Draft of the lecture

Piotr Chołda

October 12, 2017

1 Algorithms Defined on Graphs

1.1 Combinatorial optimization for network programming

1. The notions of network programming and combinatorial optimization.

- 2. Problem of searching for minimum spanning tree (MST):
 - Kruskal's algorithm: 1: procedure Kruskal(G = (V, E, f)) \triangleright Output edges of MST: T2: 3: $T \leftarrow \emptyset$ $\mathcal{E} = E$ 4: while |T| < |V| - 1 do 5: $e \leftarrow \arg\min\{f(i)\}$ 6: $i \in \mathcal{E}$ $\triangleright e$: the 'lightest' edge in a set of edges not dealt with 7: before $\mathcal{E} \leftarrow \mathcal{E} \smallsetminus \{e\}$ 8: if $T \cup \{e\}$ does not contain a cycle then 9: $T \leftarrow T \cup \{e\}$ 10: end if 11: $\mathcal{E} \leftarrow \mathcal{E} \smallsetminus \{e\}$ 12:end while 13:14: end procedure • Prim's algorithm (also known as Prim-Dijkstra's algorithm): 1: procedure $PRIM(G = (V, E, f), r \in V)$ 2: \triangleright Output edges of MST: T $\triangleright r$: the root 3: $T \leftarrow \{r\}$ 4: $\mathcal{V} = \mathcal{V}$ 5: while $\mathcal{V} \neq \emptyset$ do 6: $\mathcal{L} = \{i \in E : i = \{t, v\}, t \in T, v \in \mathcal{V}\}$ 7: $e \leftarrow \arg\min\{f(i)\}$ 8: $i \in \mathcal{L}$ $\triangleright e$: the 'lightest' edge in a set of edges that can extend 9: the tree $\mathcal{V} \leftarrow \mathcal{V} \smallsetminus \{ v \in \mathcal{V} : e = \{t, v\}, t \in T \}$ 10: $T \leftarrow T \cup \{e\}$ 11: end while 12:

Course:	Telecommunication Network Design
Teacher:	Piotr Chołda piotr.cholda@agh.edu.pl
Studies:	Electronics and Telecommunications
Speciality:	Networks and Services
Semester:	2 nd sem. MSc stud., Fall

13: end procedure

- 3. Greedy algorithms.
- 4. Examples of 'difficult' network programming problems:
 - Steiner's problem;
 - (vertex) coloring in graphs; the four color theorem, planar graphs.

5. Breadth-First Search (BFS), a tree of the hop-based shortest paths:

1: procedure BFS($G = (V, A), r \in V$) 2: $\triangleright r$: the root ▷ Initialization: 3: $\mathcal{S} \leftarrow \{r\}$ 4: 5: $\triangleright \mathcal{S}$: set of vertices reachable (via directed path/s) from r 6: $\mathcal{L} \leftarrow (r)$ $\triangleright \mathcal{L}$: an ordered list of already found vertices 7: $\mathcal{L}' \leftarrow V \smallsetminus \{r\}$ 8: $\triangleright \mathcal{L}'$: set of not yet searched vertices 9: 10: predecessor(r) = 0 \triangleright predecessor(j) = k: means that vertex k is a predecessor of 11: vertex j at a directed path from root r \triangleright The root does not have a predecessor 12: \triangleright Main loop: 13:while $\mathcal{L} \neq \emptyset$ do 14:for all $k \in \mathcal{L}$ do 15:for all $j \in \mathcal{L}'$ do 16:if $(k, j) \in A$ then 17: \triangleright Only for admissible arcs 18: $\mathcal{S} \leftarrow \mathcal{S} \cup \{j\}$ 19:20: predecessor(j) = k $\mathcal{L} \leftarrow (\mathcal{L}, j)$ 21: $\mathcal{L}' \leftarrow \mathcal{L}' \smallsetminus \{j\}$ 22: end if 23:end for 24: $\mathcal{L} \leftarrow \mathcal{L} \smallsetminus \{k\}$ 25:end for 26:end while 27:28:return $(\mathcal{S}, \mathcal{P}(\mathcal{S}))$ $\triangleright \mathcal{P}(\mathcal{S})$: list of the predecessor of vertices contained by \mathcal{S} 29:30: end procedure 6. Depth-First Search (DFS): 1: procedure $DFS(G = (V, A), r \in V)$ 2: $\triangleright r$: root 3: ▷ Initialization: 4: $\mathcal{S} \leftarrow \{r\}$ $\triangleright S$: set of vertices reachable (via directed path/s) from *i* 5: $\mathcal{L}' \leftarrow V\smallsetminus \{r\}$ 6: 7: $\triangleright \mathcal{L}'$: set of not yet searched vertices predecessor(r) = 08:

Course:	Telecommunication Network Design
Teacher:	Piotr Chołda piotr.cholda@agh.edu.pl
Studies:	Electronics and Telecommunications
Speciality:	Networks and Services
Semester:	2 nd sem. MSc stud., Fall

▷ Main loop:

10:SEARCHDEEP $(r,G,\mathcal{S},\mathcal{L}')$ 11:return $(\mathcal{S},\mathcal{P}(\mathcal{S}))$ 12:end procedure

A subprocedure performed recurrently:

1: procedure SEARCHDEEP $(v, G, \mathcal{S}, \mathcal{L}')$ for all $j \in \mathcal{L}'$ do 2: 3: if $(v, j) \in A$ then $\mathcal{S} \leftarrow \mathcal{S} \cup \{j\}$ 4: predecessor(j) = v5: $\mathcal{L}' \leftarrow \mathcal{L}' \smallsetminus \{j\}$ 6: 7: SEARCHDEEP $(j, G, \mathcal{S}, \mathcal{L}')$ end if 8. end for 9: 10: $\mathcal{L} \leftarrow \mathcal{L} \smallsetminus \{v\}$ 11: end procedure

7. Maximum flow problem (max flow). Ford-Fulkerson's theorem. Algorithm for solving max flow problem based on usage of a residual graph and augmenting flows.

1.2 Exercises

9:

- Give example of a weighted graph G, that has all the following properties:
 - \star graph G is connected,
 - $\star\,$ all the weights are natural numbers,
 - \star there are nine vertices in graph G,
 - \star the sum of weights of the minimum spanning tree of graph G is equal to the half of the sum of all the weights in this graph.
- Show that the minimum spanning tree of a weighted full mesh graph K_9 is a bipartite graph.

1.3 Reading

1.3.1 Contents of the lecture

Problems described in this lecture are generally dealt with in the following positions:

- Wayne D. Grover. Mesh-Based Survivable Networks. Options and Strategies for Optical, MPLS, SONET, and ATM Networks. Prentice Hall PTR, Upper Saddle River, NJ, 2004: section 4.10.
- Deepankar Medhi and Karthikeyan Ramasamy. Network Routing. Algorithms, Protocols, and Architectures. Morgan Kaufmann Publishers— Elsevier, San Francisco, CA, 2007: chapter 2.
- Michał Pióro and Deepankar Medhi. *Routing, Flow and Capacity Design* in *Communication and Computer Networks*. Morgan Kaufmann Publishers— Elsevier, San Francisco, CA, 2004: appendix C.1-C.2.

Course:	Telecommunication Network Design
Teacher:	Piotr Chołda piotr.cholda@agh.edu.pl
Studies:	Electronics and Telecommunications
Speciality:	Networks and Services
Semester:	2 nd sem. MSc stud., Fall

1.3.2 Auxiliary references

- Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Minimum Cost Flow Problem. In Christodoulos A. Floudas and Panos M. Pardalos, editors, *Encyclopedia of Optimization*, pages 2095–2108. Springer Science+Business Media, LLC., New York, NY, 2009: minimum cost flow problem.
- Ramesh Bhandari. Survivable Networks. Algorithms for Diverse Routing. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999: overview of various algorithms useful in network design (mainly for resilient networks).