
GPU-accelerated Object Tracking Using
Particle Filtering and Appearance-adaptive
Models

Boguslaw Rymut∗ and Bogdan Kwolek

Rzeszów University of Technology
W. Pola 2, 35-959 Rzeszów, Poland
bkwolek@prz.edu.pl

Summary. In this work we present an object tracking algorithm running on GPU.
The tracking is achieved by a particle filter using appearance-adaptive models. The
main focus of our work is parallel computation of the particle weights. The tracker
yields promising GPU/CPU speed-up. We demonstrate that the GPU implementa-
tion of the algorithm that runs with 256 particles is about 30 times faster than the
CPU implementation. Practical implementation issues in the CUDA framework are
discussed. The algorithm has been tested on freely available test sequences.

1 Introduction

Driven by the huge market for multimedia and games, graphics processors
have evolved more quickly than CPUs, and currently outperform them not
only in terms of processing power, but also in terms of memory performance.
The increasing programmability and computational power of the graphics
processing unit (GPU) provides great capability for acceleration of computer
vision algorithms. The GPU computations are done in parallel and algorithms
must work in multi-thread mode in order to exploit the computational power
of the GPU [1], which is not a feature of many vision algorithms. Unlike tra-
ditional CPU-based programs, GPU-based programs have several limitations
on how memory can be accessed. Thus, a majority of vision algorithms ei-
ther cannot be implemented on current GPUs or can be implemented with
considerable difficulties, in consequence leading to unsatisfactory speed-up.

The key to using the GPU for accelerating the computer vision algorithm is
to view it as a streaming, data-parallel computer, and the computations in the
form of SIMD, data-parallel kernels. GPU implementations should access con-
stant memory efficiently, avoid shared memory bank conflicts, coalesce global

∗ B. Rymut is presently a student, doing his MSc thesis on GPU-based object
tracking

2 B. Rymut, B. Kwolek

memory accesses, and overlap arithmetic with global memory latency. In gen-
eral, the number of arithmetic operations must be high enough to effectively
hide memory latency.

Visual tracking of objects of interest has received significant attention in
the vision community. It is the key to the effective use of more advanced tech-
nologies, like human identification, event recognition, crowd analysis, etc. In
the last decade a number of robust tracking strategies was proposed, which
are able to tolerate changes in target appearance and track targets in com-
plex scenes. One such successful approach is the particle filter [2][3]. The most
important property of the particle filter (PF) is its ability to handle complex,
multi-modal (non-Gaussian) posterior distributions. Such distributions are ap-
proximated by a collection of the particles. Essentially, the number of particles
required to adequately approximate the distribution grows exponentially with
the dimensionality of the state space. PFs are computationally expensive as
the number of particles needs to be large for precise results. Moreover, the
observation models are often built on complex appearance models, and as the
result the trackers have difficulties to operate with 25/30 frames per second.

Adaptive appearance models have demonstrated great effectiveness in ob-
ject tracking. In [4], the appearance model is based on phase information de-
rived from the image intensity. The appearance models [5][6] consist of three
components, namely W,S, F , where the W component represents the two-
frame variations, the S component models temporally stable pixel intensities,
and the F component is a fixed template of the target to prevent the model
from drifting away. The particle filters built on adaptive appearance models
algorithms produce good tracking results, but require considerable computa-
tional power. This motivated us to elaborate a GPU implementation of such
an algorithm. Since the objects are represented as 2D arrays of pixels data,
our algorithm takes advantages of GPU effectively.

The contribution of our work is an object tracking algorithm running on
GPU. The tracking is achieved by a particle filter using appearance-adaptive
models. The tracker yields promising GPU/CPU speed-up. We demonstrate
that the GPU implementation of the algorithm that runs with 256 particles
is about 30 times faster than the CPU implementation.

2 Object tracking using appearance-adaptive models in
particle filter

In this section we overview the particle filtering. The section explains also
how the object undergoing tracking is modeled.

2.1 Particle filtering

The particle filter simulates the behavior of the dynamical system. Each sam-
ple predicts future behavior of the system in a Monte-Carlo fashion, and the

GPU-accelerated Object Tracking 3

samples that match the observed system behavior are kept, whereas ones that
are unsuccessful in predicting tend to die out. The evolution of the state of
the target as well as its measurement process is modeled by a set of (possibly
non-linear) equations perturbed by (possibly non-Gaussian) i.i.d. noise:

xk = fk(xk−1,vk) (1)

zk = hk(xk,nk) (2)

where xk denotes the state of the target at discrete time k, vk is the pro-
cess noise vector, zk is the measurement vector, and nk is the measure-
ment noise vector. The aim is to estimate the distribution of the target
state given all the previous measurements, that is, p(xk−1|z1:k−1), where
z1:k−1 = {z1, . . . , zk−1}. Given the initial distribution of the target, we can
recursively predict the state of the target using:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3)

If a new measurement becomes available, the state can be updated using
Bayes’ rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4)

The complete tracking scheme, known as the recursive Bayesian filter first
calculates the a priori density p(xk|z1:k−1) using the system model and then
evaluates a posteriori density p(xk|z1:k) given the new measurement.

In the PF, the distribution p(xk−1|z1:k−1) is approximated by a set of
M particles {xik−1}i=1...M and associated weights {wik−1}i=1...M as follows:

p(xk−1|z1:k−1) ≈ ∑
wik−1δ(xk − xik−1), where wik ∝ wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1,zk)
,

whereas
∑
wik−1 = 1 and δ(·) is the Kronecker delta function. The term

q(xik|xik−1, zk) stands for an importance density, which is typically obtained
by approximating p(xk|xk−1, zk) with a Gaussian distribution, or by using
p(xk|xk−1) like in Condensation [2].

One of the practical difficulties that is associated with particle filters is
degeneration of the particle population after a few iterations because weights
of several particles are negligible, and, eventually, only a very small number
of particles contributes to the posterior distribution. To mitigate this prob-
lem the resampling should be used in order to eliminate particles with low
importance weights and multiply particles with high importance weights. Re-
sampling can be carried out at every iteration or only when a substantial
amount of degeneracy is observed [3].

The algorithm of the particle filter can be expressed in the pseudo-code:

1. For i = 1, 2, . . . ,M sample or propose particles using p(xk|xk−1)
2. For i = 1, 2, . . . ,M calculate the weights, w̃ik = wik−1p(zk|xik)
3. Normalize the weights wik using w̃ik

4 B. Rymut, B. Kwolek

4. Calculate the state estimates, x̂k =
∑M
i=1 w

i
kx

i
k

5. Resample {xik, wik} to get new set of particles {xjk, wjk = 1/M}

2.2 Appearance-adaptive models

Our intensity-based appearance model consists of three components, namely,
the W -component expressing the two-frame variations, the S-component char-
acterizing the stable structure within all previous observations and F com-
ponent representing a fixed initial template. The model Ak = {Wk, Sk, Fk}
represents the appearances existing in all observations up to time k−1. It is a
mixture of Gaussians [4] with centers {µk,l | l = w, s, f}, their corresponding
variances {σ2

k,l | l = w, s, f} and mixing probabilities {mk,l | l = w, s, f}.
Let I(x, k) denote the brightness value at the position x = (x, y) in an

image I that was acquired in time k. Let R be a set of J locations {x(j) | j =
1, 2, ..., J} defining a template. Yk(R) is a vector of the brightness values at
locations x(j) in the template. The object likelihood is evaluated as follows:

p(zk|xk) =
J∏

j=1

∑

l=w,s,f

mk,l(j)√
2πσ2

k,l(j)
exp

[
−1

2

(
Yk(j)− µk,l(j)

σk,l(j)

)2
]

(5)

It uses a recursively updated appearance model, which depicts stable struc-
tures seen so far, two-frame variations as well as initial object appearance.

The update of the current appearance model Ak to At+1 is done using the
Expectation Maximization (EM) algorithm [7]. For a template Ŷk(R), which
is located in the image I at position x̂k, we evaluate the posterior contribution
probabilities as follows:

ok,l(j) =
mk,l(j)√
2πσ2

k,l(j)
exp

−1

2

(
Ŷk(j)− µk,l(j)

σk,l(j)

)2

 (6)

where l = w, s, f and j = 1, 2, ..., J . The posterior contribution probabilities
(with

∑
k ok,l(j) = 1) are used in updating the mixing probabilities:

mk+1,l(j) = γok,l(j) + (1− γ)mk,l(j) | l = w, s, f (7)

where γ is accommodation factor. Then, the first and the second-moment
images are determined in the following manner:

M
(1)
k+1(j) = (1− γ)M (1)

k (j) + γok,s(j)Ŷk(j) (8a)

M
(2)
k+1(j) = (1− γ)M (2)

k (j) + γok,s(j)Ŷ 2
k (j) (8b)

In the last step the mixture centers and the variances are calculated as follows:

µk+1,s(j) =
M

(1)
k+1(j)

mk+1,s(j)
, σk+1,s(j) =

√
M

(2)
k+1(j)

mk+1,s(j)
− µ2

k+1,s(j) (9)

GPU-accelerated Object Tracking 5

µk+1,w(j) = Ŷk(j), σk+1,w(j) = σ1,w(j) (10)

µk+1,f (j) = µ1,f (j), σk+1,f (j) = σ1,f (j) (11)

In order to initialize the model A1 the initial moment images are set using
the following formulas: M (1)

1 = m1,sYt0(R) and M
(2)
1 = m1,s(σ2

1,s + Y 2
t0(R)).

3 Implementation of object tracking on GPU

At the beginning of this section we overview programming in CUDA frame-
work. Afterwards we discuss implementation details of the algorithm on GPU.

3.1 Programming in CUDA

Compute Unified Device Architecture (CUDA) is a programming interface
that employs the parallel architecture of NVIDIA GPUs for general pur-
pose computing [8]. In CUDA, programs are expressed as kernels and GPU is
viewed as a device that can carry out multiple concurrent threads. Threads
are organized in two hierarchical levels, namely blocks, which are groups of
threads executed on one of the GPU’s multiprocessors, and grids, which are
groups of blocks launched concurrently on the device, and which all execute
the same kernel [1]. The memory requirements of a kernel determine how many
threads can run concurrently on each multiprocessor. The threads in a block
can share memory on a single multiprocessor. For a given kernel the block di-
mensions are chosen to optimize the utilization of the available computational
resources. Warp is a group of threads executed physically in parallel in SIMD
fashion. If the GPU processor must wait on one warp of threads, it simply
starts executing work on a different one. Because registers are allocated to
active threads, i.e. they stay allocated to the thread until it completes its ex-
ecution, no swapping of registers and state takes place between GPU threads.
In general, the more threads per block, the better the performance because
the scheduler can better hide memory latencies. Large arithmetic calculations
also contribute towards hiding the memory latency.

3.2 Implementation details

Porting well known computer vision algorithms to GPUs is a challenging task.
Creating efficient data structures for effective use of the GPU memory model
is a challenging problem in itself [9]. In order to take the full advantages of the
available resources one should make careful decisions according to the data
layout, data exchange and synchronization. In order to decompose the algo-
rithm onto GPU the data-parallel portions of the program should be identified
and then separated as CUDA kernels.

The predicting of the particles, see pseudo-code in subsection 2.1, is done
in a kernel, which uses the normally distributed random numbers. The random

6 B. Rymut, B. Kwolek

numbers are generated in advance in two kernels. In the first one we generate
pseudo-random numbers using the Mersenne Twister [10] kernel provided by
the CUDATM SDK. The second kernel employs the pseudo-random numbers
to generate a set of normal random numbers. It uses Box Mueller transform
based on trigonometric functions [11]. The random numbers are generated in
32 blocks and each block consists of 128 threads, where each thread gener-
ates two random numbers. In the kernel responsible for the prediction of the
particles the position of each particle is calculated in a separate thread.

The calculation of the particle weights is done in two separate kernels.
The first kernel performs the normalization of the pixels in the template to
the unit variance, whereas the second one is executed after the first one and
calculates the object likelihood (5). The size of the reference object template
is 42× 32. In both kernels each thread processes one column of the template.
For each particle the number of threads is equal to 32. The product in (5) is
calculated using parallel reduction [8]. The results achieved by the first kernel
are stored in the shared memory, and both kernels operate on textures.

The normalized weights wik, and the state estimate x̂k, see pseudo-code in
subsection 2.1, are calculated with the use of the parallel reduction. The object
state consists in the template location as well as its size. The admissible change
of the template size between successive frames is ±1 pixel. Given the object
state, the update of the appearance model takes place. In the resampling step
the multinomial algorithm [12] has been utilized. The vector of cumulative
sums was extracted with the use of parallel reduction, whereas the random
numbers were taken from the set that had been generated in advance.

When a new image becomes available, the algorithm scales down and scales
up the input image. The aim of this operation is to provide the images from
which we can extract object templates that are smaller/larger about one pixel
with regard to the estimated template size. The images are scaled using the
bilinear interpolation. In the discussed kernel, the number of blocks is equal
to the number of columns of the input images, whereas the number of threads
is equal to the number of rows.

4 Experimental results

The experiments were conducted on a PC with 1 GB RAM, Intel Core 2
Quad, 2.66 GHz processor with NVIDIA GeForce 9800 GT graphics card. The
graphics card has 14 stream multiprocessors, clocked at 1.5 GHz, each with 8
cores. It is equipped with 1024 MB RAM, 64 KB constant memory and 16 KB
common memory. We implemented the algorithm in CUDA and compared the
runtimes with its counterpart that was implemented in C/C++ and executed
on the CPU. The CPU code was compiled with Visual Studio 2005 with the
SSE2 (Streaming SIMD Extensions 2) option and O2 optimization turned on.
Table 1 shows the running times and speed-up of the tracking algorithm both
on CPU and GPU. The communication delays for transferring images from

GPU-accelerated Object Tracking 7

CPU to GPU and vice versa have not been taken into account. The most time-
consuming operation of the tracking algorithm is calculation of the likelihood
function (5). This operation amounts to 0.82 of the whole processing time.

Table 1. Tracking times [ms] and speed-up obtained on CPU (Intel Core 2,
2.66 GHz) and on GPU (NVIDIA GeForce 9800 GT).

#particles 32 64 128 256 512

CPU 16.53 32.27 62.65 123.73 243.19
GPU 1.30 1.80 2.70 4.17 7.51
CPU/GPU 12.8 18.3 24.4 29.5 32.4

In the experiments we employed various number of particles, see Table 1.
As we can observe, the algorithm achieves larger speed-up for larger number
of particles. Figure 1 depicts some tracking results, which were obtained on
gray images1.

The dataset exhibits severe illumination conditions with partial shading.
The template is a rectangular window initialized manually in the first frame.
The initial template size for the Trellis70 dataset was set to 96×64. The object
tracking was performed in three dimensional space, i.e. we track the location
of the template as well as its scale. The size of the reference frame was set to
42× 32. The maximal change of the template size between successive frames
was constrained to ±1 pixel. The example tracking results that are depicted
on Fig. 1 were obtained using 32 particles.

Fig. 1. Face tracking using particle filter and adaptive appearance models. Frames
#1, 50, 100, 150.

5 Conclusions

The adaptive appearance model-based particle filter is a robust algorithm
for tracking objects. However, the computational cost of this algorithm is
substantial. In this paper we presented our implementation of this algorithm

1 Trellis70 dataset is available at: http://www.cs.toronto.edu/_dross/ivt/

8 B. Rymut, B. Kwolek

on GPU. We explained how to design threads and memory structures for
high performance. The result is a parallel algorithm that is easy to implement
and yields promising GPU/CPU speed-up. The results showed that the GPU
implementation of the algorithm running with 256 particles is about 30 times
faster than the CPU implementation. Performance comparison on various
CPU/GPU configurations of the particle filter is also presented.

References

1. Wasson, S. (2006) Nvidia’s GeForce 8800 graphics processor. Tech Report,
November 8, PC Hardware Explored .

2. Isard, M. and Blake, A. (2006) Condensation - conditional density propagation
for visual tracking. Int. J. of Computer Vision, 29, 5–28.

3. Doucet, A., Godsill, S., and Andrieu, C. (2000) On sequential Monte Carlo
sampling methods for bayesian filtering. Statistics and Computing , 10, 197–208.

4. Jepson, A. D., Fleet, D. J., and El-Maraghi, T. (2003) Robust on-line appear-
ance models for visual tracking. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 25, 1296–1311.

5. Zhang, X., Hu, W., Maybank, S., Li, X., and Zhu, M. (2008) Sequential particle
swarm optimization for visual tracking. IEEE Int. Conf. on Computer Vision
and Pattern Recognition, Anchorage, AK, USA, pp. 1–8.

6. Kwolek, B. (2009) Particle swarm optimization-based object tracking. Funda-
menta Informaticae, 95, 449–463.

7. Dempster, A., Laird, N., and Rubin, D. (1977) Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B , 39, 1–38.

8. Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008) Scalable parallel
programming with CUDA. ACM Queue, 6, 40–53.

9. Lefohn, A. E., Sengupta, S., Kniss, J., Strzodka, R., and Owens, J. D. (2006)
Glift: Generic, efficient, random-access GPU data structures. ACM Transactions
on Graphics, 25, 60–99.

10. Matsumoto, M. and Nishimura, T. (1998) Mersenne twister: a 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions
on Modeling and Computer Simulation , 8, 3–30.

11. Box, G. E. P. and Muller, M. E. (1958) A note on the generation of random
normal deviates. The Annals of Mathematical Statistics , 29, 610–611.

12. Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993) Novel approach
to nonlinear/non-gaussian bayesian state estimation. IEE Proc. part-F, Radar
Signal Proc., 140, 107–113.

