 (1958) 610–611

