
Course: Telecommunication Network Design
Teacher: Piotr Chołda piotr.cholda@agh.edu.pl
Studies: Electronics and Telecommunications
Speciality: Networks and Services
Semester: 2nd sem. MSc stud., Fall. .

Draft of the lecture

Piotr Chołda

October 12, 2017

1 Algorithms Defined on Graphs

1.1 Combinatorial optimization for network programming

1. The notions of network programming and combinatorial optimization.

2. Problem of searching for minimum spanning tree (MST):

• Kruskal’s algorithm:
1: procedure Kruskal(G = (V,E, f))
2: . Output edges of MST: T
3: T ← ∅
4: E = E
5: while |T | < |V | − 1 do
6: e← argmin

i∈E
{f(i)}

7: . e: the ‘lightest’ edge in a set of edges not dealt with
before

8: E ← E r {e}
9: if T ∪ {e} does not contain a cycle then
10: T ← T ∪ {e}
11: end if
12: E ← E r {e}
13: end while
14: end procedure

• Prim’s algorithm (also known as Prim-Dijkstra’s algorithm):
1: procedure Prim(G = (V,E, f), r ∈ V)
2: . Output edges of MST: T
3: . r: the root
4: T ← {r}
5: V = V
6: while V 6= ∅ do
7: L = {i ∈ E : i = {t, v}, t ∈ T, v ∈ V}
8: e← argmin

i∈L
{f(i)}

9: . e: the ‘lightest’ edge in a set of edges that can extend
the tree

10: V ← V r {v ∈ V : e = {t, v}, t ∈ T}
11: T ← T ∪ {e}
12: end while

Page 1

mailto:piotr.cholda@agh.edu.pl

Course: Telecommunication Network Design
Teacher: Piotr Chołda piotr.cholda@agh.edu.pl
Studies: Electronics and Telecommunications
Speciality: Networks and Services
Semester: 2nd sem. MSc stud., Fall. .

13: end procedure

3. Greedy algorithms.

4. Examples of ‘difficult’ network programming problems:

• Steiner’s problem;

• (vertex) coloring in graphs; the four color theorem, planar graphs.

5. Breadth-First Search (BFS), a tree of the hop-based shortest paths:
1: procedure BFS(G = (V,A), r ∈ V)
2: . r: the root
3: . Initialization:
4: S ← {r}
5: . S: set of vertices reachable (via directed path/s) from r
6: L ← (r)
7: . L: an ordered list of already found vertices
8: L′ ← V r {r}
9: . L′: set of not yet searched vertices
10: predecessor(r) = 0
11: . predecessor(j) = k: means that vertex k is a predecessor of

vertex j at a directed path from root r
12: . The root does not have a predecessor
13: . Main loop:
14: while L 6= ∅ do
15: for all k ∈ L do
16: for all j ∈ L′ do
17: if (k, j) ∈ A then
18: . Only for admissible arcs
19: S ← S ∪ {j}
20: predecessor(j) = k
21: L ← (L, j)
22: L′ ← L′ r {j}
23: end if
24: end for
25: L ← Lr {k}
26: end for
27: end while
28: return (S,P(S))
29: . P(S): list of the predecessor of vertices contained by S
30: end procedure

6. Depth-First Search (DFS):
1: procedure DFS(G = (V,A), r ∈ V)
2: . r: root
3: . Initialization:
4: S ← {r}
5: . S: set of vertices reachable (via directed path/s) from i
6: L′ ← V r {r}
7: . L′: set of not yet searched vertices
8: predecessor(r) = 0

Page 2

mailto:piotr.cholda@agh.edu.pl

Course: Telecommunication Network Design
Teacher: Piotr Chołda piotr.cholda@agh.edu.pl
Studies: Electronics and Telecommunications
Speciality: Networks and Services
Semester: 2nd sem. MSc stud., Fall. .

9: . Main loop:
10: SearchDeep(r,G,S,L′)
11: return (S,P(S))
12: end procedure

A subprocedure performed recurrently:
1: procedure SearchDeep(v,G,S,L′)
2: for all j ∈ L′ do
3: if (v, j) ∈ A then
4: S ← S ∪ {j}
5: predecessor(j) = v
6: L′ ← L′ r {j}
7: SearchDeep(j,G,S,L′)
8: end if
9: end for
10: L ← Lr {v}
11: end procedure

7. Maximum flow problem (max flow). Ford-Fulkerson’s theorem. Algo-
rithm for solving max flow problem based on usage of a residual graph
and augmenting flows.

1.2 Exercises

• Give example of a weighted graph G, that has all the following properties:

? graph G is connected,

? all the weights are natural numbers,

? there are nine vertices in graph G,

? the sum of weights of the minimum spanning tree of graph G is equal
to the half of the sum of all the weights in this graph.

• Show that the minimum spanning tree of a weighted full mesh graph K9

is a bipartite graph.

1.3 Reading

1.3.1 Contents of the lecture

Problems described in this lecture are generally dealt with in the following
positions:

• Wayne D. Grover. Mesh-Based Survivable Networks. Options and Strate-
gies for Optical, MPLS, SONET, and ATM Networks. Prentice Hall PTR,
Upper Saddle River, NJ, 2004: section 4.10.

• Deepankar Medhi and Karthikeyan Ramasamy. Network Routing. Al-
gorithms, Protocols, and Architectures. Morgan Kaufmann Publishers—
Elsevier, San Francisco, CA, 2007: chapter 2.

• Michał Pióro and Deepankar Medhi. Routing, Flow and Capacity Design
in Communication and Computer Networks. Morgan Kaufmann Publishers—
Elsevier, San Francisco, CA, 2004: appendix C.1-C.2.

Page 3

mailto:piotr.cholda@agh.edu.pl

Course: Telecommunication Network Design
Teacher: Piotr Chołda piotr.cholda@agh.edu.pl
Studies: Electronics and Telecommunications
Speciality: Networks and Services
Semester: 2nd sem. MSc stud., Fall. .

1.3.2 Auxiliary references

• Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Minimum
Cost Flow Problem. In Christodoulos A. Floudas and Panos M. Parda-
los, editors, Encyclopedia of Optimization, pages 2095–2108. Springer Sci-
ence+Business Media, LLC., New York, NY, 2009: minimum cost flow
problem.

• Ramesh Bhandari. Survivable Networks. Algorithms for Diverse Routing.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999: overview
of various algorithms useful in network design (mainly for resilient net-
works).

Page 4

mailto:piotr.cholda@agh.edu.pl

	Algorithms Defined on Graphs
	Combinatorial optimization for network programming
	Exercises
	Reading
	Contents of the lecture
	Auxiliary references

